首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lysophosphatidic acid (LPA) interacts with at least six G protein-coupled transmembrane LPA receptors (LPA1-LPA6). Recently, we have reported that LPA3 indicated opposite effects on cell migration, depending on the cell types. In the present study, to assess an involvement of LPA3 on cell migration of sarcoma cells, we generated LPA receptor-3 (LPAR3)-knockdown (HT1080-sh3 and HOS-sh3, respectively) cells from fibrosarcoma HT1080 and osteosarcoma HOS cells, and measured their cell migration abilities. In cell motility assay with a Cell Culture Insert, both LPAR3-knockdown cells showed significantly lower cell motile activities than control cells. Next, to investigate the effect of LPAR3-knockdown on invasion activity, which degraded the extracellular matrices, the Matrigel-coated filter was used. HT1080-sh3 cells showed significantly low invasive activity compared with control cells, while no invasive activity was found in HOS-sh3 cells. In gelatin zymography, no significant difference of matrix metalloproteinase (MMP)-2 and MMP-9 activities were detected in all cells. The results indicated that LPA3 acts as a positive regulator of cell motility and invasion in sarcoma cells, suggesting that LPA signaling pathway via LPA3 may be involved in the progression of sarcoma cells.  相似文献   

2.
Clinical studies with prostate cancer tissue indicate that alterations in androgen receptor (AR) or c-Met overexpression are associated with androgen-independent progression. We investigated the interaction between AR and c-Met signaling in human prostate cancer cells. Androgen withdrawal or AR-specific small interfering RNA significantly reduced the growth rate while each maneuver induced the expression of c-Met. Knockdown of both AR and c-Met expression markedly inhibited the cell growth. Furthermore, microarray analysis indicated that the activation of c-Met down-regulated the expression of DNA repair-related genes including 8-oxoguanine DNA glycosylase. Exogenous hepatocyte growth factor also induced the production of intracellular reactive oxygen species and resulted in the accumulation of DNA damages. These results suggested that the activation of c-Met signaling may lead to induction of spontaneous mutations or genomic instability, which may lead to the progression of androgen-independent state. Thus, c-Met signaling is utilized for survival and growth under the androgen-depleted condition.  相似文献   

3.
The ligand-less receptor HER2/neu (erbB-2) has been proposed as a prognostic marker of gastric cancer that correlates with poor clinical outcome, indicating that HER2 signals play an important role in gastric cancer progression. This study demonstrated that two major natural lysophospholipids, lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), induce rapid and transient phosphorylation of HER2 in two human gastric cancer cell lines, MKN28 and MKN74 cells. We also revealed that tyrosine phosphorylation of HER2 induced by both lysophospholipids was significantly attenuated by two inhibitors, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, AG1478, and a broad-spectrum matrix metalloproteinase inhibitor, GM6001. This suggests that the pathway of HER2 transactivation induced by these lysophospholipids is dependent on the proteolytically released EGFR ligands. Our results indicate that LPA and S1P act upstream of HER2 in gastric cancer cells, and thus may act as potent stimulators of gastric cancer.  相似文献   

4.
Lysophosphatidic acid (LPA) is a bioactive phospholipid that affects various biological functions, such as cell proliferation, migration, and survival, through LPA receptors. Among them, the motility of cancer cells is an especially important activity for invasion and metastasis. Recently, AMP-activated protein kinase (AMPK), an energy-sensing kinase, was shown to regulate cell migration. However, the specific role of AMPK in cancer cell migration is unknown. The present study investigated whether LPA could induce AMPK activation and whether this process was associated with cell migration in ovarian cancer cells. We found that LPA led to a striking increase in AMPK phosphorylation in pathways involving the phospholipase C-β3 (PLC-β3) and calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ) in SKOV3 ovarian cancer cells. siRNA-mediated knockdown of AMPKα1, PLC-β3, or (CaMKKβ) impaired the stimulatory effects of LPA on cell migration. Furthermore, we found that knockdown of AMPKα1 abrogated LPA-induced activation of the small GTPase RhoA and ezrin/radixin/moesin proteins regulating membrane dynamics as membrane-cytoskeleton linkers. In ovarian cancer xenograft models, knockdown of AMPK significantly decreased peritoneal dissemination and lung metastasis. Taken together, our results suggest that activation of AMPK by LPA induces cell migration through the signaling pathway to cytoskeletal dynamics and increases tumor metastasis in ovarian cancer.  相似文献   

