首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Haemadin is a 57-amino acid thrombin inhibitor from the land-living leech Haemadipsa sylvestris, whose structure has recently been determined in complex with human alpha-thrombin. Here we communicate the effect of ionic strength on the kinetics of the inhibition of human alpha-thrombin by haemadin, by using thrombin mutants modified in exosite II. Data analysis has allowed both the ionic and nonionic binding contributions to be ascertained, with the nonionic component being virtually the same for all of the thrombins that have been examined, while the ionic binding energy contributions varied from molecule to molecule. In the case of the native human alpha-thrombin-haemadin complex, ionic interactions contribute -17 kJ/mol to the Gibbs free energy of binding, this being the equivalent of up to six salt bridges. These salt bridges make up 20% of the total binding energy at zero ionic strength, and this has been attributed to the C-terminal tail alone. In addition, the contributions of the N-terminal and C-terminal regions of haemadin to its tight binding have been ascertained by using derivatives of both haemadin and thrombin. Limited proteolysis using formic acid produced haemadin cleaved between residues 40 and 41, removing the majority of the C-terminal tail. This truncated haemadin displayed a 20000-fold reduced affinity for thrombin, and was no longer a tight binding inhibitor. A form of thrombin in which the active site serine has been blocked by diisopropyl fluorophosphate binds to haemadin, but with a 72000-fold reduced affinity, indicating that the N-terminus is more important than the C-terminus for strong binding.  相似文献   

2.
Crystal structure of the complex between porcine beta-trypsin and the second domain of the Kazal-type ovomucoid turkey egg white trypsin inhibitor (OMTKY2) has been determined at 1.9A resolution. A peptide fragment from the first domain has been crystallized with the complex. Restrained-refinement of the structure led to an R-factor of 0.19 for the 32206 reflections. OMTKY2 exhibits the canonical Kazal-type fold with a central alpha-helix and a short two-stranded anti-parallel beta-sheet. The carbonyl carbon of the reactive site prefers trigonal geometry. The reactive site loop geometry of the inhibitor is complementary to the surface and charge of the binding site in beta-trypsin.  相似文献   

3.
The cytosolic isoform XIII is a recently discovered member of the human carbonic anhydrase (hCA, EC 4.2.1.1) family. It is selectively expressed among other tissues in the reproductive organs, where it may control pH and ion balance regulation, ensuring thus proper fertilization conditions. The authors report here the X-ray crystallographic structure of this isozyme in the unbound state and in complex with a classical sulfonamide inhibitor, namely acetazolamide. A detailed comparison of the obtained structural data with those already reported for other CA isozymes provides novel insights into the catalytic properties of the members of this protein family. On the basis of the inhibitory properties of acetazolamide against various cytosolic/transmembrane isoforms and the structural differences detected within the active site of the various CA isoforms, further prospects for the design of isozyme-specific CA inhibitors are here proposed.  相似文献   

4.
Human thymidine phosphorylase (HTP), also known as platelet-derived endothelial cell growth factor (PD-ECGF), is overexpressed in certain solid tumors where it is linked to poor prognosis. HTP expression is utilized for certain chemotherapeutic strategies and is also thought to play a role in tumor angiogenesis. We determined the structure of HTP bound to the small molecule inhibitor 5-chloro-6-[1-(2-iminopyrrolidinyl) methyl] uracil hydrochloride (TPI). The inhibitor appears to mimic the substrate transition state, which may help explain the potency of this inhibitor and the catalytic mechanism of pyrimidine nucleotide phosphorylases (PYNPs). Further, we have confirmed the validity of the HTP structure as a template for structure-based drug design by predicting binding affinities for TPI and other known HTP inhibitors using in silico docking techniques. This work provides the first structural insight into the binding mode of any inhibitor to this important drug target and forms the basis for designing novel inhibitors for use in anticancer therapy.  相似文献   

