首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous hypotheses have been proposed to explain the shape of occupancy frequency distributions (distributions of the numbers of species occupying different numbers of areas). Artefactual effects include sampling characteristics, whereas biological mechanisms include organismal, niche-based and meta-population models. To date, there has been little testing of these models. In addition, although empirically derived occupancy distributions encompass an array of taxa and spatial scales, comparisons between them are often not possible because of differences in sampling protocol and method of construction. In this paper, the effects of sampling protocol (grain, sample number, extent, sampling coverage and intensity) on the shape of occupancy distributions are examined, and approaches for minimising artefactual effects recommended. Evidence for proposed biological determinants of the shape of occupancy distributions is then examined. Good support exists for some mechanisms (habitat and environmental heterogeneity), little for others (dispersal ability), while some hypotheses remain untested (landscape productivity, position in geographic range, range size frequency distributions), or are unlikely to be useful explanations for the shape of occupancy distributions 'species specificity and adaptation to habitat, extinction-colonization dynamics). The presence of a core (class containing species with the highest occupancy) mode in occupancy distributions is most likely to be associated with larger sample units, and small homogenous sampling areas positioned well within and towards the range centers of a sufficient proportion of the species in the assemblage. Satellite (class with species with the lowest occupancy) modes are associated with sampling large, heterogeneous areas that incorporate a large proportion of the assemblage range. However, satellite modes commonly also occur in the presence of a core mode, and rare species effects are likely to contribute to the presence of a satellite mode at most sampling scales. In most proposed hypotheses, spatial scale is an important determinant of the shape of the observed occupancy distribution. Because the attributes of the mechanisms associated with these hypotheses change with spatial scale, their predictions for the shape of occupancy distributions also change. To understand occupancy distributions and the mechanisms underlying them, a synthesis of pattern documentation and model testing across scales is thus needed. The development of null models, comparisons of occupancy distributions across spatial scales and taxa, documentation of the movement of individual species between occupancy classes with changes in spatial scale, as well as further testing of biological mechanisms are all necessary for an improved understanding of the distribution of species and assemblages within their geographic ranges.  相似文献   

2.
Aim   To investigate the influence of sampling and methodological artefacts on the correlation between abundance and occupancy.
Location   Global scope.
Methods   A fixed effects weighted regression model was fitted to standardized effect size for 175 examples of correlations between abundance and occupancy. A regression tree model with standard effect size as the dependent variable was also fitted to the data.
Results   Standard effect size, and therefore the correlation between abundance and occupancy, was found to be strongly influenced by the type of abundance measure used to characterize the abundance–occupancy relationship. Local mean abundance (also referred to as ecological mean abundance) was primarily responsible for negative correlations. Negative correlations also resulted from a mismatch in the sampling extents of abundance and occupancy measures.
Main conclusions   The combination of abundance and occupancy measures selected to characterize the abundance–occupancy relationship for a given set of data has a profound impact on the sign of the correlation between the selected measures. Previous attempts to understand the processes giving rise to the pattern represented by the abundance–occupancy relationship have confounded sampling artefacts (e.g. spatial extent of abundance and occupancy information) and methodological artefacts (e.g. combining a truncated abundance measure such as local mean abundance with an untruncated occupancy measure such as proportion of occupied samples). Thus, a revision of the approach currently used to define and evaluate competing explanatory models of the abundance–occupancy relationship appears to be necessary.  相似文献   

3.
The persistence of species taxa within fragmented habitats is dependent on the source–sink metapopulation processes, and forest patch size and isolation are key factors. Unveiling species–patch area and/or species–patch isolation relationships may help provide crucial information for species and landscape management. In this study, relationship between forest patch size and isolation with abundance and occupancy probability of forest-dependent birds was investigated. This study was based within a coastal landscape that faces deleterious human activities such as clearing for agriculture. The study aimed to answer the question of whether the size and extent of isolation of forest patches influence abundance and/or occupancy probability of forest-specialist and generalist birds. Two bird species, namely Tiny Greenbul Phyllastrephus debilis subsp. rabai and Yellow-bellied Greenbul Chlorocichla flaviventris, were used as models. Birds were surveyed using distance sampling methods, and spatial metrics were measured from satellite imagery. Focal forest size and distance between forest patches were the most influential metrics whereby abundance and occupancy probabilities increased with increasing patch size, but were negatively influenced by increasing gaps between patches. These findings provide evidence of the existence of patch size/ isolation–occupancy relationships characterised by higher occupancy rate of large patches and distance-dependent dispersal, which decreased with increasing gaps between patches. Controlling deleterious human activities that reduce forest size should be a priority for the long-term conservation of forest-dependent birds.  相似文献   

