首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Na+/H+ antiporters are pH-dependent membrane transport proteins that maintain the homeostasis of H+ and Na+ in living cells. MjNhaP1 from Methanococcus jannaschii, a hyperthermophilic archaeon that grows optimally at 85 degrees C, was cloned and expressed in Escherichia coli. Two-dimensional crystals were obtained from purified protein at pH 4. Electron cryomicroscopy yielded an 8 A projection map. Like the related E. coli antiporter NhaA, MjNhaP1 is a dimer, but otherwise the structures of the two antiporters differ significantly. The map of MjNhaP1 shows elongated densities in the centre of the dimer and a cluster of density peaks on either side of the dimer core, indicative of a bundle of 4-6 membrane-spanning helices. The effect of pH on the structure of MjNhaP1 was studied in situ. A major change in density distribution within the helix bundle, and an approximately 2 A shift in the position of the helix bundle relative to the dimer core occurred at pH 6 and above. The two conformations at low and high pH most likely represent the closed and open states of the antiporter.  相似文献   

2.
E. D?afi?  P. Goswami  W. Mäntele 《BBA》2009,1787(6):730-737
In this study, structural, functional, and mechanistic properties of the Na+/H+ antiporter MjNhaP1 from Methanococcus jannaschii were analyzed by infrared spectroscopic techniques. Na+/H+ antiporters are generally responsible for the regulation of cytoplasmic pH and Na+ concentration. MjNhaP1 is active in the pH range between pH 6 and pH 6.5; below and above it is inactive.The secondary structure analysis on the basis of ATR-IR spectra provides the first insights into the structural changes between inactive (pH 8) and active (pH 6) state of MjNhaP1. It results in decreased ordered structural elements with increasing the pH-value i.e. with inactivation of the protein. Analysis of temperature-dependent FTIR spectra indicates that MjNhaP1 in the active state exhibits a much higher unfolding temperature in the spectral region assigned to α-helical segments. In contrast, the temperature-induced structural changes for β-sheet structure are similar for inactive and active state. Consequently, this structure element is not the part of the activation region of the protein. The surface accessibility of the protein was analyzed by following the extent of H/D exchange. Due to higher content of unordered structural elements a higher accessibility for amide protons is observed for the inactive as compared to the active state of MjNhaP1. Altogether, the results present the active state of MjNhaP1 as the state with ordered structural elements which exhibit high thermal stability and increased hydrophobicity.  相似文献   

3.
Integral membrane proteins are involved in virtually every cellular process. Precisely regulating these machineries would allow controlling many human and vertebrate diseases. Embedded into cellular membranes, membrane proteins establish molecular interactions that sensitively react to environmental changes and to molecular compounds, such as ligands or inhibitors. We applied atomic force microscopy (AFM) to image the Na(+)/H(+) antiporter MjNhaP1 from Methanococcus jannaschii, and single-molecule force spectroscopy (SMFS) to probe molecular interactions that drive the protein structure-function relationship. High-resolution AFM topographs showed the dimeric assembly of MjNhaP1 being reconstituted into a lipid bilayer. SMFS of MjNhaP1 unraveled molecular interactions stabilizing individual structural domains. Transmembrane domains exhibited certain probabilities to unfold individually or cooperatively with other domains resulting in different unfolding pathways. Helices VIII and X established pH sensitive interactions altering significantly upon MjNhaP1 activation, while removal of the ligand (Na(+)) destabilized the entire antiporter except helix VIII. It is assumed that Asp234/235 of helix VIII are involved in the ligand-binding site and that helix X plays a functional role in the activation of the transporter.  相似文献   

