首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Physical restraint has been associated with increased oxidative damage to lipid, protein, and DNA. The purpose of this experiment was to determine whether physical restraint would further exacerbate oxidative stress in mice fed a selenium (Se) and vitamin E (VE) deficient diet. Three-week-old mice were fed a Torula yeast diet containing adequate or deficient Se and VE. Menhaden oil was added to the deficient diet to impose an additional oxidative stress. After 4 wk feeding, half the mice in each group were restrained for 5 d in well-ventilated conical tubes for 8 h daily. Mice fed the Se and VE deficient diets had increased liver thiobarbituric acid-reactive substance (TBARS) levels and decreased liver glutathione peroxidase (GPX1) activity and α-tocopherol levels. Plasma corticosterone levels were elevated in restrained mice fed the deficient diet compared to unrestrained mice fed the adequate diet. Restraint had no effect on liver TBARS or α-tocopherol levels. Liver GPX1 activity, however, was lower in restrained mice fed the adequate diet. In addition, liver superoxide dismutase (SOD) activity was lower in the restrained mice fed the adequate or deficient diet. Thus, under our conditions, Se and VE deficient diet, but not restraint, increased lipid peroxidation in mice. Restraint, however, decreased antioxidant protection in mice due to decreased activities of GPX1 and SOD enzymes.  相似文献   

2.
The aim of this study was to analyze the effect of high dietary Fe on liver antioxidant status in mice fed a corn-oil-enriched diet. Male Balb/c mice were fed for 3 wk with a standard diet enriched with 5% by weight of corn oil with adequate Fe (FCO diet) or supplemented with 1% carbonyl Fe (FCOFe diet). The control group was fed a standard diet. The high-Fe diet induced a twofold increase of hepatic Fe level. However, an increase of thymic Fe level has been induced solely by dietary fat. The hepatic copper (Cu) level slightly decreased in the FCO diet. In the spleen, the high-Fe diet-induced increase of Fe level was negatively correlated with the Cu level. The antioxidant status was influenced by both dietary fat and Fe. Mice fed corn-oil-enriched diets had a higher concentration of thiobarbituric acid-reactive substances (TBARS), with a greater increase in the FCOFe diet. Fatty acid analysis showed decreased n−3 and n−6/n−3 ratio, particularly in the FCOFe diet. Hepatic Cu/Zn superoxide dismutase (CuZn-SOD) activity was decreased in FCO diet, and Fe supplementation caused a further decrease in the enzyme activity. These results suggest that feeding with corn oil-enriched diet increases oxidative damage by decreasing antioxidant enzyme defense. The high-Fe diet additionally affects the antioxidant defense system, further increasing the tissue's susceptibility to lipid peroxidation. Additionally, both corn-oil- and Fe-enriched diets have increased the Cu requirement in mice.  相似文献   

3.
We estimated the nutritional availability of selenium (Se) in Se-enriched Kaiware radish sprouts (SeRS) by the tissue Se deposition and glutathione peroxidase (GPX) activity of rats administered the sprouts, and examined the effect of SeRS on the formation of aberrant crypt foci (ACF) in the colon of mice administered 1,2-dimethylhydrazine (DMH) to evaluate anti-tumor activity. Male weanling Wistar rats were divided into seven groups and fed a Se-deficient basal diet or the basal diet supplemented with 0.05, 0.10, or 0.15 μg/g of Se as sodium selenite or SeRS for 28 d. Supplementation with Se dose-dependently increased serum and liver Se concentrations and GPX activities, and the selenite-supplemented groups showed a higher increase than the SeRS-supplemented groups. The nutritional availability of Se in SeRS was estimated to be 33 or 64% by slope ratio analysis. Male 4-week-old A/J mice were divided into seven groups and fed a low Se basal diet or the basal diet supplemented with selenite, SeRS, or selenite + non-Se-enriched radish sprouts (NonSeRS) at a level of 0.1 or 2.0 μg Se/g for 9 weeks. After 1 week of feeding, all mice were given six subcutaneous injections of DMH (20 mg/kg) at 1-week intervals. The average number of ACF formed in the colon of mice fed the basal diet was 4.3. At a supplementation level of 0.1 μg Se/g, only SeRS significantly inhibited ACF formation. At a supplementation level of 2.0 μg Se/g, both selenite and SeRS significantly inhibited ACF formation. The addition of NonSeRS to the selenite-supplemented diets tended to inhibit ACF formation, but this was not statistically significant. These results indicate that SeRS shows lower nutritional availability but higher anti-tumor activity than selenite.  相似文献   

