首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lactate is potentially a major energy source in brain, particularly following hypoxia/ischemia; however, the regulation of brain lactate metabolism is not well understood. Lactate dehydrogenase (LDH) isozymes in cytosol from primary cultures of neurons and astrocytes, and freshly isolated synaptic terminals (synaptosomes) from adult rat brain were separated by electrophoresis, visualized with an activity-based stain, and quantified. The activity and kinetics of LDH were determined in the same preparations. In synaptosomes, the forward reaction (pyruvate + NADH + H+ → lactate + NAD+), which had a V max of 1,163 μmol/min/mg protein was 62% of the rate in astrocyte cytoplasm. In contrast, the reverse reaction (lactate + NAD+ → pyruvate + NADH + H+), which had a V max of 268 μmol/min/mg protein was 237% of the rate in astrocytes. Although the relative distribution was different, all five isozymes of LDH were present in synaptosomes and primary cultures of cortical neurons and astrocytes from rat brain. LDH1 was 14.1% of the isozyme in synaptic terminals, but only 2.6% and 2.4% in neurons and astrocytes, respectively. LDH5 was considerably lower in synaptic terminals than in neurons and astrocytes, representing 20.4%, 37.3% and 34.8% of the isozyme in these preparations, respectively. The distribution of LDH isozymes in primary cultures of cortical neurons does not directly reflect the kinetics of LDH and the capacity for lactate oxidation. However, the kinetics of LDH in brain are consistent with the possible release of lactate by astrocytes and oxidative use of lactate for energy in synaptic terminals. Special issue dedicated to John P. Blass.  相似文献   

2.
The metabolism of lactate in isolated cells from early neonatal rat brain has been studied. In these circumstances, lactate was mainly oxidized to CO2, although a significant portion was incorporated into lipids (78% sterols, 4% phosphatidylcholine, 2% phosphatidylethanolamine, and 1% phosphatidylserine). The rate of lactate incorporation into CO2 and lipids was higher than those found for glucose and 3-hydroxybutyrate. Lactate strongly inhibited glucose oxidation through the pyruvate dehydrogenase-catalyzed reaction and the tricarboxylic acid cycle while scarcely affecting glucose utilization by the pentose phosphate pathway. Lipogenesis from glucose was strongly inhibited by lactate without relevant changes in the rate of glycerol phosphate synthesis. These results suggest that lactate inhibits glucose utilization at the level of the pyruvate dehydrogenase-catalyzed reaction, which may be a mechanism to spare glucose for glycerol and NADPH synthesis. The effect of 3-hydroxybutyrate inhibiting lactate utilization only at high concentrations of 3-hydroxybutyrate suggests that before ketogenesis becomes active, lactate may be the major fuel for the neonatal brain. (-)-Hydroxycitrate and aminooxyacetate markedly inhibited lipogenesis from lactate, suggesting that the transfer of lactate carbons through the mitochondrial membrane is accomplished by the translocation of both citrate and N-acetylaspartate.  相似文献   

3.
Abstract: Chains of lumbar sympathetic ganglia, excised from 15-day-old chicken embryos, were incubated for 4 h at 36°C in a bicarbonate-buffered physiological salt solution containing 5.5 mM glucose and equilibrated with 5% CO2–95% O2. [U-14C]Glucose and [U-14C]lactate were used as tracers to measure the products of glucose and lactate metabolism, respectively, including CO2, lactate, and constituents of the tissue. When 5 mM lactate was added to bathing solution containing 5.5 mM glucose, lactate carbon displaced 50–70% of the glucose carbon otherwise used for CO2 production and provided about three times as much carbon for CO2 as did glucose. The lactate addition increased the total carbon incorporated into CO2 and into constituents of the tissue above those observed with glucose alone and also increased the lactate released to the bathing solution from [U-14C]-glucose. The latter increase was evidently due to an interference with reuptake of the lactate released from the ganglion cells, not to an increase in the cellular release itself. When the volume of bathing solution was increased 10-fold relative to that of the tissue, the average output of CO2 from [U-14C]glucose during a 4-h incubation was decreased by 50% when 5 mM lactate was present but was not affected significantly in the absence of added lactate. It is concluded that the effect of changing volume in the presence of lactate was due to the effects of lactate on glucose metabolism described above and resulted from a lower average lactate concentration in the smaller volume than in the larger one, due to metabolic depletion of the added lactate. Consumable substrates other than lactate, such as glutamine and certain amino acids, also affected glucose metabolism.  相似文献   

