首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have clearly demonstrated corticotropin-releasing hormone (CRH) immunoreactive cell bodies and nerve fibers in the human hypothalamus by immunocytochemistry using free-floating sections instead of paraffin-embedded sections. Human hypothalami were obtained at autopsy, fixed and cryostat-sectioned at 40 microns. Free-floating sections were immunostained with antibody to CRH using the Vector ABC system. Most of CRH immunoreactive nerve fibers from the paraventricular nucleus pass under the fornix, while some CRH immunoreactive nerve fibers pass beyond the fornix and some through the fornix. Then the CRH immunoreactive nerve fibers run downward, medially to the supraoptic nucleus and toward the pituitary stalk. This method of immunocytochemistry is a very sensitive and suitable means for immunocytochemical studies of neuropeptides in the human brain.  相似文献   

2.
The stress-related corticotropin-releasing hormone (CRH) was first identified by isolation of its cDNA from the brain of the Japanese eel Anguilla japonica. CRH cDNA encodes a signal peptide, a cryptic peptide and CRH (41 amino acids). The sequence homology to mammalian CRH is high. Next, the distribution of CRH-immunoreactive (ir) cell bodies and fibers in the brain and pituitary were examined by immunohistochemistry. CRH-ir cell bodies were detected in several brain regions, e.g., nucleus preopticus pars magnocellularis, nucleus preopticus pars gigantocellularis and formatio reticularis superius. In the brain, CRH-ir fibers were distributed not only in the hypothalamus but also in various regions. Some CRH-ir fibers projected to adrenocorticotropic hormone (ACTH) cells in the rostral pars distalis of the pituitary and also the α-melanocyte-stimulating hormone (α-MSH) cells in the pars intermedia of the pituitary. Finally, the neuroanatomical relationship between the CRH neurons and gonadotropin-releasing hormone (GnRH) neurons was examined by dual-label immunohistochemistry. CRH-ir fibers were found to be in close contact with GnRH-ir cell bodies in the hypothalamus and in the midbrain tegmentum and GnRH-ir fibers were in close contact with CRH-ir cell bodies in the nucleus preopticus pars magnocellularis. These results suggest that CRH has some physiological functions other than the stimulation of ACTH and α-MSH secretion and that reciprocal connections may exist between the CRH neurons and GnRH neurons in the brain of the Japanese eel.  相似文献   

3.
Yu S  Zhao T  Fan M  Tooyama I  Kimura H  Renda TG 《Peptides》2000,21(11):1657-1662
A monoclonal anti-deltorphin-I antibody specifically recognizing its NH2-terminal region was produced. In the adult rat brain sections, it recognized immunoreactive nerve fibers mainly in the bed nucleus of stria terminalis, central nucleus of amygdala, lateral hypothalamus, hippocampus, substantia nigra, periaqueductal gray and locus ceruleus. Occasionally, positive somata were localized in the bed nucleus of stria terminalis, central nucleus of amygdala, supraoptic and periventricular nuclei. In primarily cultured neurons from various brain regions of new-born rats, the antibody immunostained strongly neuronal somata and processes. The abundant DADTI-immunoreactive substance in the cultured neurons promises to provide an alternative pathway to search for the counterpart of deltorphins in mammals.  相似文献   

4.
Gonadotropin-releasing hormone (GnRH) is an evolutionarily conserved neuropeptide with 10 amino acid residues, which possesses some structural variants. A molecular form known as chicken GnRH II ([His5 Trp7 Tyr8] GnRH, cGnRH II) is widely distributed in vertebrates, and has recently been implicated in the regulation of sexual behavior and food intake in an insectivore, the musk shrew. However, the influence of cGnRH II on feeding behavior has not yet been studied in model animals such as rodents and teleost fish. In this study, therefore, we investigated the role of cGnRH II in the regulation of feeding behavior in the goldfish, and examined its involvement in food intake after intracerebroventricular (ICV) administration. ICV-injected cGnRH II at graded doses, from 0.1 to 10 pmol/g body weight (BW), induced a decrease of food consumption in a dose-dependent manner during 60 min after treatment. Cumulative food intake was significantly decreased by ICV injection of cGnRH II at doses of 1 and 10 pmol/g BW during the 60-min post-treatment observation period. ICV injection of salmon GnRH ([Trp7 Leu8] GnRH, sGnRH) at doses of 0.1-10 pmol/g BW did not affect food intake. The anorexigenic action of cGnRH II was completely blocked by treatment with the GnRH type I receptor antagonist, Antide. However, the anorexigenic action of cGnRH II was not inhibited by treatment with the corticotropin-releasing hormone (CRH) 1/2 receptor antagonist, α-helical CRH(9−41), and the melanocortin 4 receptor antagonist, HS024. These results suggest that, in the goldfish, cGnRH II, but not sGnRH, acts as an anorexigenic factor, as is the case in the musk shrew, and that the anorexigenic action of cGnRH II is independent of CRH- and melanocortin-signaling pathways.  相似文献   