4.
We estimated the nutritional availability of selenium (Se) in Se-enriched Kaiware radish sprouts (SeRS) by the tissue Se deposition and glutathione peroxidase (GPX) activity of rats administered the sprouts, and examined the effect of SeRS on the formation of aberrant crypt foci (ACF) in the colon of mice administered 1,2-dimethylhydrazine (DMH) to evaluate anti-tumor activity. Male weanling Wistar rats were divided into seven groups and fed a Se-deficient basal diet or the basal diet supplemented with 0.05, 0.10, or 0.15 microg/g of Se as sodium selenite or SeRS for 28 d. Supplementation with Se dose-dependently increased serum and liver Se concentrations and GPX activities, and the selenite-supplemented groups showed a higher increase than the SeRS-supplemented groups. The nutritional availability of Se in SeRS was estimated to be 33 or 64% by slope ratio analysis. Male 4-week-old A/J mice were divided into seven groups and fed a low Se basal diet or the basal diet supplemented with selenite, SeRS, or selenite + non-Se-enriched radish sprouts (NonSeRS) at a level of 0.1 or 2.0 microg Se/g for 9 weeks. After 1 week of feeding, all mice were given six subcutaneous injections of DMH (20 mg/kg) at 1-week intervals. The average number of ACF formed in the colon of mice fed the basal diet was 4.3. At a supplementation level of 0.1 mug Se/g, only SeRS significantly inhibited ACF formation. At a supplementation level of 2.0 microg Se/g, both selenite and SeRS significantly inhibited ACF formation. The addition of NonSeRS to the selenite-supplemented diets tended to inhibit ACF formation, but this was not statistically significant. These results indicate that SeRS shows lower nutritional availability but higher anti-tumor activity than selenite.  相似文献   

5.
Mammalian thioredoxin reductase (TRR; NADPH2:oxidized thioredoxin oxidoreductase, E.C. 1.6.4.5) is a new member of the family of selenocysteine-containing proteins. TRR activity in Se-deficient rat liver is reported to decrease to 4.5 to 15% of the activity in Se-adequate rat liver, similar to the fall in Se-dependent glutathione peroxidase-1 activity. Both glutathione peroxidase-1 enzyme activity and mRNA levels decrease dramatically in Se deficiency, whereas glutathione peroxidase-4 activity only decreases to 40% of Se-adequate levels and mRNA level is little affected by Se deficiency. The purpose of these experiments is to study the effect of Se status on TRR mRNA levels and enzyme activity in our well-characterized rat model, and to compare this regulation directly to the regulation of other Se-dependent proteins in male weanling rats fed Se-deficient diets or supplemented with dietary Se for 28 days. In two experiments, TRR activity in Se-deficient liver decreased to 15% of Se-adequate activity as compared to 2% and 40% of Se-adequate levels for GPX1 and GPX4, respectively. Using ribonuclease protection analysis, we found that TRR mRNA levels in Se-deficient rat liver decreased to 70% of Se-adequate levels. This decrease in TRR mRNA was similar to the GPX4 mRNA decrease in Se-deficient liver in these experiments, whereas GPX1 mRNA levels decreased to 23% of Se-adequate levels. This study clearly shows that TRR represents a third pattern of Se regulation with dramatic down-regulation of enzyme activity in Se deficiency but with only a modest decrease in mRNA level. The conservation of TRR mRNA in Se deficiency suggests that this is a valued enzyme; the loss of TRR activity in Se deficiency may be the cause of some signs of Se deficiency.  相似文献   