4.
Lactate Utilization by Isolated Cells from Early Neonatal Rat Brain   总被引:6,自引:3,他引:3  
The utilization of lactate, glucose, 3-hydroxybutyrate, and glutamine has been studied in isolated brain cells from early newborn rats. Isolated brain cells actively utilized these substrates, showing saturation at concentrations near physiological levels during the perinatal period. The rate of lactate utilization was 2.5-fold greater than that observed for glucose, 3-hydroxybutyrate, or glutamine, suggesting that lactate is the main metabolic substrate for the brain immediately after birth. The apparent Km for glucose utilization suggested that this process is limited by the activity of hexokinase. However, lactate, 3-hydroxybutyrate, and glutamine utilization seems to be limited by their transport through the plasma membrane. The presence of fatty acid-free bovine serum albumin (BSA) in the incubation medium significantly increased the rate of lipogenesis from lactate or 3-hydroxybutyrate, although this was balanced by the decrease in their rates of oxidation in the same circumstances. BSA did not affect the rate of glucose utilization. The effect of BSA was due not to the removal of free fatty acid, but possibly to the binding of long-chain acyl-CoA, resulting in the disinhibition of acetyl-CoA carboxylase and citrate carrier.  相似文献   

5.
6.
Abstract: This study used the rat hippocampal slice preparation and the monocarboxylate transporter inhibitor, α-cyano-4-hydroxycinnamate (4-CIN), to assess the obligatory role that lactate plays in fueling the recovery of synaptic function after hypoxia upon reoxygenation. At a concentration of 500 µ M , 4-CIN blocked lactate-supported synaptic function in hippocampal slices under normoxic conditions in 15 min. The inhibitor had no effect on glucose-supported synaptic function. Of control hippocampal slices exposed to 10-min hypoxia, 77.8 ± 6.8% recovered synaptic function after 30-min reoxygenation. Of slices supplemented with 500 µ M 4-CIN, only 15 ± 10.9% recovered synaptic function despite the large amount of lactate formed during the hypoxic period and the abundance of glucose present before, during, and after hypoxia. These results indicate that 4-CIN, when present during hypoxia and reoxygenation, blocks lactate transport from astrocytes, where the bulk of anaerobic lactate is formed, to neurons, where lactate is being utilized aerobically to support recovery of function after hypoxia. These results unequivocally validate that brain lactate is an obligatory aerobic energy substrate for posthypoxia recovery of function.  相似文献   

7.
目的:探讨迷走神经在远隔缺血后处理减轻大鼠心肺复苏后脑损伤中的作用。方法:雄性SD大鼠70只,随机分5组:假手术组(sham组,n=10);模型组(CA组,n=15),远隔缺血后处理组(RIPost组,n=15),远隔缺血后处理+迷走神经切断组(RIPost+VAG组,n=15),迷走神经切断组(VAG组,n=15)。ELISA法检测ROSC 24 h神经元特异性烯醇化酶(NSE)、乙酰胆碱(Ach)、IL-1β和TNF-α浓度;ROSC 24h NSE免疫荧光染色;ROSC 1d及3d神经功能缺损评分(NDS);ROSC 5d Nissl染色计算海马CA1区神经元数目。结果:与sham组相比,各组海马CA1区NSE、IL-1β和TNF-α含量升高,而Ach浓度降低,NDS评分和海马CA1区存活神经元数目降低(P0.05);与CA组相比,RIPost组海马CA1区NSE、IL-1β和TNF-α含量降低,Ach浓度升高,NDS评分和海马CA1区存活神经元数目升高(P0.05),而RIPost+VAG组及VAG组各项指标与其差异无统计学意义(P0.05);与RIPost组相比,RIPost+VAG组海马CA1区NSE、IL-1β和TNF-α含量升高,Ach浓度降低,NDS评分和海马CA1区存活神经元数目降低(P0.05)。结论:迷走神经的完整性在远隔缺血后处理减轻大鼠心肺复苏后脑损伤中具有重要意义。  相似文献   