4.
The Na+/H+ antiporter from Helicobacter pylori (HP NhaA) is normally active within the pH range 6.0-8.5. In contrast, the NhaA from Escherichia coli (EC NhaA) is active only within the alkaline pH range 7.5-8.5. We studied structures of HP NhaA involved in ion transport and pH sensing by analyzing mutants with defects in NhaA activity. The 36 mutants were classified into three types. The first type exhibited very low or null activity at all pH levels and had amino acid substitutions in the transmembrane segments (TM) 4, 5, 10, and 11, implicating these TMs in ion transport. The second type, which had amino acid substitutions at Met-138, Phe-144, and Lys-347 in TM 4 and 10, exhibited very low antiporter activity at acidic pH but had significantly higher activity at alkaline pH. These results imply that TM 4 (Met-138 and Phe-144) and 10 (Lys-347) are involved in supporting transport activity at acidic pH, in addition to their essential role in the overall transport mechanism. The third type of mutant exhibited very low antiporter activity at alkaline pH but relatively normal activity at acidic pH and had amino acid substitutions in loop 7 (a hydrophilic region between TM 7 and 8) as well as in TM 8, suggesting that these regions are involved in antiporter activation at alkaline pH. Three revertants that suppress a Lys-347 mutation were identified. Two of three suppressor mutations were located in loops 2 and 4, suggesting a functional interaction between these regions (loops 2 and 4 and TM 10). Thus, HP NhaA activity may be modulated by two independent factors that are dependent on pH: an activation mechanism at acidic pH, which is regulated by residues within TM 4 and 10 and another mechanism functioning at alkaline pH regulated by residues within loop 7 and TM 8.  相似文献   

5.
Na+/H+ antiporters play important roles in ion and pH homeostasis. In this study, two NhaD homologues that effectively catalyze Na+/H+ antiporter were identified from Halomonas sp. Y2, a halotolerant and alkaliphilic strain isolated from sodium enriched black liquor. They exhibited high sequence identity of 72 % and similar binding affinities for Na+ and Li+ translocation, while having different pH profiles. Ha-NhaD1 was active at pH 6.0 and most active at pH 8.0–8.5, whereas Ha-NhaD2 lacked activity at pH 6.0 but exhibited maximum activity at pH 9.5 or higher. Based on multiple alignments, 11 partially conserved residues were selected and corresponding mutants were generated for Ha-NhaD1. As expected, replacement of most of the hydrophobic residues abolished the cation exchange activities. Three serine residues at positions 200, 282 and 353 in Ha-NhaD1 were replaceable by alanines with partial retention of activity. The S353A mutant exhibited significantly reduced binding affinity for Na+ and Li+, while S282 mutant exhibited an alkaline shift of about 1.5 pH units, as compared to the wild type Ha-NhaD1. Serine at position 282 was predicted to be located in transmembrane segment VIII and was found to be important in regulating pH sensitivity in concert with flanking residues.  相似文献   

6.
We examined the structure-function relationships of residues in the fifth transmembrane domain (TM5) of the Na+/H+ antiporter A (NhaA) from Helicobacter pylori (HP NhaA) by cysteine scanning mutagenesis. TM5 contains two aspartate residues, Asp-171 and Asp-172, which are essential for antiporter activity. Thirty-five residues spanning the putative TM5 and adjacent loop regions were replaced by cysteines. Cysteines replacing Val-162, Ile-165, and Asp-172 were labeled with NEM, suggesting that these three residues are exposed to a hydrophilic cavity within the membrane. Other residues in the putative TM domain, including Asp-171, were not labeled. Inhibition of NEM labeling by the membrane impermeable reagent AMS suggests that Val-162 and Ile-165 are exposed to a water filled channel open to the cytoplasmic space, whereas Asp-172 is exposed to the periplasmic space. D171C and D172C mutants completely lost Na+/H+ and Li+/H+ antiporter activities, whereas other Cys replacements did not result in a significant loss of these activities. These results suggest that Asp-171 and Asp-172 and the surrounding residues of TM5 provide an essential structure for H+ binding and Na+ or Li+ exchange. A168C and Y183C showed markedly decreased antiporter activities at acidic pH, whereas their activities were higher at alkaline pH, suggesting that the conformation of TM5 also plays a crucial role in the HP NhaA-specific acidic pH antiporter activity.  相似文献   

