首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
NF-E2-related factor 2 (Nrf2) regulates antioxidant-responsive element-mediated induction of cytoprotective genes in response to oxidative stress. The purpose of this study was to determine the role of BRG1, a catalytic subunit of SWI2/SNF2-like chromatin-remodeling complexes, in Nrf2-mediated gene expression. Small interfering RNA knockdown of BRG1 in SW480 cells selectively decreased inducible expression of the heme oxygenase 1 (HO-1) gene after diethylmaleate treatment but did not affect other Nrf2 target genes, such as the gene encoding NADPH:quinone oxidoreductase 1 (NQO1). Chromatin immunoprecipitation analysis revealed that Nrf2 recruits BRG1 to both HO-1 and NQO1 regulatory regions. However, BRG1 knockdown selectively decreased the recruitment of RNA polymerase II to the HO-1 promoter but not to the NQO1 promoter. HO-1, but not other Nrf2-regulated genes, harbors a sequence of TG repeats capable of forming Z-DNA with BRG1 assistance. Similarly, replacement of the TG repeats with an alternative Z-DNA-forming sequence led to BRG1-mediated activation of HO-1. These results thus demonstrate that BRG1, through the facilitation of Z-DNA formation and subsequent recruitment of RNA polymerase II, is critical in Nrf2-mediated inducible expression of HO-1.  相似文献   

4.
Protein kinase C (PKC) isoforms are phosphorylated on tyrosine in the response of cells to oxidative stress. The present studies demonstrate that treatment of cells with hydrogen peroxide (H(2)O(2)) induces binding of the PKCdelta isoform and the c-Abl protein-tyrosine kinase. The results show that c-Abl phosphorylates PKCdelta in the H(2)O(2) response. We also show that PKCdelta phosphorylates and activates c-Abl in vitro. In cells, induction of c-Abl activity by H(2)O(2) is attenuated by the PKCdelta inhibitor, rottlerin, and by overexpression of the regulatory domain of PKCdelta. These findings support a functional interaction between PKCdelta and c-Abl in the cellular response to oxidative stress.  相似文献   

5.
The ubiquitously expressed c-Abl tyrosine kinase is activated in the response of cells to genotoxic and oxidative stress. The present study demonstrates that reactive oxygen species (ROS) induce targeting of c-Abl to mitochondria. We show that ROS-induced localization of c-Abl to mitochondria is dependent on activation of protein kinase C (PKC)delta and the c-Abl kinase function. Targeting of c-Abl to mitochondria is associated with ROS-induced loss of mitochondrial transmembrane potential. The results also demonstrate that c-Abl is necessary for ROS-induced depletion of ATP and the activation of a necrosis-like cell death. These findings indicate that the c-Abl kinase targets to mitochondria in response to oxidative stress and thereby mediates mitochondrial dysfunction and cell death.  相似文献   

6.
The Lyn protein-tyrosine kinase is activated in the cellular response to DNA-damaging agents. Here we demonstrate that Lyn associates constitutively with the SHPTP1 protein-tyrosine phosphatase. The SH3 domain of Lyn interacts directly with SHPTP1. The results show that Lyn phosphorylates SHPTP1 at the C-terminal Tyr-564 site. Lyn-mediated phosphorylation of SHPTP1 stimulates SHPTP1 tyrosine phosphatase activity. We also demonstrate that treatment of cells with 1-beta-D-arabinofuranosylcytosine and other genotoxic agents induces Lyn-dependent phosphorylation and activation of SHPTP1. The significance of the Lyn-SHPTP1 interaction is supported by the demonstration that activation of Lyn contributes in part to the apoptotic response to ara-C treatment and that SHPTP1 attenuates this response. These findings support a functional interaction between Lyn and SHPTP1 in the response to DNA damage.  相似文献   

