首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Tumor cells in vivo often exist in an ischemic microenvironment that would compromise the growth of normal cells. To minimize intracellular acidification under these conditions, these cells are thought to upregulate H(+) transport mechanisms and/or slow the rate at which metabolic processes generate intracellular protons. Proton extrusion has been compared under identical conditions in two closely related human breast cell lines: nonmalignant but immortalized HMT-3522/S1 and malignant HMT-3522/T4-2 cells derived from them. Only the latter were capable of tumor formation in host animals or long-term growth in a low-pH medium designed to mimic conditions in many solid tumors. However, detailed study of the dynamics of proton extrusion in the two cell lines revealed no significant differences. Thus, even though the ability to upregulate proton extrusion in a low pH environment (pH(e)) may be important for cell survival in a tumor, this ability is not acquired along with the capacity to form solid tumors and is not unique to the transformed cell. This conclusion was based on fluorescence measurements of intracellular pH (pH(i)) on cells that were plated on extracellular matrix, allowing them to remain adherent to proteins to which they had become attached 24 to 48 h earlier. Proton translocation under conditions of low pH(e) was observed by monitoring pH(i) after exposing cells to an acute acidification of the surrounding medium. Proton translocation at normal pH(e) was measured by monitoring the recovery after introduction of an intracellular proton load by treatment with ammonium chloride. Even in the presence of inhibitors of the three major mechanisms of proton translocation (sodium-proton antiport, bicarbonate transport, and proton-lactate symport) together with acidification of their medium, cells showed only about 0.4 units of reduction in pH(i). This was attributed to a slowing of metabolic proton generation because the inhibitors were shown to be effective when the same cells were given an intracellular acidification.  相似文献   

3.
Summary A new, nontumorigenic human breast epithelial cell line, HMT-3522, has been established from fibrocystic breast tissue. Cells were explanted and propagated in chemically defined medium including insulin, transferrin, epidermal growth factor, hydrocortisone, estradiol, prolactin, and Na-selenite. The epithelial nature of the cell line was established by immunocytochemical detection of cytokeratins. Moreover, electronmicroscopy revealed monolayers of polarized cells connected by desmosomes and provided with apical microvilli. Milk fat globule membrene antigen, specific for the apical membrane domain of normal, luminal breast epithelial cells, was expressed only in confluent cultures where some cells overlaid others, indicating “stem cell”-like properties. After 25 to 30 passages, the cells are diploid with a few marker chromosomes and loss of chromosomes in the D-group. The cells are nontumorigenic in athymic mice; they lack estrogen receptors, and estradiol does not stimulate growth. The HMT-3522 cell line may represent a useful model for the study of brest cell differentiation and carcinogenesis in vitro. This work was supported by a grant from the Danish Cancer Society.  相似文献   

4.
Normal cells undergo a variety of molecular and physiological changes upon malignant transformation, including their responses to environmental factors that induce oxidative stress. Understanding the molecular pathways regulating these changes would facilitate the development of novel cancer treatments and chemoprevention strategies. Differences in the oxidative stress response were investigated between nonmalignant (S-1) and malignant (T4-2) cell lines (both derived from the HMT-3522 breast epithelial cells) using proteomic approaches. A modification of the stable isotope labeling of amino acids in cell culture (SILAC) approach was employed in which a [(13)C,(15)N]-labeled proteome was prepared from both cells. Relative quantification of the proteome derived from the S-1 cells and the T4-2 cells was then conducted using a [(13)C,(15)N]-labeled proteome as the internal standard. Differentially expressed proteins that changed in a similar manner in both cell lines were mainly stress response proteins, including heat shock proteins, peroxiredoxins, and redox proteins. Proteins that showed significant change in expression level in only one the cell lines included cytoskeleton proteins and proteins implicated in cell cycle and apoptosis regulation. Fortilin was found to be significantly up regulated in the transformed T4-2 cells after H(2)O(2) treatment but not in the parental S-1 cells. However, Ran/TC4 was up regulated by H(2)O(2) in the nonmalignant breast epithelial cells but not in the malignant cells. These results suggest that the malignant T4-2 cells have acquired more resistance to H(2)O(2)-induced apoptosis than the nonmalignant S-1 cells.  相似文献   