4.
Resources and global avian assemblage structure in forests   总被引:2,自引:0,他引:2  
Explaining spatial variation in a number of bird species, particularly from temperate to tropical regions, has been a longstanding challenge. We test at a global scale whether species‐rich forest assemblages are associated with division of a larger resource pool, a finer division of that pool, or some combination of the two. Species richness increases with increasing assemblage abundance, biomass and energy use. As assemblage abundance, biomass and energy use increase with increasing energy availability, and as per species numbers of individuals, biomass and energy use do not decrease with increasing energy availability, we provide direct evidence that the avian species–energy relationship in forests is associated foremost with an increase in the size of the resource pool and not with a finer level of its subdivision.  相似文献   

5.
The regional occupancy and local abundance of species are affected by various species traits, but their relative effects are poorly understood. We studied the relationships between species traits and occupancy (i.e., proportion of sites occupied) or abundance (i.e., mean local abundance at occupied sites) of stream invertebrates using small‐grained data (i.e., local stream sites) across a large spatial extent (i.e., three drainage basins). We found a significant, yet rather weak, linear relationship between occupancy and abundance. However, occupancy was strongly related to niche position (NP), but it showed a weaker relationship with niche breadth (NB). Abundance was at best weakly related to these explanatory niche‐based variables. Biological traits, including feeding modes, habit traits, dispersal modes and body size classes, were generally less important in accounting for variation in occupancy and abundance. Our findings showed that the regional occupancy of stream invertebrate species is mostly related to niche characteristics, in particular, NP. However, the effects of NB on occupancy were affected by the measure itself. We conclude that niche characteristics determine the regional occupancy of species at relatively large spatial extents, suggesting that species distributions are determined by environmental variation among sites.  相似文献   

6.
Predicting the change in abundance is pivotal for evaluating species’ current conservation status and population viability. Empirical works have suggested that species with an increasing abundance have a more aggregated distribution than those with a declining abundance (namely, the change-aggregation hypothesis, CAH). Here we introduced an improved negative binomial distribution model of the occupancy-abundance relationship (OAR) to estimate the change in abundance from changes in occupancy or aggregation. Analysis of the model suggests that (i) in general the change in abundance is synchronized with the change in occupancy when the level of environmental heterogeneity remains constant, and (ii) there could exist a threshold of the population density above which the CAH is no longer valid. Tests using data of epigaeic ants in Fynbos of South Africa collected from different seasons and macro-invertebrates from different localities in streams of central Spain verified these model propositions and thus support the use of this model as a monitoring method for assessing species persistence. Results suggest that the change in abundance can be estimated from the change in occupancy often obtained from cost-efficient presence-absence records, and a revision of the traditional CAH is necessary to capture the threshold phenomenon in the change-aggregation relationship. This work thus signifies the use of the three distinct but related concepts of population structure (i.e. occupancy, abundance and aggregation) in conservation biology.  相似文献   

7.
Abstract: Habitat Conservation Plans are a widely used strategy to balance development and preservation of species of concern and have been used in southern California, USA, to protect the coastal California gnatcatcher (Polioptila californica). Few data exist on gnatcatcher abundance and distribution, and existing data have problems with issues of closure (i.e., sampling occurs in a short enough time period such that abundance or distribution are not changing), detectability, and proper attention to probability-based sampling schemes. Thus, a habitat model has been relied upon in reserve design. California gnatcatchers are the flagship and umbrella species of many plans and we provide the first estimates that incorporate probabilistic sampling and test predictions from the habitat model. Probability of occurrence was 26% (SĚ = 0.06); however, occupancy varied by modeled habitat quality with slopes <40%, warm, and wet sagebrush habitat having higher occupancy probabilities. Interpreting abundance and occupancy probabilities by vegetation type was complicated by error detected in Geographic Information System vegetation metadata files. The slope (1.08, SĚ = 0.66), temperature (0.79, SĚ = 0.70), and precipitation (—2.62, SĚ = 1.21) variables associated with habitat models were stronger influences on occupancy than was patch size (0.48, SĚ = 0.66). Previous models weight patch size equal to slope and climate. Our work demonstrates that probabilistic sampling can be carried out on a large scale and the results provide better information for managers to make decisions about their reserves.  相似文献   