7.
The c-Abl protein tyrosine kinase is activated by certain DNA-damaging agents and regulates induction of the stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK). The hematopoietic progenitor kinase 1 (HPK1) has also been shown to act upstream to the SAPK/JNK signaling pathway. We report here that exposure of hematopoietic Jurkat T cells to genotoxic agents is associated with activation of HPK1. The results demonstrate that exposure of Jurkat cells to DNA-damaging agents is associated with translocation of active c-Abl from nuclei to cytoplasm and binding of c-Abl to HPK1. Our findings also demonstrate that c-Abl phosphorylates HPK1 in cytoplasm and stimulates HPK1 activity. The functional significance of the c-Abl-HPK1 interaction is supported by the demonstration that this complex regulates SAPK/JNK activation. Overexpression of c-Abl(K-R) inhibits HPK1-induced activation of SAPK/JNK. Conversely, the dominant negative mutant of HPK1 blocks c-Abl-mediated induction of SAPK/JNK. These findings indicate that activation of HPK1 and formation of HPK1/c-Abl complexes are functionally important in the stress response of hematopoietic cells to genotoxic agents.  相似文献   

8.
To gain a better understanding on the function of the potato Solanum tuberosum Multiprotein Bridging Factor 1 protein (StMBF1) its interaction with the TATA box binding protein (TBP) was demonstrated. In addition we reported that StMBF1 rescues the yeast mbf1 mutant phenotype, indicating its role as a plant co-activator. These data reinforce the hypothesis that MBF1 function is also conserved among non closely related plant species. In addition, measurement of StMBF1 protein level by Western blot using anti-StMBF1 antibodies indicated that the protein level increased upon H(2)O(2) and heat shock treatments. However, the potato beta-1,3-glucanase protein level was not changed under the same experimental conditions. These data indicate that StMBF1 participates in the cell stress response against oxidative stress allowing us to suggest that MBF1 genes from different plant groups may share similar functions.  相似文献   

9.
The tyrosine kinase, c-Abl, plays important roles in many aspects of cellular function. Previous reports showed that c-Abl is involved in NF-κB signaling. However, the functions of c-Abl in innate immunity are still unknown. Here we demonstrate that the mitochondrial antiviral signaling (MAVS) protein can be physically associated with c-Abl in vivo and in vitro. MAVS interacted with c-Abl through its Card and TM domain. A phosphotyrosine-specific antibody indicated that MAVS was phosphorylated by c-Abl. Functional impairment of c-Abl attenuated MAVS or VSV induced type-I IFN production. Importantly, c-Abl knockdown in MCF7 cells displayed impaired MAVS-mediated NF-κB and IRF3 activation. Taken together, our results suggest that c-Abl modulates innate immune response through MAVS.

Structured summary

MINT-7297498, MINT-7297511, MINT-7297557, MINT-7297574: MAVS (uniprotkb:Q7Z434) physically interacts (MI:0915) with c-Abl (uniprotkb:P00519) by anti tag coimmunoprecipitation (MI:0007)MINT-7297542: c-Abl (uniprotkb:P00519) physically interacts (MI:0915) with MAVS (uniprotkb:Q7Z434) by anti bait coimmunoprecipitation (MI:0006)MINT-7297526: c-Abl (uniprotkb:P00519) physically interacts (MI:0915) with MAVS (uniprotkb:Q7Z434) by far western blotting (MI:0047)  相似文献   

10.
Activation of the initiator caspase-9 is essential for induction of apoptosis by developmental signals, oncogenic transformation, and genotoxic stress. The c-Abl tyrosine kinase is also involved in the apoptotic response to DNA damage. The present results demonstrate that c-Abl binds directly to caspase-9. We show that c-Abl phosphorylates caspase-9 on Tyr-153 in vitro and in cells treated with DNA damaging agents. Moreover, inhibition of c-Abl with STI571 blocked DNA damage-induced autoprocessing of caspase-9 to the p35 subunit and activation of caspase-3. Caspase-9(Y153F) also attenuated DNA damage-induced processing of caspase-9 to p35, activation of caspase-3, and apoptosis. These findings indicate that caspase-9 autoprocessing is regulated by c-Abl in the apoptotic response to genotoxic stress.  相似文献   