8.
为阐明水痘-带状疱疹病毒济南分离株(VZVJ1)在兔脑神经细胞(RNC)中的形态与形态发生特征,我们利用超薄切片电子显微镜技术对感染VZVJ1的RNC进行了观察研究。结果表明:RNC在感染VZVJ1 6h后核内右见散在的核衣壳,12h后细胞核和细胞质内核衣壳明显增多,24h达高峰,而细胞核和细胞质内的成熟病毒颗粒较少见,病毒大小、形态基本一致,呈圆形或椭圆形,核心直径30-50nm,核衣壳74-96nm,成熟病毒110-180nm。核衣壳内有3种类型的核心,即电子致密核心、部分致密核心和电子透明核心,细胞核和细胞质内均可见核心样电子致密体和布纹样结构,在细胞质仙还可见少量“繁残复合体”,由膜性结构包绕多个囊泡构成,提示VZVJ1在RNC中的形态发生不同于其它性质的细胞。  相似文献   

9.
Subcellular fractionation of rabbit optic nerve resolves three populations of membranes that are rapidly labelled in the axon. The lightest membranes are greater than 200 nm and are relatively immobile. The intermediate density membranes consist of 84 nm vesicles which disappear from the nerve with kinetics identical to those of the rapid component. A third population of membranes, displaying a distinct protein profile, is present in the most dense region of the gradient. Immunological characterization of these membranes suggests the following. (1) The lightest peak contains rapidly transported glucose transporter and most of the total glucose transporters present in the nerve; this peak is therefore enriched in axolemma. (2) The intermediate peak contains rapidly transported glucose transporters and synaptophysin, an integral synaptic vesicle protein, and about half of the total synaptophysin; this peak therefore contains transport vesicles bound for both the axolemma and the nerve terminal, and these subpopulations can be separated by immunoadsorption with specific antibodies against the aforementioned proteins. (3) The heaviest peak contains rapidly transported synaptophysin and tachykinin neuromodulators and about half of the total synaptophysin, and 80% of the total tachykinins present in the nerve; this peak appears to represent a class of synaptic vesicle precursor bound for the nerve terminal exclusively. (4) Synaptophysin is present in the membranes of vesicles carrying tachykinins. (5) Both the intermediate and the heaviest peaks are enriched in kinesin heavy chain, suggesting that both vesicle classes may be transported by the same mechanism.  相似文献   

10.
Abstract: Acetyltransferase enzymatic activity was detected and measured in homogenates obtained from intact nerve fibers and their separate cellular components, in the tropical squid Sepioteuthis sepioidea. The levels of acetylcholine synthesis were determined in pooled samples of whole stellar nerve, intact giant nerve fiber, extruded axoplasm, axoplasm-free giant nerve fiber sheaths, and small nerve fibers. The values found per mg of protein for the axoplasm-free sheaths are about 3–9 times those of the extruded axoplasm, and comparable to those found for the intact giant nerve fiber. These experimental findings settle the question of whether the Schwann cells of the giant nerve fiber of S. sepioidea , under physiological conditions, contain acetyltransferase activity and are able to synthesize acetylcholine.  相似文献   

11.
12.
目的:探讨颈部低度迷走神经刺激对老年房颤患者血清C 反应蛋白(CRP)、肿瘤坏死因子-alpha(TNF-alpha)及基质金属蛋白酶-9 (MMP-9)、基质金属蛋白酶抑制剂-1(TIMP-1)的影响。方法:选取我院收治的老年房颤患者126 例,根据治疗方法的不同分为两 组。对照组63 例,予常规治疗,日1 次,7 天为1 个疗程,治疗2 个疗程;实验组63 例,在对照组的基础上加以颈部低度迷走神经 刺激术。治疗后,观察并比较两组患者的CRP、TNF-alpha及MMP-9、TIMP-1 的变化情况。结果:治疗后,两组患者的血清CRP、TNF -alpha、MMP-9及TIMP-1 均较治疗前显著降低,且实验组显著低于对照组,差异均有统计学意义(P<0.05)。实验组治疗后6个月内房 颤的发生率显著降低,差异均有统计学意义(P<0.05)。结论:颈部低度迷走神经刺激能够有效降低老年房颤患者的复发率,这可能 与其降低血清CRP、TNF-alpha,MMP-9、TIMP-1 的水平有关。  相似文献   