8.
Management of wildlife populations often requires reliable estimates of population size or distribution. Estimating abundance can be logistically difficult, and occupancy models have been used as a less expensive proxy for abundance estimation. Another alternative is to use independent estimates of home-range size and mean group size to directly scale occupancy estimates up to abundance. We used simulations to explore when scaling occupancy up to abundance is reliable, and as an example we applied an occupancy approach to estimate abundance of wolves (Canis lupus) from roadside snow-tracking surveys in northern Wisconsin, USA, in 2016 and 2018. Estimates of wolf abundance were plausible and compared favorably with independent estimates produced by territory mapping, and snow-tracking data requirements were lower than for territory mapping. Simulation results suggested that reasonable abundance estimates could be obtained under some conditions but also that severe positive bias could result under other conditions, especially when populations were small and dispersed, home range size was small, and areal sampling units were large. Positive bias in abundance estimates occurs because of closure assumption violations when tracks from a single wolf or pack are detected in >1 sample unit, and the sum of the sample unit areas where tracks were detected exceed the sum of the home range areas. Bias was minimized when sampling units were small relative to home range size or when sampling units were route segments that approximate point sample units, and when home ranges were highly aggregated. We conclude that, although caution is warranted when scaling occupancy estimates up to abundance, scaled occupancy models can provide feasible and reliable estimates of abundance, assuming home range size and mean group size are accurately known or estimated, sampling units are appropriately chosen, and covariates that aggregate home ranges can be used to accurately predict occupancy probability. © 2021 The Authors. The Journal of Wildlife Management published by Wiley Periodicals LLC on behalf of The Wildlife Society.  相似文献   

9.
Animals use and select habitat at multiple hierarchical levels and at different spatial scales within each level. Still, there is little knowledge on the scale effects at different spatial levels of species occupancy patterns. The objective of this study was to examine nonlinear effects and optimal‐scale landscape characteristics that affect occupancy of the Siberian flying squirrel, Pteromys volans, in South‐ and Mid‐Finland. We used presence–absence data (n = 10,032 plots of 9 ha) and novel approach to separate the effects on site‐, landscape‐, and regional‐level occupancy patterns. Our main results were: landscape variables predicted the placement of population patches at least twice as well as they predicted the occupancy of particular sites; the clear optimal value of preferred habitat cover for species landscape‐level abundance is a surprisingly low value (10% within a 4 km buffer); landscape metrics exert different effects on species occupancy and abundance in high versus low population density regions of our study area. We conclude that knowledge of regional variation in landscape utilization will be essential for successful conservation of the species. The results also support the view that large‐scale landscape variables have high predictive power in explaining species abundance. Our study demonstrates the complex response of species occurrence at different levels of population configuration on landscape structure. The study also highlights the need for data in large spatial scale to increase the precision of biodiversity mapping and prediction of future trends.  相似文献   

10.
Population abundance estimates using predictive models are important for describing habitat use and responses to population-level impacts, evaluating conservation status of a species, and for establishing monitoring programs. The golden-cheeked warbler (Setophaga chrysoparia) is a neotropical migratory bird that was listed as federally endangered in 1990 because of threats related to loss and fragmentation of its woodland habitat. Since listing, abundance estimates for the species have mainly relied on localized population studies on public lands and qualitative-based methods. Our goal was to estimate breeding population size of male warblers using a predictive model based on metrics for patches of woodland habitat throughout the species' breeding range. We first conducted occupancy surveys to determine range-wide distribution. We then conducted standard point-count surveys on a subset of the initial sampling locations to estimate density of males. Mean observed patch-specific density was 0.23 males/ha (95% CI = 0.197–0.252, n = 301). We modeled the relationship between patch-specific density of males and woodland patch characteristics (size and landscape composition) and predicted patch occupancy. The probability of patch occupancy, derived from a model that used patch size and landscape composition as predictor variables while addressing effects of spatial relatedness, best predicted patch-specific density. We predicted patch-specific densities as a function of occupancy probability and estimated abundance of male warblers across 63,616 woodland patches accounting for 1.678 million ha of potential warbler habitat. Using a Monte Carlo simulation, our approach yielded a range-wide male warbler population estimate of 263,339 (95% CI: 223,927–302,620). Our results provide the first abundance estimate using habitat and count data from a sampling design focused on range-wide inference. Managers can use the resulting model as a tool to support conservation planning and guide recovery efforts. © 2012 The Wildlife Society.  相似文献   

