首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conformational studies have been carried out on hydrogenbonded all-trans cyclic pentapeptide backbone. Application of a combination of grid search and energy minimization on this system has resulted in obtaining 23 minimum energy conformations, which are characterized by unique patterns of hydrogen bonding comprising of β- and γ-turns. A study of the minimum energy conformationsvis-a-vis non-planar deviation of the peptide units reveals that non-planarity is an inherent feature in many cases. A study on conformational clustering of minimum energy conformations shows that the minimum energy conformations fall into 6 distinct conformational families. Preliminary comparison with available X-ray structures of cyclic pentapeptide indicates that only some of the minimum energy conformations have formed crystal structures. The set of minimum energy conformations worked out in the present study can form a consolidated database of prototypes for hydrogen bonded backbone and be useful for modelling cyclic pentapeptides both synthetic and bioactive in nature. This is part XV of the series. Part XIV in this series is Ramakrishnanet al 1987.  相似文献   

2.
3.
A Caflisch  P Niederer  M Anliker 《Proteins》1992,14(1):102-109
A new minimization procedure for the global optimization in cartesian coordinate space of the conformational energy of a polypeptide chain is presented. The Metropolis Monte Carlo minimization is thereby supplemented by a thermalization process, which is initiated whenever a structure becomes trapped in an area containing closely located local minima in the conformational space. The method has been applied to the endogenous opioid pentapeptide methionine enkephalin. Five among 13 different starting conformations led to the same apparent global minimum of an in-house developed energy function, a type II' reverse turn, the central residues of which are Gly-3-Phe-4. A comparison between the ECEPP/2 global minimum conformation of methionine enkephalin and the apparent one achieved by the present method shows that minimum-energy conformations having a certain similarity can be generated by relatively different force fields.  相似文献   

4.
V H Tran  J W Brady 《Biopolymers》1990,29(6-7):977-997
Molecular dynamics simulations have been used to study the motions in vacuum of the disaccharide sucrose. Ensembles of trajectories were calculated for each of the five local minimum energy conformations identified in the adiabatic conformational energy mapping of this molecule. The model sucrose molecules were found to exhibit a variety of motions, although the global minimum energy conformation was found to be dynamically stable, and no transitions away from this structure were observed to occur spontaneously. In all but one of these vacuum trajectories, the intramolecular hydrogen bond between residues was maintained, in accord with recent nmr studies of this molecule in aqueous solution. Considerable flexibility of the furanoid ring was found in the trajectories. No "flips" to the opposite puckering for this ring were found in the simulations starting from the global minimum, although such a transition was observed for a trajectory initiated with one of the higher local minimum energy conformations. Overall, the observed structural fluctuations were consistent with the experimental picture of sucrose as a relatively rigid molecule.  相似文献   

5.
Analogs (di- and trialanine, tetra- and pentapeptide) to the peptide sequence in Group A streptococcus peptidoglycan were synthetized and were used to inhibit the antipeptide portion of peptidoglycan antibodies. The reactions between these peptidoglycan antibodies and peptidoglycan immunodeterminants on whole cells, isolated cell walls, and peptidoglycans were studied by the immunoferritin technique. Of the peptides used, pentapeptide exhibited the highest inhibiting capacity. The nature and distribution of ferritin-labeled immunodeterminants were identical on isolated peptidoglycans and cell walls as well as on both surfaces of either of these materials. A very low capacity of the M-protein amino acid sequence to inhibit the immunoferritin reaction indicated that the ferritin-labeled structures on whole-cell surfaces were the pentapeptide of peptidoglycan and not the M-protein residues.  相似文献   

6.
Semi-empirical quantum chemical calculations at MNDO level of approximations have been carried out on the monosaccharide and disaccharide moiety of bacterial peptidoglycan to determine the energetically favoured conformation of their side groups and the relative orientations of sugar rings. The results have been compared with those obtained from empirical energy calculations. The MNDO results have also been discussed with available experimental data and suggest that a chitin-like structure is not favoured for the glycan moiety of peptidoglycan.  相似文献   