5.
alpha-Melanocyte-stimulating hormone (alpha-MSH) and corticotropin-releasing hormone (CRH) both suppress food intake, and the alpha-MSH- or CRH-signaling pathway has possible potency to mediate anorexigenic actions induced by most other neuropeptides in goldfish. Therefore, using specific receptor antagonists, we examined whether the anorexigenic actions of alpha-MSH and CRH mutually interact. The inhibitory effect of ICV injection of the alpha-MSH agonist, melanotan II (MT II), on food intake was abolished by treatment with a CRH 1/2 receptor antagonist, alpha-helical CRH((9-41)), whereas the anorexigenic action of ICV-injected CRH was not affected by treatment with a melanocortin 4 receptor antagonist, HS024. This led us to investigate whether alpha-MSH-containing neurons in the goldfish brain have direct inputs to CRH-containing neurons, using confocal laser scanning microscopy. alpha-MSH- and CRH-like immunoreactivities were distributed throughout the brain, especially in the diencephalon. alpha-MSH-containing nerve fibers or endings lay in close apposition to CRH-containing neurons in a region of the hypothalamus, the nucleus posterioris periventricularis (NPPv). These results indicate that, in goldfish, alpha-MSH-induced anorexigenic action is mediated by the CRH-signaling pathway, and that CRH plays a crucial role in the regulation of feeding behavior as an integrated anorexigenic neuropeptide in this species.  相似文献   

6.
Double-label fluorescent immunohistochemistry (IHC) is frequently used to identify cellular and subcellular co-localization of independent antigens. In general, primary antibodies for double labeling should be derived from independent species. However, such convenient pairs of antibodies are not always available. To overcome this problem, several methods for double labeling with primary antibodies from identical species have been proposed. Among them are methods using monovalent secondary antibodies, such as Fab fragments. Soluble immune complexes consisting of primary and monovalent secondary antibodies are first formed. After absorption of the excess secondary antibody with nonspecific immunoglobulin, the immune complexes are applied to sections. By this procedure, unwanted cross-reaction between false pairs of antibodies is avoidable. However, soluble immune complexes often show reduced or no immunoreactivity to antigens on sections. I noted that antigen retrieval (AR) of tissues by heating often but not always showed improved immunoreactivity for soluble immune complexes. Here I demonstrate the examination of conditions for this soluble immune complex method using AR-treated sections and show examples of double-label fluorescent IHC with identical species-derived primary antibodies.  相似文献   

7.
Wang F  Tian DR  Tian N  Chen H  Shi YS  Chang JK  Yang J  Yuan L  Han JS 《Peptides》2006,27(1):165-171
Beacon is a novel peptide isolated from the hypothalamus of Israeli sand rat. In the present study, we determined the distribution of beacon in the rat brain using immunohistochemical approach with a polyclonal antiserum directed against the synthetic C-terminal peptide fragment (47-73). The hypothalamus represented the major site of beacon-immunoreactive (IR) cell bodies that were concentrated in the paraventricular nucleus (PVN) and the supraoptic nucleus (SON). Additional immunostained cells were found in the septum, bed nucleus of the stria terminalis, subfornical organ and subcommissural organ. Beacon-IR fibers were seen with high density in the internal layer of the median eminence and low to moderate density in the external layer. Significant beacon-IR fibers were also seen in the nucleus of the solitary tract and lateral reticular formation. The beacon neurons found in the PVN were further characterized by double label immunohistochemistry. Several beacon-IR neurons that resided in the medial PVN were shown to coexpress corticotrophin-releasing hormone (CRH) and most labeled beacon fibers in the external layer of median eminence coexist with CRH. The topographical distribution of beacon-IR in the brain suggests multiple biological activities for beacon in addition to its proposed roles in modulating feeding behaviors and pituitary hormone release.  相似文献   