11.
Many studies have demonstrated the changes in the spatial patterns of plant and animal communities with respect to habitat fragmentation.Insular communities tend to exhibit some special patterns in connection with the characteristics of island habitats.In this paper,the relationships between richness,assemblage,and abundance of bird communities with respect to island features were analyzed in 20 urban woodlots in Hangzhou,China.Field investigations of bird communities,using the line transect method,were conducted from January to December,1997.Each woodlot was surveyed 16 times during the year.Results indicated that bird richness was higher,per unit area,in the smaller woodlots than the larger ones,and overall bird density decreased with the increase in the size of woodlot.However,the evenness of species abundance increased with the area,and small woodlots were usually dominated by higher density species and large woodlots by medium density species.Most species occurring in the small woodlots also occurred in larger woodlots.Also,bird communities among urban woodlots showed a nestedness pattern in assemblage.These patterns implied that the main impacts of woodland habitat fragmentation are:(1) species are constricted and thus species number will increase at a given sample size;(2) as surface area decreases,the proportion of forest edge species as to interior species will increase;(3)community abundance will therefore increase per unit area but most individuals will be from a few dominant species;and (4) overall species diversity will decrease at a habitat level as well as at a region level.These patterns of community in response to the island features were therefore summarized as "island effects in community".The underlying processes of such observations were also examined in this paper.Woodlot area,edge ratio,isolation,and habitat nestedness were considered as the important factors forming the island effects in community.High heterogeneity between habitats usually contributed most to the maintenance of regional biodiversity,especially in urban woodlots.  相似文献   

12.
13.
Species abundance data are critical for testing ecological theory, but obtaining accurate empirical estimates for many taxa is challenging. Proxies for species abundance can help researchers circumvent time and cost constraints that are prohibitive for long‐term sampling. Under simple demographic models, genetic diversity is expected to correlate with census size, such that genome‐wide heterozygosity may provide a surrogate measure of species abundance. We tested whether nucleotide diversity is correlated with long‐term estimates of abundance, occupancy and degree of ecological specialization in a diverse lizard community from arid Australia. Using targeted sequence capture, we obtained estimates of genomic diversity from 30 species of lizards, recovering an average of 5,066 loci covering 3.6 Mb of DNA sequence per individual. We compared measures of individual heterozygosity to a metric of habitat specialization to investigate whether ecological preference exerts a measurable effect on genetic diversity. We find that heterozygosity is significantly correlated with species abundance and occupancy, but not habitat specialization. Demonstrating the power of genomic sampling, the correlation between heterozygosity and abundance/occupancy emerged from considering just one or two individuals per species. However, genetic diversity does no better at predicting abundance than a single day of traditional sampling in this community. We conclude that genetic diversity is a useful proxy for regional‐scale species abundance and occupancy, but a large amount of unexplained variation in heterozygosity suggests additional constraints or a failure of ecological sampling to adequately capture variation in true population size.  相似文献   