5.
BACE2 is a membrane-bound aspartic protease of the A1 family with a high level of sequence homology to BACE1. While BACE1 is involved in the generation of amyloid plaques in Alzheimer's disease by cleaving Abeta-peptides from the amyloid precursor protein, the physiological function of BACE2 is not well understood. BACE2 appears to be associated with the early onset of dementia in patients with Down's syndrome, and it has been shown to be highly expressed in breast cancers. Further, it may participate in the function of normal and abnormal processes of human muscle biology. Similar to other aspartic proteases, BACE2 is expressed as an inactive zymogen requiring the cleavage of its pro-sequence during the maturation process. We have produced mature BACE2 by expression of pro-BACE2 in Escherichia coli as inclusion bodies, followed by refolding and autocatalytic activation at pH 3.4. Using a C and N-terminally truncated BACE2 variant, we were able to crystallize and determine the crystal structure of mature BACE2 in complex with a hydroxyethylamine transition-state mimetic inhibitor at 3.1 angstroms resolution. The structure of BACE2 follows the general fold of A1 aspartic proteases. However, similar to BACE1, its C-terminal domain is significantly larger than that of the other family members. Furthermore, the structure of BACE2 reveals differences in the S3, S2, S1' and S2' active site substrate pockets as compared to BACE1, and allows, therefore, for a deeper understanding of the structural features that may facilitate the design of selective BACE1 or BACE2 inhibitors.  相似文献   

6.
Matrix metalloproteinases (MMPs) and their inhibitors are important in connective tissue re-modelling in diseases of the cardiovascular system, such as atherosclerosis. Various members of the MMP family have been shown to be expressed in atherosclerotic lesions, but MMP9 is consistently seen in inflammatory atherosclerotic lesions. MMP9 over-expression is implicated in the vascular re-modelling events preceding plaque rupture (the most common cause of acute myocardial infarction). Reduced MMP9 activity, either by genetic manipulation or through pharmacological intervention, has an impact on ventricular re-modelling following infarction. MMP9 activity may therefore represent a key mechanism in the pathogenesis of heart failure. We have determined the crystal structure, at 2.3 A resolution, of the catalytic domain of human MMP9 bound to a peptidic reverse hydroxamate inhibitor as well as the complex of the same inhibitor bound to an active-site mutant (E402Q) at 2.1 A resolution. MMP9 adopts the typical MMP fold. The catalytic centre is composed of the active-site zinc ion, co-ordinated by three histidine residues (401, 405 and 411) and the essential glutamic acid residue (402). The main differences between the catalytic domains of various MMPs occur in the S1' subsite or selectivity pocket. The S1' specificity site in MMP9 is perhaps best described as a tunnel leading toward solvent, as in MMP2 and MMP13, as opposed to the smaller pocket found in fibroblast collagenase and matrilysin. The present structure enables us to aid the design of potent and specific inhibitors for this important cardiovascular disease target.  相似文献   

7.
The 3D structure of human factor VIIa/soluble tissue factor in complex with a peptide mimetic inhibitor, propylsulfonamide-D-Thr-Met-p-aminobenzamidine, is determined by X-ray crystallography. As compared with the interactions between thrombin and thrombin inhibitors, the interactions at S2 and S3 sites characteristic of factor VIIa and factor VIIa inhibitors are revealed. The S2 site has a small pocket, which is filled by the hydrophobic methionine side chain in P2. The small S3 site fits the small size residue, D-threonine in P3. The structural data and SAR data of the peptide mimetic inhibitor show that these interactions in the S2 and S3 sites play an important role for the improvement of selectivity versus thrombin. The results will provide valuable information for the structure-based drug design of specific inhibitors for FVIIa/TF.  相似文献   