11.
12.
eEF1A-1 and eEF1A-2 are two isoforms of translation elongation factor eEF1A. In adult mammalian tissues, isoform eEF1A-1 is present in all tissues except neurons, cardiomyocytes, and myotubes, where its isoform, eEF1A-2, is the only form expressed. Both forms of eEF1A have been characterized to function in the protein elongation step of translation, and eEF1A-1 is shown to possess additional non-canonical roles in actin binding/bundling, microtubule bundling/severing, and cellular transformation processes. To study whether eEF1A-2 has similar non-canonical functions, we carried out a yeast two-hybrid screening using a full sequence of mouse eEF1A-2 as bait. A total of 78 hits, representing 23 proteins, were identified and validated to be true positives. We have focused on the protein with the highest frequency of hits, peroxiredoxin I (Prdx-I), for in-depth study of its functional implication for eEF1A-2. Here we show that Prdx-I coimmunoprecipitates with eEF1A-2 from extracts of both cultured cells and mouse tissues expressing this protein, but it does not do so with its isoform, eEF1A-1, even though the latter is abundantly present. We also report that an eEF1A-2 and Prdx-I double transfectant increases resistance to peroxide-induced cell death as high as 1 mM peroxide treatment, significantly higher than do single transfectants with either gene alone; this protection is correlated with reduced activation of caspases 3 and 8, and with increased expression of pro-survival factor Akt. Thus, our results suggest that eEF1A-2 interacts with Prdx-I to functionally provide cells with extraordinary resistance to oxidative stress-induced cell death.  相似文献   

13.
Apoptosis signal-regulating kinase 1 (ASK1) is a key player in the homeostatic response of many organisms. Of the many functions of ASK1, it is most well-known for its ability to induce canonical caspase 3-dependent apoptosis through the MAPK pathways in response to reactive oxygen species (ROS). As ASK1 is a regulator of apoptosis, its proper regulation is critical for the well-being of an organism. To date, several E3 ubiquitin ligases have been identified that are capable of degrading ASK1, signifying the importance of maintaining ASK1 expression levels during stress responses. ASK1 protein regulation under unstimulated conditions, however, is still largely unknown. Using tandem mass spectrometry, we have identified beta-transducin repeat containing protein (β-TrCP), an E3 ubiquitin ligase, as a novel interacting partner of ASK1 that is capable of ubiquitinating and subsequently degrading ASK1 through the ubiquitin-proteasome system (UPS). This interaction requires the seven WD domains of β-TrCP and the C-terminus of ASK1. By silencing the β-TrCP genes, we observed a significant increase in caspase 3 activity in response to oxidative stress, which could subsequently be suppressed by silencing ASK1. These findings suggest that β-TrCP is capable of suppressing oxidative stress-induced caspase 3-dependent apoptosis through suppression of ASK1, assisting in the organism's ability to maintain homeostasis in an unstable environment.  相似文献   

14.
Stimulation of murine T cells by engagement of the multi-component T cell antigen receptor or by cross-linking the Thy-1 molecule leads to a similar response characterized by lymphocyte activation and lymphokine production. The early biochemical events induced by engaging these molecules also are similar and begin with activation of a tyrosine kinase pathway and tyrosine phosphorylation of a comparable set of substrates. Previous work demonstrates that the protein tyrosine kinase p60fyn is associated with the antigen receptor and therefore it may participate in the tyrosine phosphorylations that are observed with antigen receptor signaling. In this study we demonstrate that the Thy-1 molecule is also associated with p60fyn in a murine T cell hybridoma and in murine thymocytes. The interaction is independent of antigen receptor expression. Thy-1 is a member of the class of molecules anchored to the plasma membrane by a glycophosphatidylinositol (GPI) group. The association of Thy-1 with p60fyn is dependent on the GPI linkage, since cleavage of the GPI anchor disrupts the interaction. The association of Thy-1 and p60fyn suggests a means by which Thy-1 cross-linking leads to tyrosine phosphorylation and T cell activation.  相似文献   

15.