14.
Species richness and abundance are central in biodiversity inventories and in measuring the structure of communities. Neglecting the assessment of sampling efficiency may lead to spurious estimates of species richness and conservation value. Our aim was to examine species richness, sampling effectiveness, species-abundance distribution (SAD) and rarity of a boreal, mire-dwelling crane fly (Diptera, Tipuloidea) assemblage in western Finland. 12 Malaise traps dispersed in 4 subplots and standardized sweep net samples were used to collect adult flies from the mire. A total of 23 species and 1,569 specimens were identified. In general all species richness estimators were highly correlated and indicated rather good sampling effort. Sample completeness, expressed as percentage of observed richness divided by estimated richness, was higher for mire-dwellers (mean 75 %) than for all species (mean 63 %). Crane fly assemblages of subplots and combined data fitted best with log-series SAD. Species spatial distribution was positively correlated with average abundance. In other words, the most abundant species occurred in the most of Malaise traps. Seven mire-dwelling species greatly outnumbered (94 % of the collected specimens) all other members in the assemblage, and only one observed species was rare by several definitions (local abundance, extent of occurrence in Finland and area of occupancy). Although the studied assemblage was characterized by commonness, five of the species have threatened status in Europe south of Finland. Separate species richness estimation of all species (vagrants and occasional species included) and focal species (here mire-dwellers) is supported if ecological information is available on the taxonomic group being studied.  相似文献   

15.
Occupancy has several important advantages over abundance methods and may be the best choice for monitoring sparse populations. Here we use simulations to evaluate competing designs (number of sites vs. number of surveys) for occupancy monitoring, with emphasis on sparse populations of the endangered Karner blue butterfly (Lycaeides melissa samuelis Nabokov). Because conservation planning is usually abundance-based, we also ask whether detection/non-detection data may reliably convert to abundance, hypothesizing that occupancy provides a more dependable shortcut when populations are sparse. Count-index and distance sampling were conducted across 50 habitat patches containing variably sparse Karner blue populations. We used occupancy-detection model estimates as simulation inputs to evaluate primary replication tradeoffs, and used peak counts and population densities to evaluate the occupancy-abundance relationship. Detection probability and therefore optimal design of occupancy monitoring was strongly temperature dependent. Assuming a quality threshold of 0.075 root-mean square error for the occupancy estimator, the minimum allowable effort was 360 (40 sites?×?9 surveys) for spring generation and 200 (20 sites?×?10 surveys) for summer generation. A mixture model abundance estimator for repeated detection/non-detection data was biased low for high-density and low-density populations, suggesting that occupancy may not provide a reliable shortcut in abundance-based conservation planning for sparse butterfly populations.  相似文献   

16.
Estimates of minimum areas required for effective biodiversity conservation differ substantially. Scientific reserve design and placement procedures indicate that between 30 and 75% of any region may be required to sample biodiversity features. These estimates do not routinely incorporate measures for sampling viable populations of species or explore the area requirements of sampling viable populations of species assemblages. To determine the area requirements for sampling viable populations of a herbivore assemblage, spatially explicit abundance data from the Kruger National Park, South Africa, were analyzed. Area requirements were consistently above 50% and were unaffected by selected target population sizes. In addition, area requirements appeared to be insensitive to selection unit size (analytical grain), habitat quality, the coarseness of the land classification system used or the presence of low-density species. Thus, traditional conservation area targets of 10–15% appear inadequate for representing viable populations of a herbivore assemblage from African savanna regions. This suggests that conservation targets of at least 50% of land classification units may represent a more appropriate conservation rule of thumb, or alternatively, that the use of data independent conservation targets may need to be abandoned.  相似文献   

17.
Body size and migration rate in moths   总被引:1,自引:0,他引:1  
Migration rate is often thought to be affected by species distribution, abundance, body size, and niche width, but empirical results are controversial and fragmentary. In this study we examined these relationships in a large assemblage of noctuid moths. Migration rate was measured using two approaches, directly with a mark-recapture study in a network of small islands, and indirectly on the basis of the occurrence of moths outside their breeding habitat. The effects of the factors assumed to affect migration rate were adjusted for taxonomy using a simple yet novel approach based on logistic regression. Both with and without adjusting for taxonomy, the results indicate that abundance and body size influence migration rate, that the effects of abundance and body size have a negative interaction, and that the effects of ecological specialization on migration rate are evident (monophagous species migrate less than oligophagous or polyphagous species). The incidence of island or habitat patch occupancy was not affected by body size, most likely because body size has several contrasting consequences on the processes that determine island occupancy. Migration rate appears to be an evolutionarily labile character, which can readily transform in different phylogenetical lineages of moths.  相似文献   

