首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Caspase recruitment domain (CARD)-only proteins (COPs), regulate apoptosis, inflammation, and innate immunity. They inhibit the assembly of NOD-like receptor complexes such as the inflammasome and NODosome, which are molecular complexes critical for caspase-1 activation. COPs are known to interact with either caspase-1 CARD or RIP2 CARD via a CARD-CARD interaction, and inhibit caspase-1 activation or further downstream signaling. In addition to the human COPs, Pseudo-ICE, INCA, and ICEBERG, several viruses also contain viral COPs that help them escape the host immune system. To elucidate the molecular mechanism of host immunity inhibition by viral COPs, we solved the structure of a viral COP for the first time. Our structure showed that viral COP forms a structural transformation-mediated dimer, which is unique and has not been reported in any structural study of a CARD domain. Based on the current structure, and the previously solved structures of other death domain superfamily members, we propose that structural transformation-mediated dimerization might be a new strategy for dimer assembly in the death domain superfamily.  相似文献   

2.
We report here the identification and functional characterization of two new human caspase recruitment domain (CARD) molecules, termed Pseudo-interleukin-1beta converting enzyme (ICE) and ICEBERG. Both proteins share a high degree of homology, reaching 92% and 53% identity, respectively, to the prodomain of caspase-1/ICE. Interestingly, both Pseudo-ICE and ICEBERG are mapped to chromosome 11q22 that bears caspases-1, -4- and -5 genes, all involved in cytokine production rather than in apoptosis. We demonstrate that Pseudo-ICE and ICEBERG interact physically with caspase-1 and block, in a monocytic cell line, the interferon-gamma and lipopolysaccharide-induced secretion of interleukin-1beta which is a well-known consequence of caspase-1 activation. Moreover, Pseudo-ICE, but not ICEBERG, interacts with the CARD-containing kinase RICK/RIP2/CARDIAK and activates NF-kappaB. Our data suggest that Pseudo-ICE and ICEBERG are intracellular regulators of caspase-1 activation and could play a role in the regulation of IL-1beta secretion and NF-kappaB activation during the pro-inflammatory cytokine response.  相似文献   

3.
The PYRIN-CARD protein ASC is an activating adaptor for caspase-1   总被引:19,自引:0,他引:19  
The PYRIN and CARD domains are members of the six-helix bundle death domain-fold superfamily that mediates assembly of large signaling complexes in the apoptotic and inflammatory signaling pathways. Here we show that the PYRIN-CARD protein ASC functions as a caspase-1-activating adaptor. ASC interacted specifically with procaspase-1 via CARD-CARD interactions and induced its oligomerization. Consistent with these results ectopic expression of full-length ASC, but not its isolated CARD or PYRIN domain, with procaspase-1 induced activation of procaspase-1 and processing of pro-interleukin-1beta in transfected cells. Substitution of the PYRIN domain of ASC with an inducible FKBP12 oligomerization domain produced a molecule that can induce caspase-1 activation in response to stimulation with the oligomerization drug AP20187, suggesting that the PYRIN domain functions as an oligomerization domain, whereas the CARD domain functions as the effector domain in the caspase-1 activation pathway. Furthermore stable expression of an isolated CARD of ASC in THP-1 cells diminished interleukin-1beta generation in response to pro-inflammatory cytokines. These results indicate that ASC is involved in the caspase-1 signaling pathway by mediating the assembly of a caspase-1-inflammasome signaling complex in response to pro-inflammatory cytokine stimulation.  相似文献   

4.
Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC)/target of methylation-induced silencing/PYCARD represents one of only two proteins encoded in the human genome that contains a caspase recruitment domain (CARD) together with a pyrin, AIM, ASC, and death domain-like (PAAD)/PYRIN/DAPIN domain. CARDs regulate caspase family proteases. We show here that ASC binds by its CARD to procaspase-1 and to adapter proteins involved in caspase-1 activation, thereby regulating cytokine pro-IL-1beta activation by this protease in THP-1 monocytes. ASC enhances IL-1beta secretion into the cell culture supernatants, at low concentrations, while suppressing at high concentrations. When expressed in HEK293 cells, ASC interferes with Cardiak/Rip2/Rick-mediated oligomerization of procaspase-1 and suppresses activation this protease, as measured by protease activity assays. Moreover, ASC also recruits procaspase-1 into ASC-formed cytosolic specks, separating it from Cardiak. We also show that expression of the PAAD/PYRIN family proteins pyrin or cryopyrin/PYPAF1/NALP3 individually inhibits IL-1beta secretion but that coexpression of ASC with these proteins results in enhanced IL-1beta secretion. However, expression of ASC uniformly interferes with caspase-1 activation and IL-1beta secretion induced by proinflammatory stimuli such as LPS and TNF, suggesting pathway competition. Moreover, LPS and TNF induce increases in ASC mRNA and protein expression in cells of myeloid/monocytic origin, revealing another level of cross-talk of cytokine-signaling pathways with the ASC-controlled pathway. Thus, our results suggest a complex interplay of the bipartite adapter protein ASC with PAAD/PYRIN family proteins, LPS (Toll family receptors), and TNF in the regulation of procaspase-1 activation, cytokine production, and control of inflammatory responses.  相似文献   