7.
In order to delineate regions which play a role in the regulation of Na(+)/H(+) antiporter NhaA activity by pH, we analyzed the antiporter activities of various chimeric mutants constructed from specific portions of NhaA from Escherichia coli and Helicobacter pylori (EC and HP NhaA). HP NhaA contains 10 residues at the amino-terminus, and 38 residues in a loop region between the eighth and ninth transmembrane spans (loop 8), which are absent in EC NhaA. Deletion from HP NhaA or insertion into EC NhaA of the sequences caused almost no change in pH-dependent antiport activities relative to in the case of the wild-type parent molecules. Chimeras consisting of various combinations of the amino-terminal (amino terminus to sixth or eighth transmembrane span) and carboxy-terminal (seventh or ninth transmembrane span to the carboxy-terminus) regions of EC and HP NhaA showed antiporter activity profiles intermediate between those of the parent molecules. These results show that the two HP-specific sequences are not directly involved in the mechanism of pH sensing by HP NhaA and that the pH sensitivity of NhaA activity is not determined by the amino- or carboxy-terminal regions of NhaA alone, but may be due to interaction between unconserved residues in the two domains. In addition, it was suggested that loop 8 functions primarily as a hinge in both NhaA molecules.  相似文献   

8.
The pH dependence of the structure of the main Na(+)/H(+) antiporter NhaA of Escherichia coli is studied by continuous-wave (CW) and pulse electron paramagnetic resonance (EPR) techniques on singly spin-labeled mutants. Residues 225 and 254 were selected for site-directed spin labeling, as previous work suggested that they are situated in domains undergoing pH-dependent structural changes. A well-defined distance of 4.4 nm between residues H225R1 in neighboring molecules is detected by a modulation in double electron-electron resonance data. This indicates that NhaA exists as a dimer, as previously suggested by a low-resolution electron density map and cross-linking experiments. The modulation depth decreases reversibly when pH is decreased from 8 to 5.8. A quantitative analysis suggests a dimerization equilibrium, which depends moderately on pH. Furthermore, the mobility and polarity of the environment of a spin label attached to residue 225 change only slightly with changing pH, while no other changes are detected by CW EPR. As antiporter activity of NhaA changes drastically in the studied pH range, residues 225 and 254 are probably located not in the sensor or ion translocation sites themselves but in domains that convey the signal from the pH sensor to the translocation site.  相似文献   

9.
A functionally important, interface domain between transmembrane segments (TMSs) IV and XI of the NhaA Na+/H+ antiporter of Escherichia coli has been unraveled. Scanning by single Cys replacements identified new mutations (F136C, G125C, and A137C) that cluster in one face of TMS IV and increase dramatically the Km of the antiporter. Whereas G125C, in addition, causes a drastic alkaline shift to the pH dependence of the antiporter, G338C alleviates the pH control of NhaA. Scanning by double Cys replacements (21 pairs of one replacement per TMS) identified genetically eight pairs of residues that showed very strong negative complementation. Cross-linking of the double mutants identified six double mutants (T132C/G338C, D133C/G338C, F136C/S342C, T132C/S342C, A137C/S342C, and A137C/G338C) of which pronounced intramolecular cross-linking defined an interface domain between the two TMSs. Remarkably, cross-linking by a short and rigid reagent (N,N'-o-phenylenedimaleimide) revived the Li+/H+ antiport activity, whereas a shorter reagent (1,2-ethanediyl bismethanethiosulfonate) revived both Na+/H+ and Li+/H+ antiporter activities and even the pH response of the dead mutant T132C/G338C. Hence, cross-linking at this position restores an active conformation of NhaA.  相似文献   