13.
Inositol phospholipid metabolism during mitogen-induced Schwann cell proliferation has been examined. Addition of axolemma- and myelin-enriched membrane fractions (AXL and MYE, respectively) to cultured Schwann cells stimulated 32P incorporation into phosphatidylinositol 4-monophosphate [PtdIns(4)P] and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]. During the first 5 min of incubation with the mitogens, the amount of 32P incorporated into PtdIns(4)P and PtdIns(4,5)P2 was four- to fivefold above control values. The phosphorylation of the inositol phospholipids was dependent on the concentration of membrane mitogens and was maximal within 1 h. Schwann cells that were prelabeled with [3H]glycerol and then stimulated with AXL and MYE displayed a 30-70% increase in the amounts of [3H]PtdIns(4)P and [3H]PtdIns(4,5)P2 and a 60-80% increase in the amount of [3H]phosphatidic acid. A concomitant 20% decrease in the content of [3H]PtdIns was observed after stimulation. These results suggest that the increased metabolism of PtdIns, PtdIns(4)P, and PtdIns(4,5)P2 may be one of the initial molecular events in the transduction of the mitogenic signal across the Schwann cell plasma membrane.  相似文献   

14.
The effects of muscarinic agonists and depolarizing agents on inositol phospholipid hydrolysis in the rabbit vagus nerve were assessed by the measurement of [3H]inositol monophosphate production in nerves that had been preincubated with [3H]inositol. After 1 h of drug action, carbachol, oxotremorine, and arecoline increased the inositol monophosphate accumulation, though the maximal increase induced by these agonists differed. Addition of the muscarinic antagonists atropine or pirenzepine shifted the carbachol dose-response curves to the right, without decreasing the carbachol maximal stimulatory effects. The KB for pirenzepine was 35 nM, which is characteristic of muscarinic high-affinity binding sites coupled to phosphoinositide turnover and often associated with the M1 receptor subtype. On the other hand, agents known to depolarize or to increase the intracellular Ca2+ concentration, e.g., elevated extracellular K+, ouabain, Ca2+, and the Ca2+ ionophore A23187, also increased inositol monophosphate accumulation. These effects were not mediated by the release of acetylcholine, as suggested by the fact that they could not be potentiated by the addition of physostigmine nor inhibited by the addition of atropine. The Ca(2+)-channel antagonist Cd2+, also known to inhibit the Na+/Ca2+ exchanger, was able to block the effects of K+ and ouabain, but did not alter those of carbachol. These results suggest that depolarizing agents increase inositol monophosphate accumulation in part through elevation of the intracellular Ca2+ concentration and that muscarinic receptors coupled to phosphoinositide turnover are present along the trunk of the rabbit vagus nerve.  相似文献   

15.
Abstract: A culture of peripheral nerve cells, very rich in Schwann cells, was developed from sciatic nerve. In both normal and Trembler, typical spindle-shaped cells were seen; most of the cells were surrounded by basement membrane-like material (predominantly in-between adjacent cells). In Trembler cells, cultivated in the presence of labelled acetate, the fatty acids were slightly altered; phosphatidylcholine was slightly reduced and phosphatidyl-ethanolamine increased. Sulfatides were increased four times.  相似文献   

16.
The Expression of Nerve Growth Factor Receptor on Schwann Cells and the Effect of These Cells on Regeneration of Axons in Tra...  相似文献   