5.
The production of bio-active interleukin-1beta (IL-1beta), a pro-inflammatory cytokine, is mediated by activated caspase-1. One of the known molecular mechanisms underlying pro-caspase-1 processing and activation involves binding of the caspase-1 prodomain to a caspase recruitment domain (CARD)-containing serine/threonine kinase known as RIP2/CARDIAK/RICK. We have identified a novel protein, COP (CARD only protein), which has a high degree of sequence identity to the caspase-1 prodomain. COP binds to both RIP2 and the caspase-1 prodomain and inhibits RIP2-induced caspase-1 oligomerization. COP inhibits caspase- 1-induced IL-1beta secretion as well as lipopolysaccharide-induced IL-1beta secretion in transfected cells. Our data indicate that COP can regulate IL-1beta secretion, implying that COP may play a role in down-regulating inflammatory responses analogous to the CARD protein ICEBERG.  相似文献   

6.
CARD12 (Ipaf/Clan) is an important regulator of caspase-1 activation. It belongs to the family of the nucleotide-binding site and leucine-rich repeat (NBS-LRR) proteins. The NBS domain of the NBS-LRR proteins contains putative ATP/GTPase-specific P-loop and Mg2+-binding site motifs. However, the nucleotide-binding properties and the function of the NBS domain are unknown. We developed a nucleotide-binding assay and investigated nucleotide binding to CARD12. We find that the NBS domain of CARD12 contains a nucleotide-binding pocket with specificity for ATP/dATP. A point mutation in the P-loop (K175R) of the NBS domain abolishes ATP/dATP binding. We further demonstrate that the nucleotide-binding site is required for CARD12-mediated caspase-1 activation. CARD12 self-association and association with procaspase-1 in transfected cells were markedly decreased by the P-loop mutation K175R. Furthermore, the P-loop mutation greatly reduced caspase-1 activation-dependent proIL-1beta processing. Thus, CARD12 function is dependent on the nucleotide-binding site. Our data provide insights into the molecular mechanisms of CARD12-mediated caspase-1 activation.  相似文献   

7.
The caspase recruitment domain (CARD) is present in a large number of proteins. Initially, the CARD was recognized as part of the caspase activation machinery. CARD-CARD interactions play a role in apoptosis and are responsible for the Apaf-1-mediated activation of procaspase-9 in the apoptosome. CARD-containing proteins mediate the inflammasome-dependent activation of proinflammatory caspase-1. More recently, new roles for CARD-containing proteins have been reported in signaling pathways associated with immune responses. The functional role of CARD-containing proteins and CARDs in coordinating apoptosis and inflammatory and immune responses is not completely understood. We have explored the putative cross-talk between apoptosis and inflammation by analyzing the modulatory activity on both the Apaf-1/procaspase-9 interaction and the inflammasome-mediated procaspase-1 activation of CARD-derived polypeptides. To this end, we analyzed the activity of individual recombinant CARDs, rationally designed CARD-derived peptides, and peptides derived from phage display.  相似文献   

8.
We cloned a novel cDNA derived from the CARD6 gene locus on chromosome 5p12 of 311 amino acids in length. By immunoprecipitation we detected specific binding of this CARD6-encoding protein to Nod1 (CARD4), Cardiak (Rip2/Rick), NAC (NALP1/DEFCAP/CARD7), and TUCAN (CARD8/Cardinal/NDPP/Dakar), caspase recruitment domain (CARD)-containing proteins implicated in NF-kappa B and caspase-1 activation but not to other CARD family proteins. Cardiak and Nod1 (but not other CARD proteins) also exhibited opposing effects on CARD6 protein phosphorylation and expression, providing further evidence of functional interactions among these proteins in cells. In transfection experiments, the CARD6 protein suppressed NF-kappa B induction by Nod1 or Cardiak but did not interfere with NF-kappa B activation by the CARD-containing adapter protein Bcl10 or the cytokine tumor necrosis factor-alpha, demonstrating specificity of CARD6 for Nod-1 and Cardiak-dependent pathways. In contrast to its effects on Nod1- and Cardiak-dependent NF-kappa B activation, CARD6 did not interfere with caspase-1-dependent interleukin-1 beta secretion induced by Cardiak or Nod1. CARD6 also did not affect caspase activation and apoptosis induced by overexpression of Fas, Bax, or other pro-apoptotic stimuli. Thus, CARD6 represents a selective modulator of NF-kappa B activation by Cardiak and Nod1, adding to the repertoire of CARD-family proteins implicated in inflammatory responses and innate immunity.  相似文献   