8.
Matrix metalloproteinase 13 (MMP13) is a key enzyme implicated in the degradation of the extracellular matrix in osteoarthritis. Clinical administration of broad spectrum MMP inhibitors such as marimastat has been implicated in severe musculo-skeletal side effects. Consequently, research has been focused on designing inhibitors that selectively inhibit MMP13, thereby circumventing musculo-skeletal toxicities. A series of pyrimidine dicarboxamides were recently shown to be highly selective inhibitors of MMP13 with a novel binding mode. We have applied a molecular ruler to this exosite by dual inhibition studies involving a potent dicarboxamide in the presence of two metal chelators of different sizes. A larger hydroxamate mimic overlaps and antagonizes binding of the dicarboxamide to the exosite whereas the much smaller acetohydroxamate synergizes with the dicarboxamide. These studies elucidate the steric requirement for compounds that fit exclusively into the active site, a mandate for generating highly selective MMP13 inhibitors.  相似文献   

9.
Makino M  Sawai H  Shiro Y  Sugimoto H 《Proteins》2011,79(4):1143-1153
Cytoglobin (Cgb) is a vertebrate heme‐containing globin‐protein expressed in a broad range of mammalian tissues. Unlike myoglobin, Cgb displays a hexa‐coordinated (bis‐hystidyl) heme iron atom, having the heme distal His81(E7) residue as the endogenous sixth ligand. In the present study, we crystallized human Cgb in the presence of a reductant Na2S2O4 under a carbon monoxide (CO) atmosphere, and determined the crystal structure at 2.6 Å resolution. The CO ligand occupies the sixth axial position of the heme ferrous iron. Eventually, the imidazole group of His81(E7) is expelled from the sixth position and swings out of the distal heme pocket. The flipping motion of the His81 imidazole group accompanies structural readjustments of some residues (Gln62, Phe63, Gln72, and Ser75) in both the CD‐corner and D‐helix regions of Cgb. On the other hand, no significant structural changes were observed in other Cgb regions, for example, on the proximal side. These structural alterations that occurred as a result of exogenous ligand (CO) binding are clearly different from those observed in other vertebrate hexa‐coordinated globins (mouse neuroglobin, Drosophila melanogaster hemoglobin) and penta‐coordinated sperm whale myoglobin. The present study provides the structural basis for further discussion of the unique ligand‐binding properties of Cgb. Proteins 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

10.
Whereas eubacterial and eukaryotic riboflavin synthases form homotrimers, archaeal riboflavin synthases from Methanocaldococcus jannaschii and Methanothermobacter thermoautrophicus are homopentamers with sequence similarity to the 6,7-dimethyl-8-ribityllumazine synthase catalyzing the penultimate step in riboflavin biosynthesis. Recently it could be shown that the complex dismutation reaction catalyzed by the pentameric M. jannaschii riboflavin synthase generates riboflavin with the same regiochemistry as observed for trimeric riboflavin synthases. Here we present crystal structures of the pentameric riboflavin synthase from M. jannaschii and its complex with the substrate analog inhibitor, 6,7-dioxo-8-ribityllumazine. The complex structure shows five active sites located between adjacent monomers of the pentamer. Each active site can accommodate two substrate analog molecules in anti-parallel orientation. The topology of the two bound ligands at the active site is well in line with the known stereochemistry of a pentacyclic adduct of 6,7-dimethyl-8-ribityllumazine that has been shown to serve as a kinetically competent intermediate. The pentacyclic intermediates of trimeric and pentameric riboflavin synthases are diastereomers.  相似文献   

11.
Crystal structure of the human TbetaR2 ectodomain--TGF-beta3 complex   总被引:4,自引:0,他引:4  
Transforming growth factor-beta (TGF-beta) is the prototype of a large family of structurally related cytokines that play key roles in maintaining cellular homeostasis by signaling through two classes of functionally distinct Ser/Thr kinase receptors, designated as type I and type II. TGF-beta initiates receptor assembly by binding with high affinity to the type II receptor. Here, we present the 2.15 A crystal structure of the extracellular ligand-binding domain of the human TGF-beta type II receptor (ecTbetaR2) in complex with human TGF-beta3. ecTbetaR2 interacts with homodimeric TGF-beta3 by binding identical finger segments at opposite ends of the growth factor. Relative to the canonical 'closed' conformation previously observed in ligand structures across the superfamily, ecTbetaR2-bound TGF-beta3 shows an altered arrangement of its monomeric subunits, designated the 'open' conformation. The mode of TGF-beta3 binding shown by ecTbetaR2 is compatible with both ligand conformations. This, in addition to the predicted mode for TGF-beta binding to the type I receptor ectodomain (ecTbetaR1), suggests an assembly mechanism in which ecTbetaR1 and ecTbetaR2 bind at adjacent positions on the ligand surface and directly contact each other via protein--protein interactions.  相似文献   

