首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Benchmarking tools for the alignment of functional noncoding DNA   总被引:1,自引:0,他引:1  

Background

Numerous tools have been developed to align genomic sequences. However, their relative performance in specific applications remains poorly characterized. Alignments of protein-coding sequences typically have been benchmarked against "correct" alignments inferred from structural data. For noncoding sequences, where such independent validation is lacking, simulation provides an effective means to generate "correct" alignments with which to benchmark alignment tools.

Results

Using rates of noncoding sequence evolution estimated from the genus Drosophila, we simulated alignments over a range of divergence times under varying models incorporating point substitution, insertion/deletion events, and short blocks of constrained sequences such as those found in cis-regulatory regions. We then compared "correct" alignments generated by a modified version of the ROSE simulation platform to alignments of the simulated derived sequences produced by eight pairwise alignment tools (Avid, BlastZ, Chaos, ClustalW, DiAlign, Lagan, Needle, and WABA) to determine the off-the-shelf performance of each tool. As expected, the ability to align noncoding sequences accurately decreases with increasing divergence for all tools, and declines faster in the presence of insertion/deletion evolution. Global alignment tools (Avid, ClustalW, Lagan, and Needle) typically have higher sensitivity over entire noncoding sequences as well as in constrained sequences. Local tools (BlastZ, Chaos, and WABA) have lower overall sensitivity as a consequence of incomplete coverage, but have high specificity to detect constrained sequences as well as high sensitivity within the subset of sequences they align. Tools such as DiAlign, which generate both local and global outputs, produce alignments of constrained sequences with both high sensitivity and specificity for divergence distances in the range of 1.25–3.0 substitutions per site.

Conclusion

For species with genomic properties similar to Drosophila, we conclude that a single pair of optimally diverged species analyzed with a high performance alignment tool can yield accurate and specific alignments of functionally constrained noncoding sequences. Further algorithm development, optimization of alignment parameters, and benchmarking studies will be necessary to extract the maximal biological information from alignments of functional noncoding DNA.
  相似文献   

2.
Exon discovery by genomic sequence alignment   总被引:5,自引:0,他引:5  
MOTIVATION: During evolution, functional regions in genomic sequences tend to be more highly conserved than randomly mutating 'junk DNA' so local sequence similarity often indicates biological functionality. This fact can be used to identify functional elements in large eukaryotic DNA sequences by cross-species sequence comparison. In recent years, several gene-prediction methods have been proposed that work by comparing anonymous genomic sequences, for example from human and mouse. The main advantage of these methods is that they are based on simple and generally applicable measures of (local) sequence similarity; unlike standard gene-finding approaches they do not depend on species-specific training data or on the presence of cognate genes in data bases. As all comparative sequence-analysis methods, the new comparative gene-finding approaches critically rely on the quality of the underlying sequence alignments. RESULTS: Herein, we describe a new implementation of the sequence-alignment program DIALIGN that has been developed for alignment of large genomic sequences. We compare our method to the alignment programs PipMaker, WABA and BLAST and we show that local similarities identified by these programs are highly correlated to protein-coding regions. In our test runs, PipMaker was the most sensitive method while DIALIGN was most specific. AVAILABILITY: The program is downloadable from the DIALIGN home page at http://bibiserv.techfak.uni-bielefeld.de/dialign/.  相似文献   

3.
MOTIVATION: The accumulation of genome sequences will only accelerate in the coming years. We aim to use this abundance of data to improve the quality of genomic alignments and devise a method which is capable of detecting regions evolving under weak or no evolutionary constraints. RESULTS: We describe a genome alignment program AuberGene, which explores the idea of transitivity of local alignments. Assessment of the program was done based on a 2 Mbp genomic region containing the CFTR gene of 13 species. In this region, we can identify 53% of human sequence sharing common ancestry with mouse, as compared with 44% found using the usual pairwise alignment. Between human and tetraodon 93 orthologous exons are found, as compared with 77 detected by the pairwise human-tetraodon comparison. AuberGene allows the user to (1) identify distant, previously undetected, conserved orthogonal regions such as ORFs or regulatory regions; (2) identify neutrally evolving regions in related species which are often overlooked by other alignment programs; (3) recognize false orthologous genomic regions. The increased sensitivity of the method is not obtained at the cost of reduced specificity. Our results suggest that, over the CFTR region, human shares 10% more sequence with mouse than previously thought ( approximately 50%, instead of 40% found with the pairwise alignment).  相似文献   