9.
Wang P  Shi T  Ma D 《Life sciences》2006,79(10):934-940
Caspase-9 plays a key role in the intrinsic apoptotic pathway and currently two splice variants (caspase-9-alpha and -beta) have been identified. The present study cloned and characterized a novel caspase-9 splice variant, hereby designated Casp9-gamma. Casp9-gamma is generated from an additional alternative 3' splice site in the fourth exon of caspase-9, resulting in a 58-nucleotide fragment insertion compared with the full-length caspase-9-alpha. The fragment introduces an in-frame stop codon, and the resulting open reading frame (ORF) is preterminated. The Casp9-gamma comprises the deduced 154 amino acid residues containing only the caspase recruitment domain (CARD) and does not contain the large and small subunits. The Casp9-gamma does not promote apoptosis when overexpressed in mammalian cells. Moreover, it inhibits the cleavage of procaspase-3 mediated by proapoptotic member Bax or apoptosis inductor staurosporine. Therefore, Casp9-gamma may function as an endogenous apoptotic inhibitor by interfering with the CARD-CARD interaction between Apaf-1 (apoptotic protease activating factor-1) and procaspase-9. In addition, Casp9-gamma does not enhance NF-kappaB activation in transfected 293T cells, conflicting with previous evidence that the isolated CARD of caspase-9 activates NF-kappaB in ND7 cells. This suggests that the procaspase-9-mediated NF-kappaB activation in response to cellular stresses is cell type-specific through an unidentified mechanism.  相似文献   

10.
Although early studies of inhibitor of apoptosis proteins (IAPs) suggested that cIAP1 directly binds and inhibits caspases similarly to X-linked IAP (XIAP), a recent one found that micromolar concentrations of cIAP1 only weakly inhibit caspase-3, -7, or -9. Here, we show that cIAP1 specifically and cooperatively blocks the cytochrome c-dependent apoptosome in vitro. Hence, cIAP1 prevented the activation of procaspase-3 but had no effect on the processing of procaspase-9 or the activity of prior activated caspase-3. Like cIAP1, XIAP had no effect on procaspase-9 processing and was a more potent inhibitor of procaspase-3 activation than of already activated caspase-3 activity. Inhibition of procaspase-3 activation depended on BIR2 and BIR3 of cIAP1 and was independent of BIR1, RING, CARD, and UBA domains. Smac prevented cIAP1 from inhibiting procaspase-3 activation and reversed the inhibition by prior addition of cIAP1. A procaspase-9 mutant (D315A) that cannot produce the p12 subunit was resistant to inhibition by cIAP1. Therefore, the N-terminal Ala-Thr-Pro-Phe motif of the p12 subunit of the caspase-9 apoptosome facilitates apoptosome blockade. Consequently, cIAP1 cooperatively interacts with oligomerized processed caspase-9 in the apoptosome and blocks procaspase-3 activation.  相似文献   

11.
Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1   总被引:10,自引:0,他引:10  
Procaspase-9 contains an NH2-terminal caspase-associated recruitment domain (CARD), which is essential for direct association with Apaf-1 and activation. Procaspase-1 also contains an NH2-terminal CARD domain, suggesting that its mechanism of activation, like that of procaspase-9, involves association with an Apaf-1-related molecule. Here we describe the identification of a human Apaf-1-related protein, named Ipaf that contains an NH2-terminal CARD domain, a central nucleotide-binding domain, and a COOH-terminal regulatory leucine-rich repeat domain (LRR). Ipaf associates directly and specifically with the CARD domain of procaspase-1 through CARD-CARD interaction. A constitutively active Ipaf lacking its COOH-terminal LRR domain can induce autocatalytic processing and activation of procaspase-1 and caspase-1-dependent apoptosis in transfected cells. Our results suggest that Ipaf is a specific and direct activator of procaspase-1 and could be involved in activation of caspase-1 in response to pro-inflammatory and apoptotic stimuli.  相似文献   