6.
To enunciate the mechanisms whereby Se protects against cardiovascular diseases, weanling male Wistar rats were fed deficient (0.022 mg/kg diet) and adequate (0.159 mg/kg diet) Se diets for 14 and/or 39 wk. As the Se content and glutathione peroxidase activity were decreased and the lipid peroxide level was increased, the plasma 6-keto-PGF concentration of the Se-deficient group was markedly decreased in blood and tissues of the Se-deficient rats, as compared with the Se-adequate animals. Furthermore, the Se-deficient group had significantly lower plasma nitric oxide content and vascular nitric oxide synthase activity, higher erythrocyte sedimentation equation K value and aggregation index, and lower erythrocyte deformability than the Se-adequate group. Experimental Se deficiency also resulted in significant increases in serum total cholesterol and low-density lipoprotein cholesterol levels and a significant decrease in serum high-density lipoprotein cholesterol level. These results give some experimental supports to the hypothesis that low Se status and lipid peroxidation are involved in the etiology of cardiovascular diseases.  相似文献   

7.
Previous studies in selenium (Se)-depleted sheep and rats showed that selenoprotein W (SeW) levels decreased in all tissues except brain. To further investigate this depletion in different parts of the brain, second generation Se-depleted rats were used. Dams consumed a Se-deficient basal diet during gestation and lactation, and deficient rats were obtained by continuation on the same diet. Control rats were fed a diet with 0.1-mg Se/kg diet after weaning. Glutathione peroxidase (GPX) activities were measured for comparative purposes to SeW levels. GPX activity in muscle, skin, spleen, and testis increased about 4-fold with Se repletion and reached a plateau after 6 or 10 weeks, but GPX activity decreased to almost one tenth of the original activity with continuous Se depletion. In contrast, GPX activities increased, rather than declined, in various brain regions (cortex, cerebellum, and thalamus) with time of feeding the deficient diet. An experiment with first generation rats, however, indicated that GPX activity was significantly lower in these three brain regions from rats fed the deficient diet as compared to rats fed the supplemented diet. SeW levels in skin, spleen, muscle, and testis were undetectable in weanling rats, but became detectable after 6 weeks of Se repletion. In contrast, the expression of SeW in cortex, cerebellum, and thalamus was not significantly affected by Se depletion, but increased SeW levels occurred only in thalamus with Se supplementation. The results with GPX using first and second generation rats suggest that there are "mobile" and "immobile" GPX fractions in the brain.  相似文献   

8.
To investigate the role of selenium (Se) in the developing porcine fetus, prepubertal gilts (n=42) were randomly assigned to either Se-adequate (0.39 ppm Se) or Se-deficient (0.05 ppm Se) gestation diets 6 wk prior to breeding. Maternal and fetal liver was collected at d 30, 45, 70, 90, and 114 of pregnancy. Concentrations of Se in maternal liver decreased during gestation in gilts fed the low-Se diet. The activity of cellular glutathione peroxidase (GPx) was decreased at d 30 and 45 of gestation in liver of gilts fed the low-Se diet. Concentrations of malondialdehyde (MDA) and hydrogen peroxide (H2O2) were greater in liver homogenates from gilts fed the low-Se diet. Within the fetuses, liver Se decreased in those fetuses of gilts fed the low-Se diet. Although the activity of GPx in fetal liver was not affected by the maternal diet, concentrations of H2O2 and MDA in fetal liver were greater in fetuses from gilts fed the low-Se diet. Maternal liver GPx activity was approx 12-fold greater than fetal liver GPx activity regardless of dietary treatment. These results indicate that maternal dietary Se intake affects fetal liver Se concentration and feeding a low-Se diet during gestation increases oxidative stress to the fetus, as measured by fetal liver H2O2 and MDA.  相似文献   

9.
Weanling C3H/HeN mice were fed either a torula yeast-based diet deficient in selenium (Se) or the same diet supplemented with 0.2 ppm Se as sodium selenite. After 4 wk of feeding, the mice were inoculated intraperitoneally with the CA-I strain (clone K98) of Trypanosoma cruzi (TC). Before inoculation, mean serum Se levels were 430 versus 61 ng/ml in adequate and deficient mice, respectively. During the ascending phase of parasitemia, the Se-deficient mice exhibited significantly higher levels of parasites at 22-34 days postinfection (PI). However, no difference was found in the subsequent descending phase. As judged by visual examination at 2-mo-PI, some Se-deficient infected mice presented clinical signs of motor dysfunction. At 3-mo-PI, the end of the observation period, this chronic disease developed into a hind limb flaccid paralysis affecting 5 of 8 infected deficient mice. No signs of paralysis were seen in noninfected mice fed either diet or in infected mice fed the Se-adequate diet. At the histological level, both Se-adequate and Se-deficient infected mice showed mild myocarditis and moderate to severe myositis, with increasing intensity from 1- to 3-mo-PI in both groups. However, the severity of myositis was always more intense in the Se-deficient mice so that prominent areas of skeletal muscle replaced by fibrotic tissue were frequently observed. Thus, it can be concluded that Se deficiency in the murine host increases the severity of TC-induced myositis.  相似文献   