18.
Sparsely distributed species attract conservation concern, but insufficient information on population trends challenges conservation and funding prioritization. Occupancy‐based monitoring is attractive for these species, but appropriate sampling design and inference depend on particulars of the study system. We employed spatially explicit simulations to identify minimum levels of sampling effort for a regional occupancy monitoring study design, using white‐headed woodpeckers (Picoides albolvartus), a sparsely distributed, territorial species threatened by habitat decline and degradation, as a case study. We compared the original design with commonly proposed alternatives with varying targets of inference (i.e., species range, space use, or abundance) and spatial extent of sampling. Sampling effort needed to achieve adequate power to observe a long‐term population trend (≥80% chance to observe a 2% yearly decline over 20 years) with the previously used study design consisted of annually monitoring ≥120 transects using a single‐survey approach or ≥90 transects surveyed twice per year using a repeat‐survey approach. Designs that shifted inference toward finer‐resolution trends in abundance and extended the spatial extent of sampling by shortening transects, employing a single‐survey approach to monitoring, and incorporating a panel design (33% of units surveyed per year) improved power and reduced error in estimating abundance trends. In contrast, efforts to monitor coarse‐scale trends in species range or space use with repeat surveys provided extremely limited statistical power. Synthesis and applications. Sampling resolutions that approximate home range size, spatially extensive sampling, and designs that target inference of abundance trends rather than range dynamics are probably best suited and most feasible for broad‐scale occupancy‐based monitoring of sparsely distributed territorial animal species.  相似文献   

19.
Aims We have two aims: (1) to examine the relationship between local population persistence, local abundance and regional occupancy of stream diatoms and (2) to characterize the form of the species–occupancy frequency distribution of stream diatoms. Location Boreal streams in Finland. There were three spatial extents: (1) across ecoregions in Finland, (2) within ecoregions in Finland, and (3) within a single drainage system in southern Finland. Methods Diatoms were sampled from stones (epilithon), sediment (epipelon) and aquatic plants (epiphyton) in streams using standardized sampling methods. To assess population persistence, diatom sampling was conducted monthly at four stream sites from June to October. The relationships between local population persistence, local abundance and regional occupancy were examined using correlation analyses. Results There was a significant positive relationship between local persistence and abundance of diatoms in epilithon, epipelon and epiphyton. Furthermore, local abundance and regional occupancy showed a significant positive relationship at multiple spatial extents; that is, across ecoregions, within ecoregions and within a drainage system. The relationships between occupancy and abundance did not differ appreciably among impacted and near pristine‐reference sites. The occupancy–frequency distribution was characterized by a large number of satellite species which occurred at only a few sites, whereas core species that occurred at most sites were virtually absent. Main conclusions The positive relationship between local population persistence and abundance suggested that a high local abundance may prevent local extinction or that high persistence is facilitated by a high local cell density. High local persistence and local abundance may also positively affect the degree of regional occupancy in stream diatoms. The results further showed that anthropogenic effects were probably too weak to bias the relationship between occupancy and abundance, or that the effects have already modified the distribution patterns of stream diatoms. The small number of core species in the species–occupancy frequency distribution suggested that the regional distribution patterns of stream diatoms, or perhaps unicellular microbial organisms in general, may not be fundamentally different from those described previously for multicellular organisms, mainly in terrestrial environments, although average global range sizes may differ sharply between these two broad groups of organisms.  相似文献   

20.
李超凡  范春雨  张春雨  赵秀海 《生态学报》2021,41(23):9502-9510
以吉林蛟河阔叶红松林的木本植物为研究对象,将30hm2的样地面积划分为5m×5m,10m×10m,20m×20m,25m×25m的连续取样单元,在4个不同尺度下分别统计各物种在每个取样单元中的有无,得到每个物种在不同尺度下的取样单元数。利用随机分布模型和负二项分布模型分析物种的多度分布,对比预测多度与观测多度讨论两个模型的科学性与实用性。结果表明:对于阔叶红松林而言,负二项分布模型在所有研究尺度上的预测精度都要优于随机分布模型。随机分布和负二项分布的模型预测误差随着研究尺度的增大而增大,因此选取较小的取样单元可以切实提高物种多度的预测精度。利用随机分布和负二项分布模型对多度较小的物种进行预测的效果要优于多度较大的物种。负二项分布模型适合用来模拟阔叶红松林的物种多度分布格局,并且模型的拟合效果受取样单元大小影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号