12.
Apoptotic protease-activating factor-1 (Apaf-1), a key regulator of the mitochondrial apoptosis pathway, consists of three functional regions: (i) an N-terminal caspase recruitment domain (CARD) that can bind to procaspase-9, (ii) a CED-4-like region enabling self-oligomerization, and (iii) a regulatory C terminus with WD-40 repeats masking the CARD and CED-4 region. During apoptosis, cytochrome c and dATP can relieve the inhibitory action of the WD-40 repeats and thus enable the oligomerization of Apaf-1 and the subsequent recruitment and activation of procaspase-9. Here, we report that different apoptotic stimuli induced the caspase-mediated cleavage of Apaf-1 into an 84-kDa fragment. The same Apaf-1 fragment was obtained in vitro by incubation of cell lysates with either cytochrome c/dATP or caspase-3 but not with caspase-6 or caspase-8. Apaf-1 was cleaved at the N terminus, leading to the removal of its CARD H1 helix. An additional cleavage site was located within the WD-40 repeats and enabled the oligomerization of p84 into a approximately 440-kDa Apaf-1 multimer even in the absence of cytochrome c. Due to the partial loss of its CARD, the p84 multimer was devoid of caspase-9 or other caspase activity. Thus, our data indicate that Apaf-1 cleavage causes the release of caspases from the apoptosome in the course of apoptosis.  相似文献   

13.
Caspase-associated recruitment domains (CARDs) are protein interaction domains that participate in activation or suppression of CARD-carrying members of the caspase family of apoptosis-inducing proteases. A novel CARD-containing protein was identified that is overexpressed in some types of cancer and that binds and suppresses activation of procaspase-9, which we term TUCAN (tumor-up-regulated CARD-containing antagonist of caspase nine). The CARD domain of TUCAN selectively binds itself and procaspase-9. TUCAN interferes with binding of Apaf1 to procaspase-9 and suppresses caspase activation induced by the Apaf1 activator, cytochrome c. Overexpression of TUCAN in cells by stable or transient transfection inhibits apoptosis and caspase activation induced by Apaf1/caspase-9-dependent stimuli, including Bax, VP16, and staurosporine, but not by Apaf1/caspase-9-independent stimuli, Fas and granzyme B. High levels of endogenous TUCAN protein were detected in several tumor cell lines and in colon cancer specimens, correlating with shorter patient survival. Thus, TUCAN represents a new member of the CARD family that selectively suppresses apoptosis induced via the mitochondrial pathway for caspase activation.  相似文献   

14.
Mitochondrial injury initiates proteolytic processing of procaspase-9 into the large and small subunits, leading to apoptotic cell death. Here we show that the free caspase recruitment domain (CARD) released by procaspase-9 processing activates nuclear factor kappaB expression. A procaspase-9 construct with a point mutation that abrogates the release of the CARD abolished nuclear factor kappaB activation. Most importantly, the free CARD is shown to enhance the expression of the gene encoding the antiapoptotic Bcl-x protein and to strongly inhibit apoptosis. This is the first demonstration that different domains of the same caspase protein have proapoptotic and antiapoptotic effects and suggests that the relative effects of these domains are important in regulating the balance between death and survival.  相似文献   

15.
Feng Q  Li P  Leung PC  Auersperg N 《Genomics》2004,84(3):587-591
Five alternatively spliced mRNA isoforms of human caspase-1 have been identified previously and we report here the cloning of a new isoform, named CASP1 zeta (zeta), from human ovarian surface epithelial cell cDNA. The new isoform zeta is identical to the alpha isoform but missing 79 nucleotides in the coding region of the prodomain of procaspase-1. Analysis of the cDNA sequence of the zeta isoform revealed an ORF of a shorter protein missing the 39 amino acids at the amino terminal of procaspase-1alpha, which comprises the important caspase activating recruitment domain (CARD), which is required for interactions between caspases and other proteins. Secondary structure analysis of procaspase-1 CARD predicted the truncation of the alpha1, the alpha2, and part of the alpha3 helix in the zeta isoform in comparison to the full-length alpha isoform. The new zeta isoform was expressed in many, but not all, adult human tissues by RT-PCR. In HEK293 cells, transient overexpression of wild-type caspase-1zeta induced apoptosis to levels similar to those of caspase-1alpha. However, mutational change at the caspase-1 active center of the Cys 246 of caspase-1zeta, as well as Cys 285 of caspase-1alpha, completely abolished their apoptotic activity. Our findings suggest that caspase-1zeta is a widespread, new proapoptotic isoform of caspase-1. They also demonstrate that the first 39 amino acids of the N-terminal of the CARD in procaspase-1 are not required for its apoptotic activity.  相似文献   