5.
目的探讨人表皮生长因子显性负性突变体(dominant negative epidermal growth factor receptor,DNEGFR))对胃癌细胞促血管形成能力的影响及其分子机制,并检测其对裸鼠皮下移植瘤生长的影响。方法选用2株人胃癌细胞,分为如下6组:SGC-7901及NCI-N87细胞未转染组(US组,UN组),SGC-7901及NCI-N87细胞pEGFP-N1质粒转染组(ES组,EN组),SGC-7901及NCI-N87细胞pEGFPN1-DNEGFR质粒转染组(DS组,DN组)。采用人脐静脉内皮细胞(humanumbilical vein endothelial cell,HUVEC)管腔结构形成实验检测体外促血管形成能力,采用酶联免疫吸附测定法(enzyme-linked immunosorbent assay,ELISA)测定细胞培养液中血管内皮生长因子(vascular endothelial growth factor,VEGF)的水平,建立人胃癌细胞裸鼠移植瘤模型,标本微血管密度(microvessel density,MVD)检测体内促血管形成能力,标本体积检测其对裸鼠皮下移植瘤生长的影响。结果转染pEGFPN1-DNEGFR质粒的人胃癌细胞株出现HUVEC管腔结构形成抑制,培养液中VEGF水平降低,MVD计数降低,裸鼠皮下移植瘤体积变小。结论 DNEGFR可能通过下调VEGF分泌抑制胃癌细胞体外及裸鼠体内促血管形成能力,最终抑制裸鼠皮下移植瘤生长。  相似文献   

6.
7.

Background

Lysophosphatidic acid (LPA) is a local mediator that exerts its actions through G protein coupled receptors. Knowledge on the regulation of such receptors is scarce to date. Here we show that bidirectional cross-talk exits between LPA1 and EGF receptors.

Methods

C9 cells expressing LPA1 receptor fussed to the enhanced green fluorescent protein were used. We studied intracellular calcium concentration, Akt/PKB phosphorylation, LPA1 and EGF receptor phosphorylation.

Results

EGF diminished LPA-mediated intracellular calcium response and induced LPA1 receptor phosphorylation, which was sensitive to protein kinase C inhibitors. Angiotensin II and LPA induced EGF receptor transactivation as evidenced by Akt/PKB phosphorylation through metalloproteinase-catalyzed membrane shedding of heparin-binding EGF and autocrine/paracrine activation of EGF receptors. This process was found to be of major importance in angiotensin II-induced LPA1 receptor phosphorylation. Attempts to define a role for EGF receptor transactivation in homologous LPA1 receptor desensitization and phosphorylation suggested that G protein-coupled receptor kinases are the major players in this process, overshadowing other events.

Conclusions

EGF receptors and LPA1 receptors are engaged in an intense liaison, in that EGF receptors are capable of modulating LPA1 receptor function through phosphorylation cascades. EGF transactivation plays a dual role: it mediates some LPA actions, and it modulates LPA1 receptor function in inhibitory fashion.

General significance

EGF and LPA receptors coexist in many cell types and play key roles in maintaining the delicate equilibrium that we call health and in the pathogenesis of many diseases. The intense cross-talk described here has important physiological and pathophysiological implications.  相似文献   

8.
Lysophosphatidic acid (LPA) is a lipid mitogen that acts through G-protein-coupled receptors. LPA responsiveness has been reported to be dependent on the senescent state of the cells. To solve the mechanism underlying, we observed LPA-dependent cAMP status and found its age-dependent contrasting profile such as high level of cAMP in the senescent cells vs its low level in the young cells. In order to clarify the molecular mechanism of the ageing effect, we examined various molecular species involved in the cAMP signaling pathway by semi-quantitative RT-PCR. EDG-1 and EDG-4 were unchanged, but EDG-2 and EDG-7 were reduced with age. Senescent cells showed a partial reduction of Gi1, Gi2, and Gi3, but no change in the level of Gq. Decreased Gis and Gi-coupled LPA receptors may reduce the inhibitory effect of Gi alpha on adenylyl cyclases (ACs), resulting in cAMP accumulation via activation of adenylyl cyclase in senescent fibroblasts. We also observed an age-dependent increase in some of AC isoforms: II, IV, and VI. In conclusion, multiple changes in the cAMP signaling pathway of the senescent cells might explain the altered responsiveness to the mitogenic stimuli.  相似文献   