8.
Nesfatin‐1, corticotropin‐releasing hormone (CRH), thyrotropin‐releasing hormone (TRH), and hypothalamic neuronal histamine act as anorexigenics in the hypothalamus. We examined interactions among nesfatin‐1, CRH, TRH, and histamine in the regulation of feeding behavior in rodents. We investigated whether the anorectic effect of nesfatin‐1, α‐fluoromethyl histidine (FMH; a specific suicide inhibitor of histidine decarboxylase that depletes hypothalamic neuronal histamine), a CRH antagonist, or anti‐TRH antibody affects the anorectic effect of nesfatin‐1, whether nesfatin‐1 increases CRH and TRH contents and histamine turnover in the hypothalamus, and whether histamine increases nesfatin‐1 content in the hypothalamus. We also investigated whether nesfatin‐1 decreases food intake in mice with targeted disruption of the histamine H1 receptor (H1KO mice) and if the H1 receptor (H1‐R) co‐localizes in nesfatin‐1 neurons. Nesfatin‐1‐suppressed feeding was partially attenuated in rats administered with FMH, a CRH antagonist, or anti‐TRH antibody, and in H1KO mice. Nesfatin‐1 increased CRH and TRH levels and histamine turnover, whereas histamine increased nesfatin‐1 in the hypothalamus. Immunohistochemical analysis revealed H1‐R expression on nesfatin‐1 neurons in the paraventricular nucleus of the hypothalamus. These results indicate that CRH, TRH, and hypothalamic neuronal histamine mediate the suppressive effects of nesfatin‐1 on feeding behavior.  相似文献   

9.
Effects of methamphetamine (15 mg/kg, s.c.) on fluorescence histochemistry of dopamine nerve fibers in neostriatum, nucleus accumbens, tuberculum olfactorium and medial frontal cortex were investigated in rats treated every 6 hours for 24 hours and killed 6 and 11 days after treatment. In control rats occasional nerve fibers (probably nerve terminals) in the neostriatum showed some distortion and a strong formaldehyde-glyoxylic acid induced catecholamine fluorescence ; 6 and 11 days after methamphetamine, the number of swollen nerve fibers showing strong fluorescence in this region was significantly increased. In contrast, in nucleus accumbens, tuberculum olfactorium and medial frontal cortex, such fiber swellings were virtually absent in both controls and methamphetamine-treated rats. These findings indicated that multiple doses of methamphetamine might be toxic to neostriatal dopamine nerve fibers.  相似文献   

10.
Song G  Li Q  Shao FZ 《生理学报》2001,53(5):391-395
实验在6只成年猫上进行,将WGA-HRP微量注入C5膈神经核内,通过逆行追踪及5-HT免疫组织化学FITC荧光双重标记方法,研究了中缝核5-HT能神经元向脊髓膈神经核的投射,同时观察了延髓膈肌产运动神经元接受5-HT能纤维投射的情况,结果在中缝苍白核观察到较多的HRP-5-HT双标记神经元,在中缝大核,中缝隐核观察到少数散在的双标记神经元,在延髓疑核,孤束核腹外侧区域的HRP单核记神经元(即膈肌前运动神经元)周围观察到5-HT能轴突末梢,结构表明:发自中缝苍白核5-HT能神经元的传出纤维可投射到脊髓膈神经核,延髓膈肌前运动神经元接受5-HT能纤维的传入投射。  相似文献   