4.
The MPI Bioinformatics Toolkit (https://toolkit.tuebingen.mpg.de) is a free, one-stop web service for protein bioinformatic analysis. It currently offers 34 interconnected external and in-house tools, whose functionality covers sequence similarity searching, alignment construction, detection of sequence features, structure prediction, and sequence classification. This breadth has made the Toolkit an important resource for experimental biology and for teaching bioinformatic inquiry. Recently, we replaced the first version of the Toolkit, which was released in 2005 and had served around 2.5 million queries, with an entirely new version, focusing on improved features for the comprehensive analysis of proteins, as well as on promoting teaching. For instance, our popular remote homology detection server, HHpred, now allows pairwise comparison of two sequences or alignments and offers additional profile HMMs for several model organisms and domain databases. Here, we introduce the new version of our Toolkit and its application to the analysis of proteins.  相似文献   

5.
Multiple sequence alignments have wide applicability in many areas of computational biology, including comparative genomics, functional annotation of proteins, gene finding, and modeling evolutionary processes. Because of the computational difficulty of multiple sequence alignment and the availability of numerous tools, it is critical to be able to assess the reliability of multiple alignments. We present a tool called StatSigMA to assess whether multiple alignments of nucleotide or amino acid sequences are contaminated with one or more unrelated sequences. There are numerous applications for which StatSigMA can be used. Two such applications are to distinguish homologous sequences from nonhomologous ones and to compare alignments produced by various multiple alignment tools. We present examples of both types of applications.  相似文献   

6.
SLAM is a program that simultaneously aligns and annotates pairs of homologous sequences. The SLAM web server integrates SLAM with repeat masking tools and the AVID alignment program to allow for rapid alignment and gene prediction in user submitted sequences. Along with annotations and alignments for the submitted sequences, users obtain a list of predicted conserved non-coding sequences (and their associated alignments). The web site also links to whole genome annotations of the human, mouse and rat genomes produced with the SLAM program. The server can be accessed at http://bio.math.berkeley.edu/slam.  相似文献   

7.
We describe EnteriX, a suite of three web-based visualization tools for graphically portraying alignment information from comparisons among several fixed and user-supplied sequences from related enterobacterial species, anchored on a reference genome (http://bio.cse.psu.edu/). The first visualization, Enteric, displays stacked pairwise alignments between a reference genome and each of the related bacteria, represented schematically as PIPs (Percent Identity Plots). Encoded in the views are large-scale genomic rearrangement events and functional landmarks. The second visualization, Menteric, computes and displays 1 Kb views of nucleotide-level multiple alignments of the sequences, together with annotations of genes, regulatory sites and conserved regions. The third, a Java-based tool named Maj, displays alignment information in two formats, corresponding roughly to the Enteric and Menteric views, and adds zoom-in capabilities. The uses of such tools are diverse, from examining the multiple sequence alignment to infer conserved sites with potential regulatory roles, to scrutinizing the commonalities and differences between the genomes for pathogenicity or phylogenetic studies. The EnteriX suite currently includes >15 enterobacterial genomes, generates views centered on four different anchor genomes and provides support for including user sequences in the alignments.  相似文献   