9.
Earlier, our study demonstrated that lysophosphatidic acid (LPA) receptor mediated cardiomyocyte hypertrophy. However, the subtype-specific functions for LPA1 and LPA3 receptors in LPA-induced hypertrophy have not been distinguished. Growing evidence indicates that microRNAs (miRNAs) are involved in the pathogenesis of cardiac hypertrophy by down-regulating target molecules. The present work therefore aimed at elucidating the functions mediated by different subtypes of LPA receptors and investigating the modulatory role of miRNAs during LPA induced hypertrophy. Experiments were done with cultured neonatal rat cardiomyocytes (NRCMs) exposed to LPA and we showed that knockdown of LPA1 by small interfering RNA (siRNA) enhanced LPA-induced cardiomyocyte hypertrophy, whereas LPA3 silencing repressed hypertrophy. miR-23a, a pro-hypertrophic miRNA, was up-regulated by LPA in cardiomyocytes and its down-regulation reduced LPA-induced cardiomyocyte hypertrophy. Importantly, luciferase reporter assay confirmed LPA1 to be a target of miR-23a, indicating that miR-23a is involved in mediating the LPA-induced cardiomyocyte hypertrophy by targeting LPA1. In addition, knockdown of LPA3, but not LPA1, eliminated miR-23a elevation induced by LPA. And PI3K inhibitor, LY294002, effectively prevented LPA-induced miR-23a expression in cardiomyocytes, suggesting that LPA might induce miR-23a elevation by activating LPA3 and PI3K/AKT pathway. These findings identified opposite subtype-specific functions for LPA1 and LPA3 in mediating cardiomyocyte hypertrophy and indicated LPA1 to be a target of miR-23a, which discloses a link between miR-23a and the LPA receptor signaling in cardiomyocyte hypertrophy.  相似文献   

10.
Hepatocyte growth factor (HGF)-induced migration of endothelial cells is critical for angiogenesis. Sphingosine kinase (SPK) is a key enzyme catalyzing the formation of sphingosine-1-phosphate (S1P), a lipid messenger that is implicated in the regulation of a wide variety of important cellular events through both intracellular and extracellular mechanisms. The aim of this study was to investigate whether activation of SPK is involved in the migration of endothelial cells induced by HGF. The biological functions of HGF are mediated through the activation of its high-affinity tyrosine kinase receptor, c-met protooncogene. In the present study, Treatment of ECV304 endothelial cells with HGF resulted in tyrosine phosphorylation of c-Met and activation of SPK in a concentration-dependent manner. Either Ly294002 or PD98059, specific inhibitor of the PI3K and ERK/MAPK pathways, respectively, blocked the HGF-induced activation of SPK. HGF stimulation significantly increased intracellular S1P level, but no detectable secretion of S1P into the cell culture medium was observed. Treatment of ECV304 cells with pertussis toxin (PTX) has no effect on the HGF-induced migration, indicating extracellular S1P is dispensable for this process. Overexpression of wild-type SPK gene in ECV 304 cells increased the intracellular S1P and enhanced the HGF-induced migration, whereas inhibition of cellular SPK activity by N,N-dimethylsphingosine (DMS), a potent inhibitor of SPK, or by expression of a dominant-negative SPK (DN-SK) blocked the HGF-induced migration of ECV 304 cells. It is suggested that PI3K and ERK/MAPK mediated the activation of SPK and would be involved in the HGF-induced migration of endothelial cells. These results elucidate a novel mechanism by which intracellularly generated S1P mediates signaling from HGF/c-Met to the endothelial cell migration.  相似文献   

11.
12.
13.
目的 探讨脂联素对胃癌细胞HGC27的生长和迁移能力的影响.方法 应用Western blot方法检测脂联素受体adipoR1和adipoR2在HGC27细胞中的表达.以不同浓度脂联素干预细胞,MTT法检测细胞生长情况,应用细胞划痕试验检测脂联素干预对细胞迁移能力的影响.结果 两种脂联素受体在HGC27细胞中均有表达,随着脂联素浓度的升高和培养时间的延长HGC27细胞的生长受到抑制,脂联素可以抑制细胞的迁移能力.结论 脂联素可抑制HGC27细胞生长和迁移能力,其机制可能是通过与受体结合完成的.  相似文献   

14.
白黎芦醇对胃癌SGC 一7 901 细胞V EGF 表达的影响   总被引:6,自引:0,他引:6  
目的:探讨白藜芦醇(resveratrol,Res)在体外对胃癌SGC-7901细胞VEGF表达的影响。方法:体外培养胃癌SGC-7901细胞,MTT法检测白藜芦醇对SGC-7901细胞的增殖抑制作用,RT—PCR方法检测VEGFmRNA表达,免疫细胞化学检测VEGF蛋白的表达。结果:白藜芦醇呈时间剂量性抑制胃癌细胞SGC7901的增殖;胃癌SGC-7901细胞高水平表达VEGF,白藜芦醇能显著降低胃癌SGC-7901细胞VEGFmRNA和蛋白表达。结论:白藜芦醇可以下调胃癌SGC-7901细胞VEGF的表达,抑制胃癌细胞的增殖。  相似文献   

15.
胃酸分泌的外周调节   总被引:3,自引:0,他引:3  
肠神经节后神经纤维支配了胃粘膜壁细胞、ECL细胞、G细胞和D细胞,某些体液因子也可影响后三种内分泌细胞的分泌功能,它们相互作用最终调节组织胺的释放,从而组织胺、胃泌素、乙酰胆碱、生长抑素共同调节壁细胞的泌酸功能,以控制胃内适当的酸度。这些中调节机制涉及神经、体液、内分泌、旁分泌、自然分泌和神经一一内分泌等的过程。  相似文献   