10.
Using in vivo assays, we show that the Na+/H+ antiporter activity of the Escherichia coli mutant HIT-1 is reduced dramatically compared with activity in wild-type cells. An isogenic nhaA (formerly antA) deletion strain, however, is not significantly different from wild type in this respect. We call the locus affecting Na+/H+ antiporter activity of the HIT-1 mutant nhaB. The nhaB activity exhibits no pH dependence in the range between 7.0 and 8.5, whereas that of the nhaA gene increases considerably at pH levels above 8.0. Mutants with defects in nhaB grow normally on agar media containing 0.5 M NaCl, but nhaA mutants are sensitive to 0.5 M NaCl. We have mapped the nhaB mutation of HIT-1 to 25.6 min on the E. coli map. It is unlinked to the nhaA region, which is located at about 0.5 min. Since a cell with a mutation in nhaB alone is essentially Na+/H+ antiporter negative up to pH 8.0, we conclude that nhaB is required for the major Na+/H+ antiporter activity in the usual physiological pH range.  相似文献   

11.
Na(+)/H(+) antiporters are ubiquitous membrane proteins that are involved in homeostasis of H(+) and Na(+) throughout the biological kingdom. Corroborating their role in pH homeostasis, many of the Na(+)/H(+) antiporter proteins are regulated directly by pH. The pH regulation of NhaA, the Escherichia coli Na(+)/H(+) antiporter (EcNhaA), as of other, both eukaryotic and prokaryotic Na(+)/H(+) antiporters, involves a pH sensor and conformational changes in different parts of the protein that transduce the pH signal into a change in activity. Thus, residues that affect the pH response, the translocation or both activities cluster in separate domains along the antiporter molecules. Importantly, in the NhaA family, these domains are conserved. Helix-packing model of EcNhaA based on cross-linking data suggests, that in the three dimensional structure of NhaA, residues that affect the pH response may be in close proximity, forming a single pH sensitive domain. Therefore, it is suggested that, despite considerable differences in the primary structure of the antiporters from the bacterial NhaA to the mammalian NHEs, their three-dimensional architectures are conserved. Test of this possibility awaits the atomic resolution of the 3D structure of the antiporters.  相似文献   

12.
The crystal structure of Escherichia coli NhaA determined at pH 4 has provided insights into the mechanism of activity of a pH-regulated Na+/H+ antiporter. However, because NhaA is activated at physiological pH (pH 5.5–8.5), many questions related to the active state of NhaA have remained elusive. Our experimental results at physiological pH and computational analyses reveal that amino acid residues in transmembrane segment II contribute to the cation pathway of NhaA and its pH regulation: 1) transmembrane segment II is a highly conserved helix and the conserved amino acid residues are located on one side of the helix facing either the cytoplasmic or periplasmic funnels of NhaA structure. 2) Cys replacements of the conserved residues and measuring their antiporter activity in everted membrane vesicles showed that D65C, L67C, E78C, and E82C increased the apparent Km to Na+ and Li+ and changed the pH response of the antiporter. 3) Introduced Cys replacements, L60C, N64C, F71C, F72C, and E78C, were significantly alkylated by [14C]N-ethylmaleimide implying the presence of water-filled cavities in NhaA. 4) Several Cys replacements were modified by MTSES and/or MTSET, membrane impermeant, negatively and positively charged reagents, respectively, that could reach Cys replacements from the periplasm only via water-filled funnel(s). Remarkably, the reactivity of D65C to MTSES increased with increasing pH and chemical modification by MTSES but not by MTSET, decreased the apparent Km of the antiporter at pH 7.5 (10-fold) but not at pH 8.5, implying the importance of Asp65 negative charge for pH activation of the antiporter.  相似文献   