7.
The interactions of a range of synthetic peptidoglycan derivatives with PGRP-Ialpha and PGRP-S have been studied in real-time using surface plasmon resonance. A dissociation constant of K(D) = 62 mum was obtained for the interaction of peptidoglycan recognition protein (PGRP)-Ialpha with the lysine-containing muramyl pentapeptide (compound 6). The normalized data for the lysine-containing muramyl tetra- (compound 5) and pentapeptide (compound 6) showed that these compounds have similar affinities, whereas a much lower affinity for muramyl tripeptide (compound 3) was measured. Similar affinities were obtained when the lysine moiety of the muramyl peptides was replaced by meso-diaminopimelic acid (DAP). Furthermore, the compounds that contained only a stem peptide (pentapeptide, compound 1) and (DAP-PP, compound 2) as well as muramyldipeptide (compound 3) exhibited no binding indicating that the muramyltripeptide (compound 4) is the smallest peptidoglycan fragment that can be recognized by PGRP-Ialpha. Surprisingly, PGRP-S derived significantly higher affinities for the DAP-containing fragments to similar lysine-containing derivatives, and the following dissociation constants were measured: muramylpentapeptide-DAP, K(D) = 104 nm; muramyltetrapeptide-DAP, 92.4 nm; and muramyltripeptide-DAP, 326 nm. The binding profiles were rationalized by using a recently reported x-ray crystal structure of PGRP-Ialpha with the lysine-containing muramyltripeptide (4).  相似文献   

8.
G H Paine  H A Scheraga 《Biopolymers》1986,25(8):1547-1563
The average conformation of Met-enkephalin was determined by using an adaptive, importance-sampling Monte Carlo algorithm (SMAPPS—Statistical Mechanical Algorithm for Predicting Protein Structure). In the calculation, only the backbone dihedral angles (? and ψ) were allowed to vary; i.e., all side-chain (χ) and peptide-bond (ω) dihedral angles were kept fixed at the values corresponding to a low-energy structure of the pentapeptide. The total conformational energy for each randomly generated structure of the polypeptide was obtained by summing over the interaction energies of all pairs of nonbonded atoms of the whole molecule. The interaction energies were computed by the program ECEPP/2 (Empirical Conformational Energy Program for Peptides). Solvent effects were not included in the computation. The calculation was repeated until a total of 10 independent average conformations were established. The regions of conformational space occupied by the average structures were compared with the regions of low conditional free energy obtained by SMAPPS in the first paper of this series. Such a comparison provides an analysis of the capacity of SMAPPS to adjust the Monte Carlo search to regions of highest probability. The results demonstrate that the ability of SMAPPS to focus the Monte Carlo search is excellent. Finally, the 10 independent average conformations and the mean of the 10 average structures were utilized as the initial conformations for a direct energy minimization of the pentapeptide. Of the 11 final energy-minimized structures, three of the conformations were found to be equivalent to the conformation of lowest energy determined previously. In addition, all but two of the remaining energy-minimized structures were found to correspond to one of the two other conformations of high probability obtained in the first paper of this series. These results indicate that a set of independent average conformations can provide a rational, unbiased choice for the initial conformation, to be used in a direct energy minimization of a polypeptide. The final energy-minimized structures consequently constitute a set of low-energy conformations, which include the global energy minimum.  相似文献   

9.
A new model for calculating the solvation energy of proteins is developed and tested for its ability to identify the native conformation as the global energy minimum among a group of thousands of computationally generated compact non-native conformations for a series of globular proteins. In the model (called the WZS model), solvation preferences for a set of 17 chemically derived molecular fragments of the 20 amino acids are learned by a training algorithm based on maximizing the solvation energy difference between native and non-native conformations for a training set of proteins. The performance of the WZS model confirms the success of this learning approach; the WZS model misrecognizes (as more stable than native) only 7 of 8,200 non-native structures. Possible applications of this model to the prediction of protein structure from sequence are discussed.  相似文献   