16.
17.
Inflammasomes are protein complexes assembled upon recognition of infection or cell damage signals, and serve as platforms for clustering and activation of procaspase-1. Oligomerisation of initiating proteins such as AIM2 (absent in melanoma-2) and NLRP3 (NOD-like receptor family, pyrin domain-containing-3) recruits procaspase-1 via the inflammasome adapter molecule ASC (apoptosis-associated speck-like protein containing a CARD). Active caspase-1 is responsible for rapid lytic cell death termed pyroptosis. Here we show that AIM2 and NLRP3 inflammasomes activate caspase-8 and -1, leading to both apoptotic and pyroptotic cell death. The AIM2 inflammasome is activated by cytosolic DNA. The balance between pyroptosis and apoptosis depended upon the amount of DNA, with apoptosis seen at lower transfected DNA concentrations. Pyroptosis had a higher threshold for activation, and dominated at high DNA concentrations because it happens more rapidly. Gene knockdown showed caspase-8 to be the apical caspase in the AIM2- and NLRP3-dependent apoptotic pathways, with little or no requirement for caspase-9. Procaspase-8 localised to ASC inflammasome ‘specks'' in cells, and bound directly to the pyrin domain of ASC. Thus caspase-8 is an integral part of the inflammasome, and this extends the relevance of the inflammasome to cell types that do not express caspase-1.  相似文献   

18.
19.
Regulation of the Apaf-1/caspase-9 apoptosome by caspase-3 and XIAP   总被引:8,自引:0,他引:8  
The apoptosome is a multiprotein complex comprising Apaf-1, cytochrome c, and caspase-9 that functions to activate caspase-3 downstream of mitochondria in response to apoptotic signals. Binding of cytochrome c and dATP to Apaf-1 in the cytosol leads to the assembly of a heptameric complex in which each Apaf-1 subunit is bound noncovalently to a procaspase-9 subunit via their respective CARD domains. Assembly of the apoptosome results in the proteolytic cleavage of procaspase-9 at the cleavage site PEPD(315) to yield the large (p35) and small (p12) caspase-9 subunits. In addition to the PEPD site, caspase-9 contains a caspase-3 cleavage site (DQLD(330)), which when cleaved, produces a smaller p10 subunit in which the NH(2)-terminal 15 amino acids of p12, including the XIAP BIR3 binding motif, are removed. Using purified proteins in a reconstituted reaction in vitro, we have assessed the relative impact of Asp(315) and Asp(330) cleavage on caspase-9 activity within the apoptosome. In addition, we characterized the effect of caspase-3 feedback cleavage of caspase-9 on the rate of caspase-3 activation, and the potential ramifications of Asp(330) cleavage on XIAP-mediated inhibition of the apoptosome. We have found that cleavage of procaspase-9 at Asp(330) to generate p35, p10 or p37, p10 forms resulted in a significant increase (up to 8-fold) in apoptosome activity compared with p35/p12. The significance of this increase was demonstrated by the near complete loss of apoptosome-mediated caspase-3 activity when a point mutant (D330A) of procaspase-9 was substituted for wild-type procaspase-9 in the apoptosome. In addition, cleavage at Asp(330) exposed a novel p10 NH(2)-terminal peptide motif (AISS) that retained the ability to mediate XIAP inhibition of caspase-9. Thus, whereas feedback cleavage of caspase-9 by caspase-3 significantly increases the activity of the apoptosome, it does little to attenuate its sensitivity to inhibition by XIAP.  相似文献   

20.
The Tpl-2 proto-oncoprotein promotes cellular proliferation when overexpressed in a variety of tumor cell lines. Here, we present evidence that when overexpressed in immortalized non-transformed cells, Tpl-2 induces apoptosis by promoting the activation of caspase-3 via a caspase-9-dependent mechanism, and that apoptosis is enhanced when Tpl-2 is co-expressed with the newly identified ankyrin repeat protein Tvl-1. The activation of caspase-3 by caspase-9 is known to depend on the assembly of a multimolecular complex that includes Apaf-1 and caspase-9. Data presented here show that co-expression of Tpl-2 with Tvl-1 promotes the assembly of a complex that involves several proteins that bind Apaf-1 including Tvl-1, itself, Tpl-2 and phosphorylated procaspase-9. More important, procaspase-3, which under normal growth conditions is not associated with the complex, binds Tvl-1 conditionally in response to Tpl-2-generated apoptotic signals. The conditional association of procaspase-3 with Tvl-1 promotes the in vivo proteolytic maturation of procaspase-3 by caspase-9, a process casually linked to apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号