10.
11.
12.
Twenty-four weanling male Wistar rats were divided into four groups fed diets containing adequate or deficient levels of selenium (0.5 ppm [+ Se] or <0.02 ppm [−Se] and protein (15% [+Pro] or 5% [−Pro]), but adequate levels of all other nutrients for 4 wk to determine the effects of Se deficiency and protein deficiency on tissue Se and glutathione peroxidase (GSHPx) activity in rats. Plasma, heart, liver, and kidney Se and GSHPx were significantly lower in Se-deficient groups in relation to Se-sufficient groups. In Se-deficient groups, Se and GSHPx were significantly higher in −Se−Pro rats in heart, liver, and kidney. Data analysis showed that there were significant interaction effects between dietary Se and protein on Se and GSHPx of rats. It is assumed that under the condition of Se deficiency. a low level of protein may decrease Se and GSHPx utilization, increase GSHPx synthesis, and result in Se redistribution. This could account for high levels of Se and GSHPx in the −Se−Pro rats compared to −Se+Pro rats.  相似文献   

13.
Influence of selenium deficiency on vital functions in rats   总被引:1,自引:0,他引:1  
To clarify the relationship between selenium (Se) deficiency and functional disorders, the authors determined the Se concentration, anti-oxidant enzyme activity, and other parameters in rats fed a Se-deficient diet. Rats fed the Se-deficient diet showed a decrease in Se concentration and glutathione peroxidase (GSH-Px) activity in plasma, erythrocytes, heart, liver, and skeletal muscle from the first week after the initiation of the diet, an increase in heart lipid peroxide concentration from the second week, and an increase in liver glutathione S-transferase activity from the fourth week. From the twelfth week, a decrease in the growth rate in the rats fed the Se-deficient diet was observed. In spite of this growth impairment, no changes in electrocardiogram, muscle tone, degree of hemolysis, plasma biochemistry, or hematological values were detected. In summary, the authors found that a reduction of body Se is easily induced, but that the appearance of functional disorders following Se deficiency is difficult to detect in rats.  相似文献   

14.
Second-generation selenium-deficient weanling rats fed graded levels of dietary Se were used (a) to study the impact of initial Se deficiency on dietary Se requirements; (b) to determine if further decreases in selenoperoxidase expression, especially glutathione peroxidase 4 (Gpx4), affect growth or gross disease; and (c) to examine the impact of vitamin E deficiency on biochemical and molecular biomarkers of Se status. Rats were fed a vitamin E-deficient and Se-deficient crystalline amino acid diet (3 ng Se/g diet) or that diet supplemented with 100 μg/g all-rac-α-tocopheryl acetate and/or 0, 0.02, 0.05, 0.075, 0.1, or 0.2 μg Se/g diet as Na2SeO3 for 28 days. Se-supplemented rats grew 6.91 g/day as compared to 2.17 and 3.87 g/day for vitamin E-deficient/Se-deficient and vitamin E-supplemented/Se-deficient groups, respectively. In Se-deficient rats, liver Se, plasma Gpx3, red blood cell Gpx1, liver Gpx1 and Gpx4 activities, and liver Gpx1 mRNA levels decreased to <1, <1, 21, 1.6, 49, and 11 %, respectively, of levels in rats fed 0.2 μg Se/g diet. For all biomarkers, ANOVA indicated significant effects of dietary Se, but no significant effects of vitamin E or vitamin E × Se interaction, showing that vitamin E deficiency, even in severely Se-deficient rat pups, does not result in compensatory changes in these biochemical and molecular biomarkers of selenoprotein expression. Se requirements determined in this study, however, were >50 % higher than in previous studies that started with Se-adequate rats, demonstrating that dietary Se requirements determined using initially Se-deficient animals can result in overestimation of Se requirements.  相似文献   