11.
The localization of LHRH-containing perikarya and nerve fibers in the hypothalami of the domestic fowl and Japanese quail was investigated by means of the specific immunoperoxidase ABC method, using antisera against chicken LHRH-I ([Gln8]-LHRH), chicken GnRH-II ([His5-Trp7-Tyr8]-LHRH[2-10]) and mammalian LHRH ([Arg8]-LHRH). Chicken LHRH-I-immunoreactive perikarya were sparsely scattered in the nucleus preopticus periventricularis (POP), nucleus filiformis (FIL) and nucleus septalis medialis (SM), and in bilateral bands extending from these nuclei into the septal area in both species. A few reactive perikarya were also observed in the nucleus accumbens (Ac) and lobus parolfactorius (LPO). Numerous cLHRH-I-immunoreactive fibers were widely scattered in the preoptic, septal and tuberal areas, and were densely concentrated in the external layer of the median eminence and in organum vasculosum of the lamina terminalis (OVLT) in both species. Anti-mammalian LHRH serum cross-reacted weakly with perikarya and fibers immunoreactive to anti-cLHRH-I serum in normal chicken and quail. Anti-cGnRH-II[2-10] serum immunoreacted with magnocellular neurons distributed in the rostral end of the mesencephalon along the midline close to the nervus oculomotorius (N III). These perikarya were apparently different from cLHRH-I immunoreactive neurons. No immunoreactive cells and fibers against anti-cGnRH-II[2-10] were observed in the hypothalamus and median eminence of the chicken or quail. Anti-cGnRH-II[2-10] bound specifically with cGnRH-II.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Summary Monoamine fluorescence was examined in the ventral hypothalamus of the Japanese quail, Coturnix coturnix japonica after medial basal hypothalamic deafferentation. In sham-operated control birds, numerous yellow-green fluorescent fibers were observed in the median eminence and the nucleus tuberis. In the area of the paraventricular organ, a number of fluorescent fibers and cell bodies were observed. In birds with deafferented hypothalami, fluorescence disappeared both in the median eminence and the nucleus tuberis. In the area of the paraventricular organ, which was within the area of deafferentation, fluorescence of neuronal perikarya did not change, but fluorescent fibers decreased markedly in number. Disappearance of monoamine fluorescence in the median eminence and the nucleus tuberis is discussed in relation to the tanycyte absorptive function and gonadal development.Supported by Grants from the Ministry of Education to Professors T. Bando and H. Kobayashi, and a Grant from the Ford Foundation to Prof. H. Kobayashi.  相似文献   

13.
The alar plate of the prosencephalon of the quail embryo was heterotopically transplanted into the alar plate of the mesencephalon of the chick embryo at the 7–10 somite stage. Chick and quail cells in chimeric brains were distinguished after Feulgen-Rossenbeck staining and/or immunohistochemical staining with a species specific monoclonal antibody MAb-37F5 which recognized cytoplasmic components of chick brain cells. Neural connections between the transplant and the host were studied by monoclonal antibodies, MAb39-B11, which recognizes a species specific antigen on chick nerve fibers, and MAb-29B8, which reacts to 160 kD neurofilaments of both chick and quail.
When the transplant was completely integrated into the host mesencephalon, the transplant developed a laminar morphology closely resembling that of the optic tectum. Immunohistochemical staining with MAb-39B11 showed that the host optic nerve fibers innervated both the host tectum and the tectum-like transplant. However, optic nerve fibers did not invade transplants that failed to develope a laminar structure characteristic of the tectum. These findings suggest that the prosencephalon has a capacity to differentiate into the optic tectum at the 7–10 somite stage.  相似文献   

14.
Melanin-concentrating hormone (MCH) was first discovered in the pituitary of chum salmon because of its role in the regulation of skin pallor. Later, it was found that MCH could also play a role as a central neurotransmitter or neuromodulator in the brain. However, knowledge of the function of MCH in fish has been restricted to certain fish species. Therefore, in the present study, the immunocytochemical localization and ontogenic development of MCH in the brain of a pleuronectiform fish, the barfin flounder Verasper moseri, were examined to obtain a better understanding of this hormone. In adult barfin flounder, MCH-immunoreactive (ir) neuronal somata were most prevalent in the magnocellular neurons of the nucleus tuberis lateralis (NLT), which project to the pituitary. In the pituitary, MCH-ir fibers were distributed in the neurohypophysial tissues within the pars intermedia and, to a lesser extent, into the pars distalis. MCH-ir neuronal somata were also present in dorsally projecting parvocellular neurons, located more posteriorly in the area above the lateral ventricular recess (LVR). LVR-MCH neurons did not seem to project to the pituitary. In the brain, MCH-ir fibers were detected not only in the hypothalamus but also in areas such as the optic tectum and thalamus. MCH-ir neuronal somata and fibers were not detected on the day of hatching. MCH-ir neuronal somata and fibers were first detected in the hypothalamus and the pituitary, respectively, 7 days after hatching. Subsequently, MCH-ir neuronal somata were observed in the NLT and in the area above the LVR 14 days after hatching. The distribution of MCH-ir neuronal somata and fibers showed a pattern similar to that in the adult fish 35-42 days after hatching. These results indicate that MCH neurons were located in the NLT and in the area above the LVR and that NLT-MCH neurons project to the pituitary. MCH neurons were first detected 7 days after hatching, suggesting that MCH plays some physiological role in the early development of barfin flounder.  相似文献   