8.
MOTIVATION: Phylogenomic approaches towards functional and evolutionary annotation of unknown sequences have been suggested to be superior to those based only on pairwise local alignments. User-friendly software tools making the advantages of phylogenetic annotation available for the ever widening range of bioinformatically uninitiated biologists involved in genome/EST annotation projects are, however, not available. We were particularly confronted with this issue in the annotation of sequences from different groups of complex algae originating from secondary endosymbioses, where the identification of the phylogenetic origin of genes is often more problematic than in taxa well represented in the databases (e.g. animals, plants or fungi). RESULTS: We present a flexible pipeline with a user-friendly, interactive graphical user interface running on desktop computers that automatically performs a basic local alignment search tool (BLAST) search of query sequences, selects a representative subset of them, then creates a multiple alignment from the selected sequences, and finally computes a phylogenetic tree. The pipeline, named PhyloGena, uses public domain software for all standard bioinformatics tasks (similarity search, multiple alignment, and phylogenetic reconstruction). As the major technological innovation, selection of a meaningful subset of BLAST hits was implemented using logic programming, mimicing the selection procedure (BLAST tables, multiple alignments and phylogenetic trees) are displayed graphically, allowing the user to interact with the pipeline and deduce the function and phylogenetic origin of the query. PhyloGena thus makes phylogenomic annotation available also for those biologists without access to large computing facilities and with little informatics background. Although phylogenetic annotation is particularly useful when working with composite genomes (e.g. from complex algae), PhyloGena can be helpful in expressed sequence tag and genome annotation also in other organisms. AVAILABILITY: PhyloGena (executables for LINUX and Windows 2000/XP as well as source code) is available by anonymous ftp from http://www.awi.de/en/phylogena.  相似文献   

9.
Non-coding DNA segments that are conserved between the human and mouse genomic sequence are good indicators of possible regulatory sequences. Here we report on a systematic approach to delineate such conserved elements from upstream regions of orthologous gene pairs from man and mouse. We focus on orthologous genes in order to maximize our chances to find functionally similar regulatory elements. The identification of conserved elements is effected using the Waterman-Eggert local suboptimal alignment algorithm. We have modified an implementation of this algorithm such that it integrates the determination of statistical significance for the local suboptimal alignments. This has the effect of outputting a dynamically determined number of suboptimal alignments that are deemed statistically significant. Comparison with experimentally determined annotation shows a striking enrichement of regulatory sites among the conserved regions. Furthermore, the conserved regions tend to cover the promotor region described in the EPD database.  相似文献   

10.
The GeneSeqer@PlantGDB Web server (http://www.plantgdb.org/cgi-bin/GeneSeqer.cgi) provides a gene structure prediction tool tailored for applications to plant genomic sequences. Predictions are based on spliced alignment with source-native ESTs and full-length cDNAs or non-native probes derived from putative homologous genes. The tool is illustrated with applications to refinement of current gene structure annotation and de novo annotation of draft genomic sequences. The service should facilitate expert annotation as a community effort by providing convenient access to all public plant sequences via the PlantGDB database, a simple four-step protocol for spliced alignment and visually appealing displays of the predicted gene structures in addition to detailed sequence alignments.  相似文献   

11.
Sequence alignment is fundamental for analyzing protein structure and function. For all but closely-related proteins, alignments based on structures are more accurate than alignments based purely on amino-acid sequences. However, the disparity between the large amount of sequence data and the relative paucity of experimentally-determined structures has precluded the general applicability of structure alignment. Based on the success of AlphaFold (and its likes) in producing high-quality structure predictions, we suggest that when aligning homologous proteins, lacking experimental structures, better results can be obtained by a structural alignment of predicted structures than by an alignment based only on amino-acid sequences. We present a quantitative evaluation, based on pairwise alignments of sequences and structures (both predicted and experimental) to support this hypothesis.  相似文献   

12.
The most popular way of comparing the performance of multiple sequence alignment programs is to use empirical testing on sets of test sequences. Several such test sets now exist, each with potential strengths and weaknesses. We apply several different alignment packages to 6 benchmark datasets, and compare their relative performances. HOMSTRAD, a collection of alignments of homologous proteins, is regularly used as a benchmark for sequence alignment though it is not designed as such, and lacks annotation of reliable regions within the alignment. We introduce this annotation into HOMSTRAD using protein structural superposition. Results on each database show that method performance is dependent on the input sequences. Alignment benchmarks are regularly used in combination to measure performance across a spectrum of alignment problems. Through combining benchmarks, it is possible to detect whether a program has been over-optimised for a single dataset, or alignment problem type.  相似文献   