15.
Previous research has suggested that repletion of cellular glutathione peroxidase (GPX1) activity by a single injection of Se was dissociated from the Se protection against the pro-oxidant-induced liver necrosis in Se-deficient rodents. Using the GPX1 knockout (GPX1-/-) mice, TUNEL assay, and apoptosis gene expression microarray, we have demonstrated strikingly different impacts of GPX1 knockout on hepatotoxicity and the related signaling induced by an intraperitoneal injection of 12.5 mg paraquat/kg body weight (b.wt.). In both Se-deficient GPX1-/- and wild-type (WT) mice, the paraquat did not induce typical liver necrosis, rather aponecrosis or necrapoptosis, a syncretic process of cell death sharing characteristics of both apoptosis and necrosis. The severity of liver aponecrosis and the associated mortality were reduced to a much greater extent by an injection of Se (ip, 50 microg/kg b.wt. as Na2SeO3) prior to paraquat stress in the WT mice, compared with the GPX1-/- mice. The induced liver aponecrosis seemed to be more apoptotic in the GPX1-/- mice but more necrotic in the WT mice. The paraquat-mediated gene or protein expression of proapoptotic Bax, Bcl-w, and Bcl-X(S), cell survival/death factors GADD45, MDM2, c-Myc, and caspase-3 was upregulated, but that of antiapoptotic Bcl-2 was downregulated in the GPX1-/- mice vs. the WT mice. Overall, these differences between the two groups of mice were related to a low level of liver GPX1 activity in the WT mice that represented < 4% of the normal physiological level. Therefore, the low level of GPX1 activity in the Se-deficient mice can exert a potent role in defending against liver aponecrosis induced by moderate oxidative stress.  相似文献   

16.
In liver cirrhosis, liver tissue becomes progressively substituted by fibrosis, ultimately leading to architectural distortion, liver circulatory changes, and liver failure. Some data support the hypothesis that protein undernutrition may play a role in the development and progression of nonalcoholic liver cirrhosis and that this progression is at least partially mediated by changes in glutathione peroxidase (GPX), superoxide dismutase (SOD), and other antioxidative systems, leading to an increase in lipid peroxidation. We analyzed the effects of protein deficiency on liver Cu, Fe, Zn, Mn, and Se in carbon tetrachloride (CCl4)-induced liver cirrhosis, the relation of protein undernutrition and these trace elements with the activity of some hepatic antioxidative enzymatic mechanisms, and the relation of all of them with morphological and biochemical changes in 40 male adult Sprague-Dawley rats divided in four groups. Liver cirrhosis was induced by intraperitoneal injection of CCl4 to 10 rats fed a 2% protein diet and another 10 fed a 18% protein control diet; two further groups included rats without cirrhosis fed the 2% protein and the 18% protein diets. The study period lasted 6 wk. GPX, SOD, and lipid peroxidation products as well as Zn, Cu, Mn, Se, and Fe were determined in liver samples. We found that liver GPX and Se were reduced in the cirrhotic animals, especially in the low-protein-fed ones, protein deficiency, but not cirrhosis, exerting the main effects. A close correlation was found between liver GPX and serum albumin and weight loss and an inverse one among GPX and hepatocyte ballooning, liver fibrosis, and fat, histomorphometrically determined. These results suggest a pathogenetic role of decreased GPX in the progression of liver disease, which may become enhanced by concomitant protein undernutrition. In addition to iron, the levels of which were increased in the malnourished rats, no differences were found regarding the other trace elements, SOD activity, and lipid peroxidation products.  相似文献   

17.
With the aim to study if selenium (Se) deficiency affects the basal frequency and cardiac response to isoproterenol (ISO), mice were fed a Se-deficient diet (Se-) or the same diet supplemented with 0.2 ppm Se as sodium selenite (Se+) for 4 wk. Atria frequency, cyclic AMP (cAMP) accumulation, nitric oxide synthase (NOS) activity, and β-adrenoceptor-binding assay were then examined. Results showed that Se-mice have both a reduction in atria frequency as well as in cAMP content but higher NOS activity levels either at basal or after ISO stimulation. These differences were suppressed by feeding Se-mice with a Se-supplemented diet for 1 wk or by inhibition of inducible nitric oxide synthase (iNOS). Alterations observed after ISO stimulation in atria of Se-mice were not related to a β-adrenoceptor expression modification because specific radioligand-binding parameters in cardiac membranes from Se-mice and Se+ mice were similar. The reduced response on rate and cAMP in atria from Se-mice to direct adenylate cyclase (AC) stimulation by forskolin and the shifted upward levels present in 2-amino-4-methylpyridine-treated Se-mice is in agreement with a negative crosstalk between iNOS activity and AC activity in Se-mice.  相似文献   