5.
The HMT3522 progression series of human breast cells have been used to discover how tissue architecture, microenvironment and signaling molecules affect breast cell growth and behaviors. However, much remains to be elucidated about malignant and phenotypic reversion behaviors of the HMT3522-T4-2 cells of this series. We employed a “pan-cell-state” strategy, and analyzed jointly microarray profiles obtained from different state-specific cell populations from this progression and reversion model of the breast cells using a tree-lineage multi-network inference algorithm, Treegl. We found that different breast cell states contain distinct gene networks. The network specific to non-malignant HMT3522-S1 cells is dominated by genes involved in normal processes, whereas the T4-2-specific network is enriched with cancer-related genes. The networks specific to various conditions of the reverted T4-2 cells are enriched with pathways suggestive of compensatory effects, consistent with clinical data showing patient resistance to anticancer drugs. We validated the findings using an external dataset, and showed that aberrant expression values of certain hubs in the identified networks are associated with poor clinical outcomes. Thus, analysis of various reversion conditions (including non-reverted) of HMT3522 cells using Treegl can be a good model system to study drug effects on breast cancer.  相似文献   

6.
7.
The human placenta is a highly invasive tumor-like structure in which a subpopulation of placental trophoblast cells known as the "extravillous trophoblast" (EVT) invades the uterine decidua and its vasculature to establish adequate fetal-maternal exchange of molecules. By utilizing in vitro-propagated short-lived EVT cell lines we found that molecular mechanisms responsible for their invasiveness are identical to those of cancer cells; however, unlike cancer cells, their proliferation, migration, and invasiveness in situ are stringently controlled by decidua-derived transforming growth factor (TGF)-beta. By SV40T antigen transfection of normal EVT cells followed by a forced crisis regimen in culture we produced an immortalized premalignant derivative that is hyperproliferative, hyperinvasive, and deficient in gap-junctional intercellular communication. Both premalignant and malignant EVT (JAR and JEG-3 choriocarcinoma) cell lines were found to be TGF-beta-resistant. Using these cell lines, we investigated genetic changes responsible for transition of the normal EVT cells to premalignant and malignant phenotype. Hyperinvasiveness in both cases resulted from a downregulation of tissue inhibitor of metalloprotease (TIMP)-1 and plasminogen activator inhibitor (PAI)-1 genes. In contrast to normal EVT cells, both cell types failed to upregulate these genes in response to TGF-beta. Loss of TGF-beta response in malignant EVT cells was explained by the loss of expression of Smad3 gene. Differential mRNA display of normal and premalignant EVT cells identified up- and down-regulation of numerous known or novel genes in premalignant EVT cells, with potential oncogenic and (or) tumor-suppressor functions, e.g., loss of fibronectin and insulin-like growth factor binding protein (IGFBP-5). Premalignant EVT cells also lost IGF receptor type 2 (IGFR-II). IGFBP-5 was shown to be a negative regulator of IGF-1-induced proliferation of premalignant EVT cells, so that loss of IGFBP-5 as well as IGFR-II permitted their unrestricted proliferation in an IGF-I-rich microenvironment of the fetal-maternal interface. The present model may be a good prototype for identifying genetic changes underlying epithelial tumor progression.  相似文献   

8.
UN1 is a membrane glycoprotein that is expressed in immature human thymocytes, a subpopulation of peripheral T lymphocytes, the HPB acute lymphoblastic leukemia (ALL) T-cell line and fetal thymus. We previously reported the isolation of a monoclonal antibody (UN1 mAb) recognizing the UN1 protein that was classified as "unclustered" at the 5th and 6th International Workshop and Conference on Human Leukocyte Differentiation Antigens. UN1 was highly expressed in breast cancer tissues and was undetected in non-proliferative lesions and in normal breast tissues, indicating a role for UN1 in the development of a tumorigenic phenotype of breast cancer cells. In this study, we report a partial purification of the UN1 protein from HPB-ALL T cells by anion-exchange chromatography followed by immunoprecipitation with the UN1 mAb and MALDI-TOF MS analysis. This analysis should assist in identifying the amino acid sequence of UN1.  相似文献   