15.
Summary Catecholamines are known to exert a central influence on the hypothalamo-hypophyseal-adrenal neuroendocrine system. The selective dopaminergic innervation of the hypothalamic paraventricular nucleus (PVN) and putative relationships between dopaminergic fibers and corticotropin releasing hormone (CRH)-synthesizing neurons were studied in the male rat by means of immunocytochemistry following the elimination of noradrenergic and adrenergic inputs to the hypothalamus. A 3.0-mm-wide coronal cut was placed unilaterally in the brain at the rostral level of the mesencephalon. All neuronal structures from the cortex to the ventral surface of the brainstem, including the ascending catecholaminergic fiber bundles were transected. This surgical intervention resulted in the accumulation of dopamine--hydroxylase (DBH)-immunoreactivity in axons proximal to the cut, and an almost complete disappearance of DBH activity in those located distal to the lesion. Two weeks following the operation, DBH immunoreactivity was significantly diminished in the PVN located on the side of lesion, while tyrosine hydroxylase (TH)-immunoreactivity was present in a substantial number of fibers in the same nucleus. Both DBH- and TH-immunoreactive axons were preserved in the contralateral PVN. Simultaneous immunocytochemical localization of either DBH- or TH-IR fibers and corticotropin releasing hormone-synthesizing neurons in the hypothalami from brainstem-lesioned, colchicine treated animals revealed that the distribution of catecholaminergic fibers and CRH neurons is homologous within the PVN of the intact side. Only a few scattered DBH-immunoreactive axons were detected among CRH-producing neurons in the PVN on the side of the lesion. In contrast, many tyrosine hydroxylase containing neurons and neuronal processes were observed on the lesioned side and the TH-IR fibers established juxtapositions with CRH-synthesizing neurons.These morphological data demonstrate that following the surgical ablation of noradrenergic and adrenergic afferents to the PVN, a substantial number of tyrosine hydroxylase-IR fibers remained in the nucleus and they were associated with corticotropin releasing hormone synthesizing neurons. Therefore, it is hypothesized that the paraventricular nucleus receives a selective dopaminergic innervation and these dopaminergic axons might influence the function of the pituitary and adrenal glands via the hypothalamic CRH system.Supported by grants from the National Science Foundation (NSF INT 8703030), the Hungarian Academy of Sciences (OTKA 104), the National Institutes of Health (NS 19266) and the National Foundation of Technical Development (OKKFT Tt 286/1986)  相似文献   

16.
The interactions between sympathetic nerve fibers and smooth muscle cells and fibroblasts from the newborn guinea pig vas deferens were studied in tissue culture with phase contrast microscopy, time-lapse microcinematography, catecholamine fluorescence histochemistry and scanning and transmission electron microscopy. The amount of sympathetic nerve fiber growth, its catecholamine fluorescence reaction and the size of the nerve cell bodies and their nuclei all increased in the presence of vas deferens tissue. Specific growth of nerve fibers to large clumps of vas deferens tissue was seen from distances of up to 2 mm. In contrast, no specific growth from a distance occurred to single cells or small groups of cells. However, random contact with a muscle cell often led to close, extensive, and long-lasting associations. Contact with fibroblasts was always transitory.The rate of sympathetic nerve fiber growth over individual muscle cells was faster than over fibroblasts, which, in turn, was faster than over the collagen-coated surface of the coverslip. Palpation of a muscle cell by a nerve fiber growth cone increased the rate of spontaneous contraction of the muscle cell, the extent of the increase being dependent on the number of nerve fibers involved. Multiple innervation of a smooth muscle cell occurred if nerve fibers reached the cell at about the same time, but not if there was a close association already established. These results are discussed in relation to possible interactions of sympathetic nerve fibers with smooth muscle cells in vivo.  相似文献   