10.
The latter stages of peptidoglycan biosynthesis in Staphylococci involve the synthesis of a pentaglycine bridge on the epsilon amino group of the pentapeptide lysine side chain. Genetic and biochemical evidence suggest that sequential addition of these glycines is catalyzed by three homologous enzymes, FemX (FmhB), FemA, and FemB. The first protein structure from this family, Staphylococcus aureus FemA, has been solved at 2.1 A resolution by X-ray crystallography. The FemA structure reveals a unique organization of several known protein folds involved in peptide and tRNA binding. The surface of the protein also reveals an L-shaped channel suitable for a peptidoglycan substrate. Analysis of the structural features of this enzyme provides clues to the mechanism of action of S. aureus FemA.  相似文献   

11.
Z P Liu  L M Gierasch 《Biopolymers》1992,32(12):1727-1739
The conformational behavior of a model cyclic pentapeptide--cyclo(Gly-L-Pro-D-Phe-Gly-L-Val)--has been explored through the combined use of in vacuo molecular dynamics simulations and a range of nmr experiments (preceding paper). The molecular dynamics analysis suggests that, despite the conformational constraints imposed by formation of the pentapeptide cycle, this pentapeptide undergoes conformational transitions between various hydrogen-bonded conformations, characterized by low energy barriers. An inverse gamma turn with Pro in position i + 1 and a gamma turn with D-Phe in position i + 1 are two alternatives occurring frequently. Like other DLDDL cyclic pentapeptides, cyclo(Gly-Pro-D-Phe-Gly-Val) is also stabilized by an inverse gamma-turn structure with the beta-branched Val residue in position i + 1, and this hydrogen bond is retained in the different conformational families. The gamma-turn around D-Phe3 and the inverse gamma turn around Val5 are consistent with the nmr observations. 3JNH-CH alpha coupling constants of the all-trans forms were calculated from one of the molecular dynamics trajectories and are comparable to nmr experimental data, suggesting that the conformational states visited during the simulation are representative of the conformational distribution in solution. In addition to the equilibrium among various hydrogen-bonded all-trans conformers, the observation in nmr spectra of two sets of resonances for all peptide protons indicated a slow conformational interconversion of the Gly-Pro peptide bond between trans and cis isomers. The activation energy between these two conformers was determined experimentally by magnetization transfer and was calculated by high temperature constrained molecular dynamics simulation. Both methods yield a free energy of activation of ca. 20 kcal/mol. Furthermore, the free energy of activation is dependent on the direction of rotation of the Gly-Pro peptide bond.  相似文献   

12.
The structure and conformation of the sacculus of bacteria at a scale much larger than just the component disaccharide penta-muropeptide is not well known and is crucially important for the understanding of bacterial growth and cell wall function. By computer simulations, the minimal energy conformations and the energy needed for stretching the component parts were found. The oligosaccharide chain, modeled as (GlcNAc-MurNAc)8 when under no tension, can assumed a variety of nearly iso-energetic conformations. These included a variety of bends and kinks, with the chain forming an irregular random coil. In the most relaxed and minimal energy state, the D-lactyl groups of the MurNAc (N-acetyl muramic acid) residues protruded at about an angle of 90 degrees relative to the D-lactyl groups of their immediate MurNAc neighbors in the same chain. The cell wall penta-muropeptide precursor is identical for Escherichia coli and Bacillus subtilis; it also adopted many conformations, each of an energy almost equal to the global minimum. The cross-bridged structure of the tail-to-tail linkage of disaccharide nona-muropeptide has a second type of association, in addition to the covalent cross-bridge, which has not been considered before. This is the ionic interaction between the free D-Ala and the free amino group of the m-A2 pm. In vivo, when the cross-bridge is stretched (in the computer to simulate growth), this pairing dissociates. The possible biological significance of this is that it exposes the underlying 'tail-to-tail' peptide bond to autolysis and will expose both the ends of the m-A2 pm and the D-AlaD-Ala groups that may then be able to react with nascent penta-muropeptides to form trimers. This suggests a new model for growth of the bacterial cell wall that depends on changes in the chemical conformation of the cross-bridge structure as it comes to bear stress.  相似文献   