13.
Vibrio cholerae, the causative agent of cholera, is a normal inhabitant of aquatic environments, where it survives in a wide range of conditions of pH and salinity. In this work, we investigated the role of three Na+/H+ antiporters on the survival of V. cholerae in a saline environment. We have previously cloned the Vc-nhaA gene encoding the V. cholerae homolog of Escherichia coli. Here we identified two additional antiporter genes, designated Vc-nhaB and Vc-nhaD, encoding two putative proteins of 530 and 477 residues, respectively, highly homologous to the respective antiporters of Vibrio species and E. coli. We showed that both Vc-NhaA and Vc-NhaB confer Na+ resistance and that Vc-NhaA displays an antiport activity in E. coli, which is similar in magnitude, kinetic parameters, and pH regulation to that of E. coli NhaA. To determine the roles of the Na+/H+ antiporters in V. cholerae, we constructed nhaA, nhaB, and nhaD mutants (single, double, and triple mutants). In contrast to E. coli, the inactivation of the three putative antiporter genes (Vc-nhaABD) in V. cholerae did not alter the bacterial exponential growth in the presence of high Na+ concentrations and had only a slight effect in the stationary phase. In contrast, a pronounced and similar Li+-sensitive phenotype was found with all mutants lacking Vc-nhaA during the exponential phase of growth and also with the triple mutant in the stationary phase of growth. By using 2-n-nonyl-4-hydroxyquinoline N-oxide, a specific inhibitor of the electron-transport-linked Na+ pump NADH-quinone oxidoreductase (NQR), we determined that in the absence of NQR activity, the Vc-NhaA Na+/H+ antiporter activity becomes essential for the resistance of V. cholerae to Na+ at alkaline pH. Since the ion pump NQR is Na+ specific, we suggest that its activity masks the Na+/H+ but not the Li+/H+ antiporter activities. Our results indicate that the Na+ resistance of the human pathogen V. cholerae requires a complex molecular system involving multiple antiporters and the NQR pump.  相似文献   

14.
We have previously shown that the activity of NhaA is regulated by pH and found mutations that affect dramatically the pH dependence of the rate but not the K(m) (for Na(+) and Li(+)) of NhaA. In the present work, we found that helix IV is involved both in ion translocation as well as in pH regulation of NhaA. Two novel types of NhaA mutants were found clustered in trans membrane segment (TMS) IV: One type (D133C, T132C, and P129L) affects the apparent K(m) of NhaA to the cations with no significant effect on the pH profile of the antiporter; no shift of the pH profile was found when the activity of these mutants was measured at saturating Na(+) concentration. In contrast, the other type of mutations (A127V and A127T) was found to affect both the K(m) and the pH dependence of the rate of NhaA whether tested at saturating Na(+) concentration or not. These results imply that residues involved in the ion translocation of NhaA may (A127) or may not (D133, T132, and P129) overlap with those affecting the pH response of the antiporter. All mutants cluster in the N-terminal half of the putative alpha-helix IV, one type on one face, the other on the opposite. Cys accessibility test demonstrated that although D133C is located in the middle of TMS IV, it is inhibited by N-ethylmaleimide and is exposed to the cytoplasm.  相似文献   

15.
The crystal structure of Escherichia coli NhaA determined at pH 4 has provided insights into the mechanism of activity of a pH-regulated Na+/H+ antiporter. However, because NhaA is active at physiological pH (pH 6.5-8.5), many questions related to the active state of NhaA have remained unanswered. Our Cys scanning of the highly conserved transmembrane VIII at physiological pH reveals that (1) the Cys replacement G230C significantly increases the apparent Km of the antiporter to both Na+ (10-fold) and Li+ (6-fold). (2) Variants G223C and G230C cause a drastic alkaline shift of the pH profile of NhaA by 1 pH unit. (3) Residues Gly223-Ala226 line a periplasmic funnel at physiological pH as they do at pH 4. Both were modified by membrane-impermeant negatively charged 2-sulfonatoethyl methanethiosulfonate and positively charged 2-(trimethyl ammonium)-ethylmethanethiosulfonate sulfhydryl reagents that could reach Cys replacements from the periplasm via water-filled funnels only, whereas other Cys replacements on helix VIII were not accessible/reactive to the reagents. (4) Remarkably, the modification of variant V224C by 2-sulfonatoethyl methanethiosulfonate or 2-(trimethyl ammonium)-ethylmethanethiosulfonate totally inhibited antiporter activity, while N-ethyl maleimide modification had a very small effect on NhaA activity. Hence, the size—rather than the chemical modification or the charge—of the larger reagents interferes with the passage of ions through the periplasmic funnel. Taken together, our results at physiological pH reveal that amino acid residues in transmembrane VIII contribute to the cation passage of NhaA and its pH regulation.  相似文献   