Abscisic acid-, stress-, ripening-induced (ASR) proteins are some of the most important small proteins involved in plant responses to abiotic stresses and hormone signals. Recently, BdASR1 was revealed to be upregulated in response to abiotic stresses and hormone treatments and regulate expression of stress-related genes and drought tolerance in tobacco plants. However, the biological and molecular functions of BdASR1 remain to be elucidated. Here, we isolated and characterized BdASR1-interacting protein using the yeast two-hybrid assay. The expression of the interaction protein, BdERF96, increased under drought and oxidative stress corresponding to the expression of BdASR1. Subcellular localization of BdERF96 was detected in the plasma membrane and nucleus. The interaction of BdASR1 and BdERF96 at the plasma membrane and nucleus was demonstrated using bimolecular fluorescence complementation analysis. The findings imply that BdERF96 in association with BdASR1 could play a role in the positive response to drought and oxidative stresses.

  相似文献   

16.
17.
The cellular response to oxidative stress includes the release of mitochondrial cytochrome c and the induction of apoptosis. Here we show that treatment of diverse cells with hydrogen peroxide (H2O2) induces the targeting of protein kinase C delta (PKCdelta) to mitochondria. The results demonstrate that H2O2-induced activation of PKCdelta is necessary for translocation of PKCdelta from the cytoplasm to the mitochondria. The results also show that mitochondrial targeting of PKCdelta is associated with the loss of mitochondrial transmembrane potential and release of cytochrome c. The functional importance of this event is also supported by the demonstration that H2O2-induced apoptosis is blocked by the inhibition of PKCdelta activation and translocation to mitochondria. These findings indicate that mitochondrial targeting of PKCdelta is required, at least in part, for the apoptotic response of cells to oxidative stress.  相似文献   

18.
Oxidative stress compromises the tight junction, but the mechanisms underlying its recovery remain unclear. We developed a model in which oxidative stress reversibly disrupts the tight junction. Exposure of Madin-Darby canine kidney cells to hydrogen peroxide markedly reduced transepithelial resistance and disrupted the staining patterns of the tight junction proteins ZO-1 and occludin. These changes were reversed by catalase. The short-term reassembly of tight junctions was not dependent on new protein synthesis, suggesting that recovery occurs through re-utilization of existing proteins. Although ATP levels were reduced, the reduction was insufficient to explain the observed changes, since a comparable reduction of ATP levels (with 2-deoxy-D-glucose) did not induce these changes. The intracellular hydrogen peroxide scavenger pyruvate protected Madin-Darby canine kidney cells from loss of transepithelial resistance as did the heavy metal scavenger N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine. Of a wide variety of agents examined, only tyrosine kinase inhibitors and protein kinase C inhibitors markedly inhibited tight junction reassembly. During reassembly, tyrosine phosphorylation in or near the lateral membrane, was detected by immunofluorescence. The tyrosine kinase inhibitors genistein and PP-2 inhibited the recovery of transepithelial resistance and perturbed the relocalization of ZO-1 and occludin to the tight junction, indicating that tyrosine kinases, possibly members of the Src family, are critical for reassembly after oxidative stress.  相似文献   

19.
The c-Abl protein tyrosine kinase is activated by certain DNA-damaging agents and regulates induction of the stress-activated c-Jun N-terminal protein kinase (SAPK). Here we show that nuclear c-Abl associates with MEK kinase 1 (MEKK-1), an upstream effector of the SEK1-->SAPK pathway, in the response of cells to genotoxic stress. The results demonstrate that the nuclear c-Abl binds to MEKK-1 and that c-Abl phosphorylates MEKK-1 in vitro and in vivo. Transient-transfection studies with wild-type and kinase-inactive c-Abl demonstrate c-Abl kinase-dependent activation of MEKK-1. Moreover, c-Abl activates MEKK-1 in vitro and in response to DNA damage. The results also demonstrate that c-Abl induces MEKK-1-mediated phosphorylation and activation of SEK1-SAPK in coupled kinase assays. These findings indicate that c-Abl functions upstream of MEKK-1-dependent activation of SAPK in the response to genotoxic stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号