16.
Lysophosphatidic acid (LPA), a simple bioactive phospholipid, is present in biological fluids such as plasma and bronchoalveolar lavage (BAL). It appears to have both pro- and anti-inflammatory roles in inflammatory lung diseases. Exogenous LPA promotes inflammatory responses by regulating the expression of chemokines, cytokines, and cytokine receptors in lung epithelial cells. In addition to the modulation of inflammatory responses, LPA regulates cytoskeleton rearrangement and confers protection against lung injury by enhancing lung epithelial cell barrier integrity and remodeling. The biological effects of LPA are mediated through its cell surface G-protein coupled LPA1–7 receptors. The roles of LPA receptors in lung fibrosis, asthma, and acute lung injury have been investigated using genetically engineered LPA receptor deficient mice and there appears to be a definitive role for endogenous LPA and its receptors in the pathogenesis of pulmonary inflammatory diseases. This review summarizes recent reports on the role of LPA and its receptors in the regulation of lung epithelial inflammatory responses and remodeling. This article is part of a Special Issue entitled: Advances in Lysophospholipid Research.  相似文献   

17.
The purpose of this study is to investigate in vitro and ex vivo effects of matrine on the growth of human lung cancer and hepatoma cells and the cancer cell migration as well as the expressions of related proteins in the cancer cells. Matrine significantly inhibited the in vitro and ex vivo growth of human non-small cell lung cancer A549 and hepatoma SMMC-7721 cells. Matrine induced the apoptosis in A549 and SMMC-7721 cells. Western blot analysis indicated that matrine dose-dependently down-regulated the expression of anti-apoptotic protein Bcl-2 and up-regulated the level of pro-apoptotic protein bax, eventually leading the reduction of ratios of Bcl-2/Bax proteins in A549 and SMMC-7721 cells. Furthermore, matrine significantly suppressed the A549 cell migration without reducing the cell viability. In addition, matrine dramatically reduced the secretion of vascular endothelial growth factor A in A549 cells. More importantly, matrine markedly enhanced the anticancer activity of anticancer agent trichostatin A (the histone deacetylase inhibitor) by strongly reducing the viability and/or the ratio of Bcl-2/Bax protein in A549 cells. Our findings suggest that matrine may have the broad therapeutic and/or adjuvant therapeutic application in the treatment of human non-small cell lung cancer and hepatoma.  相似文献   

18.
19.
目的: 以人胃癌MCG-803细胞为实验材料,探讨不同浓度桦木酸(BA)对人胃癌MGC-803细胞凋亡的影响,为其临床应用提供依据。方法: 将人胃癌MGC-803细胞分成 4 组,每组设置 3 个复孔,对照组为未加入桦木酸的 MGC-803 细胞,3 组实验组分别加入终浓度为10、20、30 μg/ml桦木酸处理细胞48 h后,通过激光共聚焦显微镜观察各组细胞形态变化;检测桦木酸对细胞Caspase-3和Caspase-9活性的影响;利用流式细胞术检测细胞线粒体膜电位变化;qRT-PCR和Western blot检测凋亡相关基因Caspase-3、Caspase-9Cytochrome C(Cyt c)mRNA及蛋白水平的表达变化。结果: 与对照组比较, 各处理组Caspase-3和Caspase-9活性显著升高(P<0.01),线粒体膜电位显著下降(P<0.01),Caspase-3、Caspase-9和Cyt c mRNA及蛋白表达均显著上调(P<0.01)。结论: 在终浓度为10 ~30 μg/ml浓度范围内,桦木酸通过调节Caspase-3、Caspase-9和Cyt c的表达诱导人胃癌MGC-803细胞凋亡。  相似文献   

20.
During the dental pulp repair process, dental pulp cells (DPCs) migrate to the site of injury and differentiate into odontoblasts or odontoblast-like cells. Although migration of DPCs is an important reparative process, the underlying mechanism remains unknown. The objective of this study was to determine the roles of lysophosphatidic acid (LPA) and the Rho-associated kinase (ROCK) pathway in the migration and morphology of dental pulp cells and alpha smooth muscle actin expression in vitro. We demonstrated that both LPA and ROCK inhibition enhanced cell motility and that their combined effects significantly increased migration rate. LPA induced fine cytoskeleton assembly and increased the level of alpha smooth muscle actin (α-SMA). ROCK inhibition by Y-27632 and ROCK-(1+2) small interfering RNA (siRNA) resulted in less actin cytoskeleton formation, a lower α-SMA level, a star-like cellular morphology and membrane ruffling. LPA and ROCK inhibition induced activation of another Rho GTPase, Rac, which may explain how LPA and ROCK inhibition increases cellmigration and lamellipodium formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号