16.
The three-dimensional crystal structure of Escherichia coli NhaA determined at pH 4 provided the first structural insights into the mechanism of antiport and pH regulation of a Na(+)/H(+) antiporter. However, because NhaA is activated at physiological pH (pH 6.5-8.5), many questions pertaining to the active state of NhaA have remained open including the structural and physiological roles of helix IX and its loop VIII-IX. Here we studied this NhaA segment (Glu(241)-Phe(267)) by structure-based biochemical approaches at physiological pH. Cysteine-scanning mutagenesis identified new mutations affecting the pH dependence of NhaA, suggesting their contribution to the "pH sensor." Furthermore mutation F267C reduced the H(+)/Na(+) stoichiometry of the antiporter, and F267C/F344C inactivated the antiporter activity. Tests of accessibility to [2-(trimethylammonium)ethyl]methanethiosulfonate bromide, a membrane-impermeant positively charged SH reagent with a width similar to the diameter of hydrated Na(+), suggested that at physiological pH the cytoplasmic cation funnel is more accessible than at acidic pH. Assaying intermolecular cross-linking in situ between single Cys replacement mutants uncovered the NhaA dimer interface at the cytoplasmic side of the membrane; between Leu(255) and the cytoplasm, many Cys replacements cross-link with various cross-linkers spanning different distances (10-18 A) implying a flexible interface. L255C formed intermolecular S-S bonds, cross-linked only with a 5-A cross-linker, and when chemically modified caused an alkaline shift of 1 pH unit in the pH dependence of NhaA and a 6-fold increase in the apparent K(m) for Na(+) of the exchange activity suggesting a rigid point in the dimer interface critical for NhaA activity and pH regulation.  相似文献   

17.
Na+/H+ antiporters comprise a super-family (CPA) of membrane proteins that are found in all kingdoms of life and are essential in cellular homeostasis of pH, Na+ and volume. Their activity is strictly dependent on pH, a property that underpins their role in pH homeostasis. While several human homologues have long been drug targets, NhaA of Escherichia coli has become the paradigm for this class of secondary active transporters as NhaA crystal structure provided insight into the architecture of this molecular machine. However, the mechanism of the strict pH dependence of NhaA is missing. Here, as a follow up of a recent evolutionary analysis that identified a ‘CPA motif’, we rationally designed three E. coli NhaA mutants: D133S, I134T, and the double mutant D133S-I134T. Exploring growth phenotype, transport activity and Li+-binding of the mutants, we revealed that Asp133 does not participate directly in proton binding, nor does it directly dictate the pH-dependent transport of NhaA. Strikingly, the variant I134T lost some of the pH control, and the D133S-Il134T double mutant retained Li+ binding in a pH independent fashion. Concurrent to loss of pH control, these mutants bound Li+ more strongly than the WT. Both positions are in close vicinity to the ion-binding site of the antiporter, attributing the results to electrostatic interaction between these residues and Asp164 of the ion-binding site. This is consistent with pH sensing resulting from direct coupling between cation binding and deprotonation in Asp164, which applies also to other CPA antiporters that are involved in human diseases.  相似文献   