17.
Substance P (SP), the widely distributed undecapeptide, is synthesized in cell bodies of vagal sensory ganglia and transported bidirectionally toward the CNS and thoracic and abdominal viscera. In explants of the guinea pig inferior (nodose) vagal sensory ganglion and attached 2 cm of distal vagus nerve, SP is synthesized within the ganglion and transported predominantly distally. The quantity of distal transport is similar to that observed in vivo and provides an index of ongoing synthesis within the ganglion. In this report, the model is further characterized. Double ligation of the explant distal to the ganglion demonstrates that all the transported peptide is derived from the ganglion; there is no evidence of intraaxonal processing of peptide precursor. Approximately 50% of the peptide is in a rapid transport vs. an apparent stationary compartment. Not only transport, but also synthesis, of SP was blocked by 20 mM colchicine. Ongoing SP biosynthesis is dependent on a nutrient medium [medium 199 (M-199)] and is partially inhibited with added fetal bovine serum (FBS; 10%): total explant content in M-199/FBS vs. M-199, 1,785 +/- 101 (n = 8) vs. 2,254 +/- 123 pg (n = 9); p less than 0.02. Addition of 2-deoxyglucose (2-DG) decreased both total SP synthesis and transport (total explant content for 2-DG vs. control, 986 +/- 94 vs. 1,391 +/- 111; p less than 0.05). Medium supplemented with glucose to a final concentration of 600 mg/100 ml or with glucose (300 mg/100 ml) with or without insulin (50 ng/ml) did not alter explant SP content or transport. Veratridine (5 X 10(-6) M) inhibited both SP synthesis and transport; ouabain (10(-4) M) also inhibited synthesis, but less so transport. Tetrodotoxin reversed the effects of veratridine. These studies demonstrate the usefulness of this model, which can examine factors regulating both synthesis and transport of sensory neuropeptides in vitro. The results suggest that SP synthesis/transport may be under tonic inhibition, perhaps by both neural and humoral mechanisms.  相似文献   

18.
Abstract: Free sterol composition of the developing rabbit optic nerve was compared with that of the homologous cerebral white matter at corresponding stages of ontogeny. The sterols were detected and identified by means of combined gas-chromatography and mass spectrometry. The following free sterols were found in both the optic nerve and cerebral white matter: cholesterol, desmosterol, lanosterol, two dimethylsterols, which are probably 4,4-dimethyl-5α-cholest-8,24-diene-3β-ol, with a molecular weight of 412, and 4α,14α-dirnethyl-5α-cholest-7-ene-3β-ol, with a molecular weight of 414 and probably cholestene, with a molecular weight of 368. The sterol spectrum of the developing optic nerve differed not only from that of the mature nerve but also from that of age-matched white matter of the rabbit brain. The tri- and dimethyl-sterols, detected for the first time in the rabbit optic nerve and cerebral white matter, are natural components of the developing nervous tissue but they were not found in the mature nerve nor in cerebral white matter.  相似文献   

19.
Calmodulin-binding proteins (CBPs) in the rabbit vagus nerve were studied by means of calmodulin-Sepharose affinity chromatography and polyacrylamide gel electrophoresis. The soluble fraction (10(5) g supernatant) of a nerve homogenate contained four CBPs with molecular weights of 44, 55, 91, and 93 kD, respectively. Slowly transported proteins were recovered in the vagus 3 days after injection of [35S]methionine into the nodose ganglion. Four labelled CBPs with molecular weights of 44, 55, 69, and 83 kD, respectively were found. The nodose ganglion contained two labelled CBPs, 44 and 55 kD. The 55-kD CBP was identified as tubulin after immunoblotting. In separate experiments it was also shown that bovine brain tubulin bound to the calmodulin column.  相似文献   

20.
Two experiments were carried out on ewes with ovarian autotransplants to estimate the ovarian uptake of glucose and production of lactate. The first was carried out in the luteal phase of the oestrous cycle. Samples of carotid arterial, ovarian venous and jugular venous blood were collected simultaneously for glucose analysis. The arterial concentration of glucose (58.0 ± 5.0 mg/dL; Mean ± SEM) was significantly higher than the ovarian venous concentration (42.3 ± 2.4 mg/dL; P < 0.001). Next, a second more complete experiment was carried out in the luteal and follicular phases of the oestrous cycle. The oestrous cycle was synchronised and samples of carotid arterial, ovarian venous and jugular venous blood were collected simultaneously for glucose and lactate analysis. There were significant positive arterio-venous differences in the concentration of glucose in the luteal (5.6 ± 1.2 mg/dL, mean ± SEM; P = 0.001), early (3.1 ± 0.82 mg/d; P = 0.003) and late follicular (6.4 ± 1.3 mg/dL; P = 0.001) phases of the oestrous cycle. There was a significant negative arterio-ovarian venous difference in the concentration of lactate in only the luteal phase (-2.2 ± 0.96 mg/dL; P = 0.043).The results show significant removal of glucose from the arterial circulation during its passage through the ovary in the luteal, early follicular and late follicular phases of the oestrous cycle. Furthermore, there was lactate production in the luteal phase but not in the follicular phase suggesting that in the luteal phase of the oestrous cycle, ovarian metabolism can be anaerobic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号