9.
In vitro transfection experiments have shown that cooperation between two different oncogenes can confer a fully malignant phenotype to primary rodent cells. We have previously reported that SW 613-Tul cells, derived from a tumor induced in a nude mouse by the human breast carcinoma cell line SW 613-S, showed a 30-fold amplification of the c-myc gene. In the present work, we show that these cells also harbor an activated c-Ki-ras gene capable of inducing the formation of foci upon transfection of NIH 3T3 cells with SW 613-Tul genomic DNA. Our results suggest that both the c-myc and c-Ki-ras oncogenes, activated by two different mechanisms, may cooperate in the full expression of the tumorigenic phenotype of SW 613-Tul cells.  相似文献   

10.
BRCA1-associated RING domain (BARD1) was identified as a protein interacting with the breast cancer gene product BRCA1. The identification of tumorigenic missense mutations within BRCA1 that impair the formation of BARD1–BRCA1 complexes, and of BARD1 mutations in breast carcinomas, sustain the view that BARD1 is involved in BRCA1-mediated tumor suppression. We have cloned the murine Bard1 gene and determined that its expression in different tissues correlates with the expression profile of Brca1. To investigate the function of Bard1, we have reduced Bard1 gene expression in TAC-2 cells, a murine mammary epithelial cell line that retains morphogenetic properties characteristic of normal breast epithelium. Partial repression of Bard1, achieved by the transfection of TAC-2 cells with plasmids constitutively expressing ribozymes or antisense RNAs, resulted in marked phenotypic changes, consisting of altered cell shape, increased cell size, high frequency of multinucleated cells, and aberrant cell cycle progression. Furthermore, Bard1-repressed cell clones overcame contact inhibition of cell proliferation when grown in monolayer cultures and lost the capacity to form luminal structures in three-dimensional collagen gels. These results demonstrate that Bard1 repression induces complex changes in mammary epithelial cell properties which are suggestive of a premalignant phenotype.  相似文献   

11.
We investigated alpha1-antichymotrypsin (ACT) gene expression in xenograft tumors generated by two isogenic human breast cancer cell lines derived from the same parent, MDA-MB-435, which display opposite metastatic behaviors. Microarray and real-time PCR experiments showed an overexpression of this serine protease inhibitor in the metastatic tumors (M-4A4T) and its derived metastases (M4-Mets) compared with the weakly metastatic tumors (NM-2C5T), and its release into the blood was confirmed by western-blotting. However, functional assays in vivo using genetically engineered tumor cells demonstrated that ACT up-regulation was not, by itself, responsible for the metastatic phenotype. We also made observations that ACT gene regulation was sensitive to tumor-host interactions: inoculation of these lines into the mouse mammary gland greatly increased ACT production and accentuated the intrinsic difference observed when they are cultured in vitro. Sensitivity of tumor cells to their environment was further analyzed by in vitro experiments, which demonstrated that a purified ECM environment and soluble components from normal host mammary cells were both able to significantly promote ACT expression. In addition, we took advantage of the xenogeneic nature of the model to measure ACT expression by the host cells (mouse) and the tumor cells (human) within the neoplasm using species-specific primers in real-time PCR experiments. It was found that the presence of tumor cells, irrespective of their metastatic capabilities, induced local ACT production by host cells at the primary and secondary tumor sites. Thus, this work indicates that there is a specific association of ACT overexpression with the metastatic phenotype in our breast cancer metastasis model. Moreover, because of the xenogeneic nature of our system, we were able to provide evidence of tumor-host reciprocal regulation of ACT production.  相似文献   