13.
The crystal structure of the pentapeptide p-toluene-sulfonyl-(α-aminoisobutyryl)5-methyl ester (Tosyl-(Aib)5-OMe) has been determined in the space group PI. Pentapeptide molecules are folded in the 310 helical conformation and packed together, so as to yield a hydrophobic channel with a minimim diameter of 5.2 Å. The channel contains crystallographically disordered material. This structure provides a model for channel formation by hydrophobic peptide aggregates and should prove useful in studies of alamethicin, suzukacillin and related Aib containing membrane channels. Triclinic (PI) crystals of the pentapeptide are obtained in the presence of LiClO4 in aqueous methanol, whereas crystallization from methanol alone yields crystals in the space group Pbca. The conformations of the peptide in the two crystal forms are very similar and only the molecular packing is dramatically different.  相似文献   

14.
The optimized energies of seven beta-bends, repeating C5 and C7, and right- and left-handed alpha-helical conformations for each of eight tetrapeptides have been computed using empirical methods. Eight tetramers were selected: four helix-forming sequences with hydrophobic residues such as Val, Leu, Ile and Trp, and four helix-breaking sequences with hydrophilic residues such as Asp, Asn and Ser, as determined by their frequency of occurrence in beta turns in proteins. Analysis of the optimized conformations with energies less than or equal to 2.1 kcal/mol from the absolute minimum energy conformer for each tetramer reveals a correlation between low-energy conformations and those predicted from observed protein structures. These results show that energy calculations on small peptide fragments may be usefulin predicting protein structure.  相似文献   

15.
Considerable clinical interest in neuropeptides and peptide hormones has stimulated recent research and development of peptide-based drugs. This process differs from most classical drug discovery procedures because peptide molecules have considerable inherent flexibility. In the present paper, to identify lowest energy and metastable conformers for drug design, and to develop protocols for such studies, conformational search algorithms, incorporating empirical energy calculations, have been applied in the analysis of the peptide oxytocin. Energy minimization in torsion angle space was carried out from a variety of starting conformations, including published structures, in all-atom mode and all with distance constraints for disulphide bond formation. The energy-minimized conformations have been further optimized by a mapping method. Complementary simulations have been performed in united-atom mode and a model representing the effects of water using dummy sites has been developed and tested for this representation. Several of the preferred conformers together with de novo conformations have been used as starting points in molecular dynamics simulations; 28 low potential energy conformations were located at a temperature of 4 K. Conformations are analysed to identify hydrogen bonds, phi-psi angle distributions and the RMS values relative to the X-ray structure of deamino-oxytocin. The modelled structure of lowest energy in the molecular mechanics calculations was also that of least RMS deviation from the crystal structure; whilst structures of lower energy but larger deviation were identified by molecular dynamics techniques. A metastable structure has been identified which satisfies existing criteria for the "active form", and this model is tested by a theoretical residue-substitution technique, to provide clues on the agonist/antagonist relationship at the atomic level.  相似文献   

16.
Peptidoglycan monomer (GlcNAc-MurNAc-L-Ala-D-isoglutamine-meso-diaminopimelic acid-D-Ala-D-Ala), labeled with 14C both in the disaccharide and pentapeptide portions, was incubated with slices of mouse liver, kidney or spleen as well as with mouse and human blood, blood cells plasma and serum. Peptidoglycan monomer was isolated unchanged after incubations with mouse organs and blood cells. However, upon incubation with mouse or human blood, 10-50% of the peptidoglycan monomer underwent hydrolysis to the corresponding disaccharide and pentapeptide. After incubations with plasma and serum more than 90% of the [14C]peptidoglycan monomer was metabolized: about 50% of the administered radioactive dose was recovered in the disaccharide unit and about 35% in the pentapeptide part. These results suggest that in blood, plasma and serum of mouse and man, an N-acetylmuramoyl-L-alanine amidase (mucopeptide amidohydrolase, EC 3.5.1.28) exists which splits the amide bond between the lactyl carboxyl group of the muramyl residue and the amino group of the peptide moiety in the peptidoglycan molecule.  相似文献   