13.
We present a method, called BlockMatch, for aligning two blocks, where a block is an RNA multiple sequence alignment with the consensus secondary structure of the alignment in Stockholm format. The method employs a quadratic-time dynamic programming algorithm for aligning columns and column pairs of the multiple alignments in the blocks. Unlike many other tools that can perform pairwise alignment of either single sequences or structures only, BlockMatch takes into account the characteristics of all the sequences in the blocks along with their consensus structures during the alignment process, thus being able to achieve a high-quality alignment result. We apply BlockMatch to phylogeny reconstruction on a set of 5S rRNA sequences taken from fifteen bacteria species. Experimental results showed that the phylogenetic tree generated by our method is more accurate than the tree constructed based on the widely used ClustalW tool. The BlockMatch algorithm is implemented into a web server, accessible at http://bioinformatics.njit.edu/blockmatch. A jar file of the program is also available for download from the web server.  相似文献   

14.
Alignment of protein sequences by their profiles   总被引:7,自引:0,他引:7  
The accuracy of an alignment between two protein sequences can be improved by including other detectably related sequences in the comparison. We optimize and benchmark such an approach that relies on aligning two multiple sequence alignments, each one including one of the two protein sequences. Thirteen different protocols for creating and comparing profiles corresponding to the multiple sequence alignments are implemented in the SALIGN command of MODELLER. A test set of 200 pairwise, structure-based alignments with sequence identities below 40% is used to benchmark the 13 protocols as well as a number of previously described sequence alignment methods, including heuristic pairwise sequence alignment by BLAST, pairwise sequence alignment by global dynamic programming with an affine gap penalty function by the ALIGN command of MODELLER, sequence-profile alignment by PSI-BLAST, Hidden Markov Model methods implemented in SAM and LOBSTER, pairwise sequence alignment relying on predicted local structure by SEA, and multiple sequence alignment by CLUSTALW and COMPASS. The alignment accuracies of the best new protocols were significantly better than those of the other tested methods. For example, the fraction of the correctly aligned residues relative to the structure-based alignment by the best protocol is 56%, which can be compared with the accuracies of 26%, 42%, 43%, 48%, 50%, 49%, 43%, and 43% for the other methods, respectively. The new method is currently applied to large-scale comparative protein structure modeling of all known sequences.  相似文献   

15.
16.
We describe a multiple alignment program named MAP2 based on a generalized pairwise global alignment algorithm for handling long, different intergenic and intragenic regions in genomic sequences. The MAP2 program produces an ordered list of local multiple alignments of similar regions among sequences, where different regions between local alignments are indicated by reporting only similar regions. We propose two similarity measures for the evaluation of the performance of MAP2 and existing multiple alignment programs. Experimental results produced by MAP2 on four real sets of orthologous genomic sequences show that MAP2 rarely missed a block of transitively similar regions and that MAP2 never produced a block of regions that are not transitively similar. Experimental results by MAP2 on six simulated data sets show that MAP2 found the boundaries between similar and different regions precisely. This feature is useful for finding conserved functional elements in genomic sequences. The MAP2 program is freely available in source code form at http://bioinformatics.iastate.edu/aat/sas.html for academic use.  相似文献   