18.
Na(+)/H(+) antiporters are ubiquitous membrane proteins and play an important role in cell homeostasis. We amplified a gene encoding a member of the monovalent cation:proton antiporter-2 (CPA2) family (TC 2.A.37) from the Thermus thermophilus genome and expressed it in Escherichia coli. The gene product was identified as a member of the NapA subfamily and was found to be an active Na(+)(Li(+))/H(+) antiporter as it conferred resistance to the Na(+) and Li(+) sensitive strain E. coli EP432 (DeltanhaA, DeltanhaB) upon exposure to high concentration of these salts in the growth medium. Fluorescence measurements using the pH sensitive dye 9-amino-6-chloro-2-methoxyacridine in everted membrane vesicles of complemented E. coli EP432 showed high Li(+)/H(+) exchange activity at pH 6, but marginal Na(+)/H(+) antiport activity. Towards more alkaline conditions, Na(+)/H(+) exchange activity increased to a relative maximum at pH 8, where by contrast the Li(+)/H(+) exchange activity reached its relative minimum. Substitution of conserved residues D156 and D157 (located in the putative transmembrane helix 6) with Ala resulted in the complete loss of Na(+)/H(+) activity. Mutation of K305 (putative transmembrane helix 10) to Ala resulted in a compromised phenotype characterized by an increase in apparent K(m) for Na(+) (36 vs. 7.6 mM for the wildtype) and Li(+) (17 vs. 0.22 mM), In summary, the Na(+)/H(+) antiport activity profile of the NapA type transporter of T. thermophilus resembles that of NhaA from E. coli, whereas in contrast to NhaA the T. thermophilus NapA antiporter is characterized by high Li(+)/H(+) antiport activity at acidic pH.  相似文献   

19.
A gene encoding a Na(+)/H(+) antiporter was obtained from the genome of Halobacillus aidingensis AD-6(T), which was sequenced and designated as nhaH. The deduced amino acid sequence of the gene was 91% identical to the NhaH of H. dabanensis, and shared 54% identity with the NhaG of Bacillus subtilis. The cloned gene enable the Escherichia coli KNabc cell, which lack all of the major Na(+)/H(+) antiporters, to grow in medium containing 0.2 M NaCl or 10 mM LiCl. The nhaH gene was predicted to encode a 43.5 kDa protein (403 amino acid residues) with 11 putative transmembrane regions. Everted membrane vesicles prepared from E. coli KNabc cells carrying NhaH exhibited Na(+)/H(+) as well as Li(+)/H(+) antiporter activity, which was pH-dependent with the highest activity at pH 8.0, and no K(+)/H(+) antiporter activity was detected. The deletion of hydrophilic C-terminal amino acid residues showed that the short C-terminal tail was vital for Na(+)/H(+) antiporter activity.  相似文献   

20.
Cysteine-scanning mutagenesis was performed from Ser-130 to Leu-160 in the fourth transmembrane domain (TM4) of the Na+/H+ antiporter NhaA from Helicobacter pylori to determine the topology of each residue and to identify functionally important residues. All of the mutants were based on cysteine-less NhaA (Cys-less NhaA), which functions very similarly to the wild-type protein, and were expressed at a level similar to Cys-less NhaA. Discontinuity of [14C]N-ethylmaleimide (NEM)-reactive residues suggested that TM4 comprises residues Gly-135 to Val-156. Even within TM4, NEM reactivity was high for I136C, D141C to A143C, L146C, M150C, and G153C to R155C. These residues are thought to be located on one side of the -helical structure of TM4 and to face a putative water-filled channel. Pretreatment of intact cells with membrane-impermeable maleimide did not inhibit [14C]NEM binding to the NEM-reactive residues within TM4, suggesting that the putative channel opens toward the cytoplasm. NEM reactivity of the A143C mutant was significantly inhibited by Li+. The T140C and D141C mutants showed lower affinity for Na+ and Li+ as transport substrates, but their maximal antiporter velocities (Vmax) were relatively unaffected. Whereas the I142C and F144C mutants completely lost their Li+/H+ antiporter activity, I142C had a lower Vmax for the Na+/H+ antiporter. F144C exhibited a markedly lower Vmax and a partially reduced affinity for Na+. These results suggest that Thr-140, Asp-141, and Phe-144 are located in the end portion of a putative water-filled channel and may provide the binding site for Na+, Li+, and/or H+. Furthermore, residues Ile-142 to Phe-144 may be important for the conformational change that accompanies ion transport in NhaA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号