18.
The bioavailability of selenium (Se) from veal, chicken, beef, pork, lamb, flounder, tuna, selenomethionine (SeMet), and sodium selenite was assessed in Se-deficient Fischer-344 rats. Se as veal, chicken, beef, pork, lamb, flounder, tuna, SeMet, and sodium selenite was added to torula yeast (TY) basal diets to comprise Se-inadequate (0.05 mg Se/kg) diets. Se as sodium selenite was added to a TY basal diet to comprise a Se-adequate (0.10 mg Se/kg), Se-control diet. The experimental diets were fed to weanling Fischer-344 rats that had been subjected to dietary Se depletion for 6 wk. After 9 wk of the dietary Se repletion, relative activity of liver glutathione peroxidase (GSHPx) from the different dietary groups compared with control rats (100%) was: flounder 106%, tuna 101%, pork 86%, sodium selenite 81%, SeMet 80%, beef 80%, chicken 77%, veal 77%, and lamb 58%. Se from flounder was the most efficient at restoring Se concentrations in the liver and skeletal muscle. Se from sodium selenite, SeMet, beef, veal, chicken, pork, lamb, and tuna was not dietarily sufficient to restore liver and muscle Se after 9 wk of recovery following a 6-wk period of Se depletion.  相似文献   

19.
The effects of selenium (Se)-deficient diet on the liver were evaluated by using growing rats which were fed with normal and Se-deficient diets, respectively, for 109 days. The results showed that rats fed with Se-deficient diet led to a decrease in Se concentration in the liver, particularly among male rats from the low-Se group. This causes alterations to the ultrastructure of hepatocytes with condensed chromatin and swelling mitochondria observed after low Se intake. Meanwhile, pathological changes and increased fibrosis in hepatic periportal were detected by hematoxylin and eosin and Masson’s trichrome staining in low-Se group. Furthermore, through immunohistochemistry (IHC) staining, higher expressions of metalloproteinases (MMP1/3) and their tissue inhibitors of metalloproteinases (TIMP1/3) were observed in the hepatic periportal of rats from the low-Se group. However, higher expressions of MMP1/3 and lower expressions of TIMP1/3 were detected in hepatic central vein and hepatic sinusoid. In addition, upregulated expressions of MMP1/3 and downregulated expressions of TIMP1/3 at the messenger RNA (mRNA) and protein levels also appeared to be relevant to low Se intake. In conclusion, Se-deficient diet could cause low Se concentration in the liver, alterations of hepatocyte ultrastructure, differential expressions of MMP1/3 and TIMP1/3 as well as fibrosis in the liver hepatic periportal.  相似文献   

20.
Selenium (Se) is a dietary trace element that is essential for effective immunity and protection from oxidative damage induced by ultraviolet radiation (UVR). Langerhans cells (LC) represent the major antigen-presenting cells resident in the epidermis; a proportion migrate from the skin to the draining lymph nodes in response to UVR. Because it is known that Se deficiency impairs immune function, we determined what effect this has on LC numbers. CH3/HeN mice were weaned at 3 wk and placed on diets containing <0.005 ppm of Se (Se deficient) or 0.1 ppm of Se (Se adequate, control mice). After 5 wk on the diet, the epidermal LC numbers in the Se-adequate group were 966±51 cells/mm2 and LC counts in the epidermis of the Se-deficient mice were 49% lower (p<0.05). Glutathione peroxidase-I (GPx) activity was measured in the epidermis, lymph nodes, and liver. In the epidermis, the activity of GPx in the Se-deficient mice was only 39% (p<0.01) of that seen in epidermis from Se-adequate mice (1.732 U/mg protein). The mice were then irradiated with one dose of 1440 J/m2 of broadband UVB or mock irradiated. After 24 h, the decrease in LC number after UVB was greater in the Se-adequate mice, (40% decrease) compared to the Se-deficient group (10%). Thus, Se deficiency reduces epidermal LC numbers, an effect that might compromise cutaneous immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号