12.
The E3 ligase HERC4 is overexpressed in human breast cancer and its expression levels correlated with the prognosis of breast cancer patients. However, the roles of HERC4 in mammary tumorigenesis remain unclear. Here we demonstrate that the knockdown of HERC4 in human breast cancer cells dramatically suppressed their proliferation, survival, migration, and tumor growth in vivo, while the overexpression of HERC4 promoted their aggressive tumorigenic activities. HERC4 is a new E3 ligase for the tumor suppressor LATS1 and destabilizes LATS1 by promoting the ubiquitination of LATS1. miRNA-136-5p and miRNA-1285-5p, expression of which is decreased in human breast cancers and is inversely correlated with the prognosis of breast cancer patients, are directly involved in suppressing the expression of HERC4. In summary, we discover a miRNA-HERC4-LATS1 pathway that plays important roles in the pathogenesis of breast cancer and represents new therapeutic targets for human breast cancer.  相似文献   

13.
Neoplasms progress through genetic and epigenetic mutations that deregulate pathways in the malignant cell that stimulate more aggressive growth of the malignant cell itself and/or remodel the tumor microenvironment to support the developing tumor mass. The appearance of new blood vessels in malignant tumors is known as the "angiogenic switch." The angiogenic switch triggers a stage of rapid tumor growth supported by extensive tumor angiogenesis and a more aggressive tumor phenotype and its onset is a poor prognostic indicator for host survival. Identification of the factors that stimulate the angiogenic switch thus is of high importance. Pleiotrophin (PTN the protein, Ptn the gene) is an angiogenic factor and the Ptn gene has been found to be constitutively expressed in many human tumors of different cell types. These studies use a nude mouse model to test if Ptn constitutively expressed in premalignant cells is sufficient to trigger an angiogenic switch in vivo. We introduced an ectopic Ptn gene into "premalignant" SW-13 cells and analyzed the phenotype of SW-13 Ptn cell tumor implants in the flanks of nude mice. SW-13 Ptn cell subcutaneous tumor implants grew very rapidly and had a striking increase in the density of new blood vessels compared to the SW-13 cell tumor implants, suggesting that constitutive PTN signaling in the premalignant SW-13 cell implants in the nude mouse recapitulates fully the angiogenic switch. It was found also that ectopic expression of the C-terminal domain of PTN in SW-13 cell implants was equally effective in initiating an angiogenic switch as the full-length PTN whereas implants of SW-13 cells in nude mice that express the N-terminal domain of PTN grew rapidly but failed to develop tumor angiogenesis. The data suggest the possibility that mutations that activate Ptn in premalignant cells are sufficient to stimulate an angiogenic switch in vivo and, since these mutations are frequently found in human malignancies, that constitutive PTN signaling may be an important contributor to progression of human tumors. The data also suggest that the C-terminal and the N-terminal domains of PTN equally initiate switches in premalignant cells to cells of a more aggressive tumor phenotype but the separate domains of PTN signal different mechanisms and perhaps signal through activation of a separate receptor-like protein.  相似文献   

14.
Pancreatic adenocarcinoma is currently the fourth leading cause for cancer-related mortality. Stem cells have been implicated in pancreatic tumor growth, but the specific role of these cancer stem cells in tumor biology, including metastasis, is still uncertain. We found that human pancreatic cancer tissue contains cancer stem cells defined by CD133 expression that are exclusively tumorigenic and highly resistant to standard chemotherapy. In the invasive front of pancreatic tumors, a distinct subpopulation of CD133(+) CXCR4(+) cancer stem cells was identified that determines the metastatic phenotype of the individual tumor. Depletion of the cancer stem cell pool for these migrating cancer stem cells virtually abrogated the metastatic phenotype of pancreatic tumors without affecting their tumorigenic potential. In conclusion, we demonstrate that a subpopulation of migrating CD133(+) CXCR4(+) cancer stem cells is essential for tumor metastasis. Strategies aimed at modulating the SDF-1/CXCR4 axis may have important clinical applications to inhibit metastasis of cancer stem cells.  相似文献   