12.
13.
  1. Download : Download high-res image (209KB)
  2. Download : Download full-size image
  相似文献   

14.
E-64, 1-(L-trans-epoxysuccinylleucylamino)-4-guanidinobutane, is a potent and highly selective irreversible inhibitor of cysteine proteases. The crystal structure of a complex of actinidin and E-64 has been determined at 1.86-A resolution by using the difference Fourier method and refined to an R-factor of 14.5%. The electron density map clearly shows that the C2 atom of the E-64 epoxide ring is covalently bonded to the S atom of the active-site cysteine 25. The charged carboxyl group of E-64 forms four H-bonds with the protein and thus may play an important role in favorably positioning the inhibitor molecule for nucleophilic attack by the active-site thiolate anion. The interaction features between E-64 and actinidin are very similar to those seen in the papain-E-64 complex; however, the amino-4-guanidinobutane group orients differently. The crystals of the actinidin-E-64 complex diffracted much better than the papain-E-64 complex, and consequently the present study provides more precise geometrical information on the binding of the inhibitor. Moreover, this study provides yet another confirmation that the binding of E-64 is at the S subsites and not at the S' subsites as has been previously proposed. The original actinidin structure has been revised using the new cDNA sequence information.  相似文献   

15.
Reduced pteridines are required for a number of important cellular functions. Trypanosomatid parasites, unlike their mammalian hosts, are pteridine auxotrophs and salvage the precursor pteridines from the host and reduce them to the respective biologically active tetrahydro forms using parasite-encoded enzymes. These enzymes may offer selective drug targets. In Leishmania, pteridine reductase 1 (PTR1), the primary enzyme for reducing pterins, is also responsible for resistance to antifolate drugs. Typically, PTR1 is more active with fully oxidized biopterin and folate than with their reduced counterparts. We have identified an enzyme, TcPTR2 of Trypanosoma cruzi, which though very similar to PTR1 in its primary sequence, can reduce only dihydrobiopterin and dihydrofolate and not oxidized pteridines. The structures of an inhibitor (methotrexate) and a substrate (dihydrofolate) complex of this enzyme demonstrate that the orientation of the substrate and the inhibitor in the active site of TcPTR2 are different from each other. However, the orientation of each ligand is similar to that of the corresponding ligand in Leishmania major PTR1 complexes.  相似文献   

16.
In many vertebrate tissues CD39-like ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) act in concert with ecto-5′-nucleotidase (e5NT, CD73) to convert extracellular ATP to adenosine. Extracellular ATP is a cytotoxic, pro-inflammatory signalling molecule whereas its product adenosine constitutes a universal and potent immune suppressor. Interference with these ectonucleotidases by use of small molecule inhibitors or inhibitory antibodies appears to be an effective strategy to enhance anti-tumour immunity and suppress neoangiogenesis. Here we present the first crystal structures of an NTPDase catalytic ectodomain in complex with the Reactive Blue 2 (RB2)-derived inhibitor PSB-071. In both of the two crystal forms presented the inhibitor binds as a sandwich of two molecules at the nucleoside binding site. One of the molecules is well defined in its orientation. Specific hydrogen bonds are formed between the sulfonyl group and the nucleoside binding loop. The methylphenyl side chain functionality that improved NTPDase2-specificity is sandwiched between R245 and R394, the latter of which is exclusively found in NTPDase2. The second molecule exhibits great in-plane rotational freedom and could not be modelled in a specific orientation. In addition to this structural insight into NTPDase inhibition, the observation of the putative membrane interaction loop (MIL) in two different conformations related by a 10° rotation identifies the MIL as a dynamic section of NTPDases that is potentially involved in regulation of catalysis.  相似文献   