17.
Multinucleated skeletal muscle fibers are compartmentalized with respect to the expression and organization of several intracellular and cell surface proteins including acetylcholinesterase (AChE). Mosaic muscle fibers formed from homozygous myoblasts expressing two allelic variants of AChE preferentially translate and assemble the polypeptides in the vicinity of the nucleus encoding the mRNA (Rotundo, R. L. 1990. J. Cell Biol. 110:715-719). To determine whether the locally synthesized AChE molecules are targeted to specific regions of the myotube surface, primary quail myoblasts were mixed with mononucleated cells of the mouse muscle C2/C12 cell line and allowed to fuse, forming heterospecific mosaic myotubes. Cell surface enzyme was localized by immunofluorescence using an avian AChE-specific monoclonal antibody. HOECHST 33342 was used to distinguish between quail and mouse nuclei in myotubes. Over 80% of the quail nuclei exhibited clusters of cell surface AChE in mosaic quail-mouse myotubes, whereas only 4% of the mouse nuclei had adjacent quail AChE-positive regions of membrane, all of which were located next to a quail nucleus. In contrast, membrane proteins such as Na+/K+ ATPase, which are not restricted to specific regions of the myotube surface, are free to diffuse over the entire length of the fiber. These studies indicate that the AChE molecules expressed in multinucleated muscle fibers are preferentially transported and localized to regions of surface membrane overlying the nucleus of origin. This targeting could play an important role in establishing and maintaining specialized cell surface domains such as the neuromuscular and myotendinous junctions.  相似文献   

18.
We have investigated whether gonadotrophin-releasing hormone (GnRH) is involved in triggering the apoptotic death of pyriforms, the nurse cells that cooperate in oocyte growth during mid- to late previtellogenesis in the lizard Podarcis sicula. Our immunocytochemical analyses demonstrate that pyriforms express GnRH receptors and that, in late previtellogenesis, they are up-regulated by cGnRH II. The hormone however does not trigger receptor synthesis and activation, events that therefore must be under the control of other regulatory factors. Our results also indicate that in vitro treatment of pyriforms with cGnRH II induces DNAse I activation and DNA laddering, clear cytological evidence of apoptosis, but not Fas/Fas-L synthesis or caspase activation. We conclude that cGnRH II is pro-apoptotic to pyriform cells and that it exerts its effects by activating an alternative cell death pathway, probably involving calcium as first messenger and DNase I as first executioner. This work was financed by a Progetto Giovani Ricercatori entitled “Le vie della morte nelle cellule follicolari nutrici di Podarcis sicula ” to S.T. and by a PRIN grant (2007) to Prof. Piero Andreuccetti.  相似文献   

19.
Summary The localization of vasoactive intestinal polypeptide (VIP) in the hypothalamus of the quail has been studied by means of light- and electron-microscopic immunohistochemistry. Numerous VIP-immunoreactive perikarya are distributed in the caudal portion of the nucleus infundibularis (n. tuberis) and nucleus mamillaris lateralis, and sparse in the preoptic area, nucleus supraopticus and nucleus paraventricularis. Dense localization of immunoreactive-VIP fibers is observed in the external layer of the median eminence, in close contact with the primary portal capillaries. The main origins of these fiber terminals are VIP-immunoreactive perikarya of the nucleus infundibularis. These neurons are spindle or bipolar and extend one process to the ventricular surface and another to the external layer of median eminence. They are CSF-contacting neurons and apparently constitute the tubero-hypophysial tract that links the third ventricle and the hypophysial portal circulation. VIP-reactive neurons in the nucleus mamillaris lateralis also project axons to the external layer of the median eminence, constituting the posterior bundle of the tuberohypophysial tract. Numerous VIP-immunoreactive perikarya occur also in the nucleus accumbens/pars posterior close to the lateral ventricle. They are also CSF-contacting neurons extending a process to the lateral ventricle. There are moderate distributions of VIP-reactive fibers in the area ventralis and in the area septalis.Ultrastructurally, the immunoreactive products against VIP are found in the elementary granules, 75–115 nm in diameter, within the nerve fibers in the median eminence.This investigation was supported by Scientific Research Grants No. 00556196, No. 56360027 and No. 56760183 from the Ministry of Education of Japan to Professor Mikami and Mr. Yamada  相似文献   

20.
1. Radioimmunoassays were developed for measuring avian gonadotropin-releasing hormones I and II (cGnRH I and II) in tissue extracts during the reproductive cycle. 2. Hypothalamic concentrations of cGnRH I and II were qualitatively similar being lowest in non-photostimulated hens, greater in laying hens and greatest in incubating hens. 3. cGnRH II concentrations were similar in paraolfactory lobe and hypothalamic fragments while lesser amounts were found in cerebrum, cerebellum, duodenum, shell gland, and pineal. 4. These results suggest that cGnRH II has unknown functions in turkeys quite distinct from traditional functions associated with GnRHs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号