15.
16.
Using tumor cell-restricted overexpression of glutathione peroxidase 4 (GP x 4), we investigated the contribution of tumor cell eicosanoids to solid tumor growth and malignant progression in two tumor models differing in tumorigenic potential. By lowering cellular lipid hydroperoxide levels, GP x 4 inhibits cyclooxygenase (COX) and lipoxygenase (LOX) activities. GP x 4 overexpression drastically impeded solid tumor growth of weakly tumorigenic L929 fibrosarcoma cells, whereas B16BL6 melanoma solid tumor growth was unaffected. Yet, GP x 4 overexpression did markedly increase the sensitivity of B16BL6 tumors to angio-destructive TNF-alpha therapy and abolished the metastatic lung colonizing capacity of B16BL6 cells. Furthermore, the GP x 4-mediated suppression of tumor cell prostaglandin E(2) (PGE(2)) production impeded the induction of COX-2 expression by the tumor stress conditions hypoxia and inflammation. Thus, our results reflect a PGE(2)-driven positive feedback loop for COX-2 expression in tumor cells. This was further supported by the restoration of COX-2 induction capacity of GP x 4-overexpressing L929 tumor cells when cultured in the presence of exogenous PGE(2). Thus, although COX-2 expression and eicosanoid production may be enabled by PGE(2) from the tumor microenvironment, our results demonstrate the predominant tumor cell origin of protumoral eicosanoids, promoting solid tumor growth of weakly tumorigenic tumors and malignant progression of strongly tumorigenic tumors.  相似文献   

17.
The overall prevalence with which endogenous tumor Ags induce host T cell responses is unclear. Even when such responses are detected, they do not usually result in spontaneous remission of the cancer. We hypothesized that this might be associated with a predominant phenotype and/or cytokine profile of tumor-specific responses that is different from protective T cell responses to other chronic Ags, such as CMV. We detected significant T cell responses to CEA, HER-2/neu, and/or MAGE-A3 in 17 of 21 breast cancer patients naive to immunotherapy. The pattern of T cell cytokines produced in response to tumor-associated Ags (TAAs) in breast cancer patients was significantly different from that produced in response to CMV or influenza in the same patients. Specifically, there was a higher proportion of IL-2-producing CD8(+) T cells, and a lower proportion of IFN-gamma-producing CD4(+) and/or CD8(+) T cells responding to TAAs compared with CMV or influenza Ags. Finally, the phenotype of TAA-responsive CD8(+) T cells in breast cancer patients was almost completely CD28(+)CD45RA(-) (memory phenotype). CMV-responsive CD8(+) T cells in the same patients were broadly distributed among phenotypes, and contained a high proportion of terminal effector cells (CD27(-)CD28(-)CD45RA(+)) that were absent in the TAA responses. Taken together, these results suggest that TAA-responsive T cells are induced in breast cancer patients, but those T cells are phenotypically and functionally different from CMV- or influenza-responsive T cells. Immunotherapies directed against TAAs may need to alter these T cell signatures to be effective.  相似文献   

18.
Chen H  Pimienta G  Gu Y  Sun X  Hu J  Kim MS  Chaerkady R  Gucek M  Cole RN  Sukumar S  Pandey A 《Proteomics》2010,10(21):3800-3810
The receptor tyrosine kinase HER2 is an oncogene amplified in invasive breast cancer and its overexpression in mammary epithelial cell lines is a strong determinant of a tumorigenic phenotype. Accordingly, HER2-overexpressing mammary tumors are commonly indicative of a poor prognosis in patients. Several quantitative proteomic studies have employed two-dimensional gel electrophoresis in combination with MS/MS, which provides only limited information about the molecular mechanisms underlying HER2/neu signaling. In the present study, we used a SILAC-based approach to compare the proteomic profile of normal breast epithelial cells with that of Her2/neu-overexpressing mammary epithelial cells, isolated from primary mammary tumors arising in mouse mammary tumor virus-Her2/neu transgenic mice. We identified 23 proteins with relevant annotated functions in breast cancer, showing a substantial differential expression. This included overexpression of creatine kinase, retinol-binding protein 1, thymosin 4 and tumor protein D52, which correlated with the tumorigenic phenotype of Her2-overexpressing cells. The differential expression pattern of two genes, gelsolin and retinol binding protein 1, was further validated in normal and tumor tissues. Finally, an in silico analysis of published cancer microarray data sets revealed a 23-gene signature, which can be used to predict the probability of metastasis-free survival in breast cancer patients.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号