17.
Multiple sequence alignment (MSA) is a crucial first step in the analysis of genomic and proteomic data. Commonly occurring sequence features, such as deletions and insertions, are known to affect the accuracy of MSA programs, but the extent to which alignment accuracy is affected by the positions of insertions and deletions has not been examined independently of other sources of sequence variation. We assessed the performance of 6 popular MSA programs (ClustalW, DIALIGN-T, MAFFT, MUSCLE, PROBCONS, and T-COFFEE) and one experimental program, PRANK, on amino acid sequences that differed only by short regions of deleted residues. The analysis showed that the absence of residues often led to an incorrect placement of gaps in the alignments, even though the sequences were otherwise identical. In data sets containing sequences with partially overlapping deletions, most MSA programs preferentially aligned the gaps vertically at the expense of incorrectly aligning residues in the flanking regions. Of the programs assessed, only DIALIGN-T was able to place overlapping gaps correctly relative to one another, but this was usually context dependent and was observed only in some of the data sets. In data sets containing sequences with non-overlapping deletions, both DIALIGN-T and MAFFT (G-INS-I) were able to align gaps with near-perfect accuracy, but only MAFFT produced the correct alignment consistently. The same was true for data sets that comprised isoforms of alternatively spliced gene products: both DIALIGN-T and MAFFT produced highly accurate alignments, with MAFFT being the more consistent of the 2 programs. Other programs, notably T-COFFEE and ClustalW, were less accurate. For all data sets, alignments produced by different MSA programs differed markedly, indicating that reliance on a single MSA program may give misleading results. It is therefore advisable to use more than one MSA program when dealing with sequences that may contain deletions or insertions, particularly for high-throughput and pipeline applications where manual refinement of each alignment is not practicable.  相似文献   

18.

Background

Genomic sequence alignment is a powerful method for genome analysis and annotation, as alignments are routinely used to identify functional sites such as genes or regulatory elements. With a growing number of partially or completely sequenced genomes, multiple alignment is playing an increasingly important role in these studies. In recent years, various tools for pair-wise and multiple genomic alignment have been proposed. Some of them are extremely fast, but often efficiency is achieved at the expense of sensitivity. One way of combining speed and sensitivity is to use an anchored-alignment approach. In a first step, a fast search program identifies a chain of strong local sequence similarities. In a second step, regions between these anchor points are aligned using a slower but more accurate method.

Results

Herein, we present CHAOS, a novel algorithm for rapid identification of chains of local pair-wise sequence similarities. Local alignments calculated by CHAOS are used as anchor points to improve the running time of DIALIGN, a slow but sensitive multiple-alignment tool. We show that this way, the running time of DIALIGN can be reduced by more than 95% for BAC-sized and longer sequences, without affecting the quality of the resulting alignments. We apply our approach to a set of five genomic sequences around the stem-cell-leukemia (SCL) gene and demonstrate that exons and small regulatory elements can be identified by our multiple-alignment procedure.

Conclusion

We conclude that the novel CHAOS local alignment tool is an effective way to significantly speed up global alignment tools such as DIALIGN without reducing the alignment quality. We likewise demonstrate that the DIALIGN/CHAOS combination is able to accurately align short regulatory sequences in distant orthologues.
  相似文献   

19.
Multiple sequence alignment is a fundamental tool in a number of different domains in modern molecular biology, including functional and evolutionary studies of a protein family. Multiple alignments also play an essential role in the new integrated systems for genome annotation and analysis. Thus, the development of new multiple alignment scores and statistics is essential, in the spirit of the work dedicated to the evaluation of pairwise sequence alignments for database searching techniques. We present here norMD, a new objective scoring function for multiple sequence alignments. NorMD combines the advantages of the column-scoring techniques with the sensitivity of methods incorporating residue similarity scores. In addition, norMD incorporates ab initio sequence information, such as the number, length and similarity of the sequences to be aligned. The sensitivity and reliability of the norMD objective function is demonstrated using structural alignments in the SCOP and BAliBASE databases. The norMD scores are then applied to the multiple alignments of the complete sequences (MACS) detected by BlastP with E-value<10, for a set of 734 hypothetical proteins encoded by the Vibrio cholerae genome. Unrelated or badly aligned sequences were automatically removed from the MACS, leaving a high-quality multiple alignment which could be reliably exploited in a subsequent functional and/or structural annotation process. After removal of unreliable sequences, 176 (24 %) of the alignments contained at least one sequence with a functional annotation. 103 of these new matches were supported by significant hits to the Interpro domain and motif database.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号