17.
18.
Human macrophage elastase (MMP-12) is a member of the family of matrix metalloproteinases (MMPs) that plays, like other members of the family, an important role in inflammatory processes contributing to tissue remodelling and destruction. In particular, a prominent role of MMP-12 in the destruction of elastin in the lung alveolar wall and the pathogenesis of emphysema has been suggested. It is therefore an attractive therapeutic target. We describe here the crystal structure of the catalytic domain of MMP-12 in complex with a hydroxamic acid inhibitor, CGS27023A. MMP-12 adopts the typical MMP fold and binds a structural zinc ion and three calcium ions in addition to the catalytic zinc ion. The enzyme structure shows an ordered N terminus close to the active site that is identical in conformation with the superactivated form of MMP-8. The S1'-specificity pocket is large and extends into a channel through the protein, which puts MMP-12 into the class of MMPs 3, 8 and 13 with large and open specificity pockets. The two crystallographically independent molecules adopt different conformations of the S1'-loop and its neighbouring loop due to differing crystal packing environments, suggesting that flexibility or the possibility of structural adjustments of these loop segments are intrinsic features of the MMP-12 structure and probably a common feature for all MMPs. The inhibitor binds in a bidentate fashion to the catalytic zinc ion. Its polar groups form hydrogen bonds in a substrate-like manner with beta-strand sIV of the enzyme, while the hydrophobic substituents are either positioned on the protein surface and are solvent-exposed or fill the upper part of the specificity pocket. The present structure enables us to aid the design of potent and selective inhibitors for MMP-12.  相似文献   

19.
Crystal structure of phosphodiesterase 4D and inhibitor complex(1)   总被引:3,自引:0,他引:3  
Lee ME  Markowitz J  Lee JO  Lee H 《FEBS letters》2002,530(1-3):53-58
Cyclic nucleotide phosphodiesterases (PDEs) regulate physiological processes by degrading intracellular second messengers, adenosine-3′,5′-cyclic phosphate or guanosine-3′,5′-cyclic phosphate. The first crystal structure of PDE4D catalytic domain and a bound inhibitor, zardaverine, was determined. Zardaverine binds to a highly conserved pocket that includes the catalytic metal binding site. Zardaverine fills only a portion of the active site pocket. More selective PDE4 inhibitors including rolipram, cilomilast and roflumilast have additional functional groups that can utilize the remaining empty space for increased binding energy and selectivity. In the crystal structure, the catalytic domain of PDE4D possesses an extensive dimerization interface containing residues that are highly conserved in PDE1, 3, 4, 8 and 9. Mutations of R358D or D322R among these interface residues prohibit dimerization of the PDE4D catalytic domain in solution.  相似文献   

20.
Severe neurodegradative brain diseases, like Alzheimer, are tightly linked with proteolytic activity in the human brain. Proteinases expressed in the brain, such as human trypsin IV, are likely to be involved in the pathomechanism of these diseases. The observation of amyloid formed in the brain of transgenic mice expressing human trypsin IV supports this hypothesis. Human trypsin IV is also resistant towards all studied naturally occurring polypeptide inhibitors. It has been postulated that the substitution of Gly193 to arginine is responsible for this inhibitor resistance. Here we report the X-ray structure of human trypsin IV in complex with the inhibitor benzamidine at 1.7 A resolution. The overall fold of human trypsin IV is similar to human trypsin I, with a root-mean square deviation of only 0.5 A for all C(alpha) positions. The crystal structure reveals the orientation of the side-chain of Arg193, which occupies an extended conformation and fills the S2' subsite. An analysis of surface electrostatic potentials shows an unusually strong clustering of positive charges around the primary specificity pocket, to which the side-chain of Arg193 also contributes. These unique features of the crystal structure provide a structural basis for the enhanced inhibitor resistance, and enhanced substrate restriction, of human trypsin IV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号