17.
We describe an algorithm which enables us to search the conformational space of the side chains of a protein to identify the global minimum energy combination of side chain conformations as well as all other conformations within a specified energy cutoff of the global energy minimum. The program is used to explore the side chain conformational energy surface of a number of proteins, to investigate how this surface varies with the energy model used to describe the interactions within the system and the rotamer library. Enumeration of the rotamer combinations enables us to directly evaluate the partition function, and thus calculate the side chain contribution to the conformational entropy of the folded protein. An investigation of these conformations and the relationships between them shows that most of the conformations near to the global energy minimum arise from changes in side chain conformations that are essentially independent; very few result from a concerted change in conformation of two or more residues. Some of the limitations of the approach are discussed. Proteins 33:227–239, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
The conformational behavior of the active C-terminal pentapeptide of substance P(SP), pGlu-Phe-Phe-Gly-Leu-Met NH2 [pGlu-SP(7–11)] was investigated using empirical energy calculations. A sequential approach was used to display the specific contribution of each residue to induce stable conformations of the whole pentapeptide. The most stable conformations include the αR helix and some partially helical structures; some conformations with glycyl residue in a C7eq and C7ax configurations (γ and γ turns) are also favoured. Helical conformations provide a good accessibility of side-chains which play an important role in interacting with the receptor. Fully extended structures and β turns are not specially stable. Such helical stable structures would favour a “lock and key” model of binding.  相似文献   

19.
Conformational energy calculations were carried out on penicillin α-and Β-sulfoxides and δ2- and δ3-cephalosporins, in order to identify the structural features governing their biological activity. Results on penicillin Β-sulfoxide indicated that in its favoured conformation, the orientation of the aminoacyl group was different from the one required for biological activity. Penicillin α sulfoxide, like penicillin sulfide, favoured two conformations of nearly equal energies, but separated by a much higher energy barrier. The reduced activity of the sulfoxides despite the nonplanarity of their lactam peptide indicated that the orientations of the aminoacyl and carboxyl groups might also govern biological activity. δ3-cephalosporins favoured two conformations of nearly equal energies, whereas δ2-cephalosporins favoured only one conformation. The lactam peptide was moderately nonplanÄr in the former, but nearly planar in the latter. The differences in the.preferred orientations of the carboxyl group between penicillins and cephalosporins were correlated with the resistance of cephalosporins to penicillinases.  相似文献   

20.
The genome of Bacillus subtilis encodes 16 penicillin-binding proteins (PBPs) involved in the synthesis and/or remodelling of the peptidoglycan during the complex life cycle of this sporulating Gram-positive rod-shaped bacterium. PBP4a (encoded by the dacC gene) is a low-molecular mass PBP clearly exhibiting in vitro DD-carboxypeptidase activity. We have solved the crystal structure of this protein alone and in complex with a peptide (D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine) that mimics the C-terminal end of the Bacillus peptidoglycan stem peptide. PBP4a is composed of three domains: the penicillin-binding domain with a fold similar to the class A beta-lactamase structure and two domains inserted between the conserved motifs 1 and 2 characteristic of the penicillin-recognizing enzymes. The soaking of PBP4a in a solution of D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine resulted in an adduct between PBP4a and a D-alpha-aminopimelyl-epsilon-D-alanine dipeptide and an unbound D-alanine, i.e. the products of acylation of PBP4a by D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine with the release of a D-alanine. The adduct also reveals a binding pocket specific to the diaminopimelic acid, the third residue of the peptidoglycan stem pentapeptide of B. subtilis. This pocket is specific for this class of PBPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号