首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Arabidopsis genome project has recently reported sequences with similarity to members of the terpene synthase (TPS) gene family of higher plants. Surprisingly, several Arabidopsis terpene synthase-like sequences (AtTPS) share the most identity with TPS genes that participate in secondary metabolism in terpenoid-accumulating plant species. Expression of a putative Arabidopsis terpene synthase gene, designated AtTPS03, was demonstrated by amplification of a 392-bp cDNA fragment using primers designed to conserved regions of plant terpene synthases. Using the AtTPS03 fragment as a hybridization probe, a second AtTPS cDNA, designated AtTPS10, was isolated from a jasmonate-induced cDNA library. The partial AtTPS10 cDNA clone contained an open reading frame of 1665 bp encoding a protein of 555 amino acids. Functional expression of AtTPS10 in Escherichia coli yielded an active monoterpene synthase enzyme, which converted geranyl diphosphate (C(10)) into the acyclic monoterpenes beta-myrcene and (E)-beta-ocimene and small amounts of cyclic monoterpenes. Based on sequence relatedness, AtTPS10 was classified as a member of the TPSb subfamily of angiosperm monoterpene synthases. Sequence comparison of AtTPS10 with previously cloned monoterpene synthases suggests independent events of functional specialization of terpene synthases during the evolution of terpenoid secondary metabolism in gymnosperms and angiosperms. Functional characterization of the AtTPS10 gene was prompted by the availability of Arabidopsis genome sequences. Although Arabidoposis has not been reported to form terpenoid secondary metabolites, the unexpected expression of TPS genes belonging to the TPSb subfamily in this species strongly suggests that terpenoid secondary metabolism is active in the model system Arabidopsis.  相似文献   

2.
3.
Genomic, proteomic, phylogenetic and evolutionary aspects of a novel gene encoding a putative chloroplast-targeted sulfate permease of prokaryotic origin in the green alga Chlamydomonas reinhardtii are described. This nuclear-encoded sulfate permease gene (SulP) contains four introns, whereas all other known chloroplast sulfate permease genes lack introns and are encoded by the chloroplast genome. The deduced amino acid sequence of the protein showed an extended N-terminus, which includes a putative chloroplast transit peptide. The mature protein contains seven transmembrane domains and two large hydrophilic loops. This novel prokaryotic-origin gene probably migrated from the chloroplast to the nuclear genome during evolution of C. reinhardtii. The SulP gene, or any of its homologues, has not been retained in vascular plants, e.g. Arabidopsis thaliana, although it is encountered in the chloroplast genome of a liverwort (Marchantia polymorpha). A comparative structural analysis and phylogenetic origin of chloroplast sulfate permeases in a variety of species is presented.  相似文献   

4.
5.
6.
The CESA gene superfamily of Arabidopsis and other seed plants comprises the CESA family, which encodes the catalytic subunits of cellulose synthase, and eight families of CESA-like (CSL) genes whose functions are largely unknown. The CSL genes have been proposed to encode processive β-glycosyl transferases that synthesize noncellulosic cell wall polysaccharides. BLAST searches of EST and shotgun genomic sequences from the moss Physcomitrella patens (Hedw.) B.S.G. were used to identify genes with high similarity to vascular plant CESAs, CSLAs, CSLCs, and CSLDs. However, searches using Arabidopsis CSLBs, CSLEs, and CSLGs or rice CSLFs or CSLHs as queries identified no additional CESA superfamily members in P. patens, indicating that this moss lacks representatives of these families. Intron insertion sites are highly conserved between Arabidopsis and P. patens in all four shared gene families. However, phylogenetic analysis strongly supports independent diversification of the shared families in mosses and vascular plants. The lack of orthologs of vascular plant CESAs in the P. patens genome indicates that the divergence of mosses and vascular plants predated divergence and specialization of CESAs for primary and secondary cell wall syntheses and for distinct roles within the rosette terminal complexes. In contrast to Arabidopsis, the CSLD family is highly represented among P. patens ESTs. This is consistent with the proposed function of CSLDs in tip growth and the central role of tip growth in the development of the moss protonema. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users. Accession numbers: DQ417756, DQ417757, DQ898284–6, DQ898147–54, DQ902545–51.  相似文献   

7.
8.
9.
10.
11.
The insulin receptor (IR) gene plays an important role in regulating cell growth, differentiation and development. In the present study, DNA sequences of insulin receptor genes, IRa and IRb, were amplified and sequenced from 37 representative species of the Cyprinidae and from five outgroup species from non-cyprinid Cypriniformes. Based on coding sequences (CDS) of tyrosine kinase regions of IRa and IRb, molecular evolution and phylogenetic relationships were analyzed to better understand the characteristics of IR gene divergence in the family Cyprinidae. IRa and IRb were clustered into one lineage in the gene tree of the IR gene family, reconstructed using the unweighted pair group method with arithmetic mean (UPGMA). IRa and IRb have evolved into distinct genes after IR gene duplication in Cyprinidae. For each gene, molecular evolution analyses showed that there was no significant difference among different groups in the reconstructed maximum parsimony (MP) tree of Cyprinidae; IRa and IRb have been subjected to similar evolutionary pressure among different lineages. Although the amino acid sequences of IRa and IRb tyrosine kinase regions were highly conserved, our analyses showed that there were clear sequence variations between the tyrosine kinase regions of IRa and IRb proteins. This indicates that IRa and IRb proteins might play different roles in the insulin signaling pathway.  相似文献   

12.
13.
14.
15.

Background

The social amoebae (Dictyostelia) are a diverse group of Amoebozoa that achieve multicellularity by aggregation and undergo morphogenesis into fruiting bodies with terminally differentiated spores and stalk cells. There are four groups of dictyostelids, with the most derived being a group that contains the model species Dictyostelium discoideum.

Results

We have produced a draft genome sequence of another group dictyostelid, Dictyostelium purpureum, and compare it to the D. discoideum genome. The assembly (8.41 × coverage) comprises 799 scaffolds totaling 33.0 Mb, comparable to the D. discoideum genome size. Sequence comparisons suggest that these two dictyostelids shared a common ancestor approximately 400 million years ago. In spite of this divergence, most orthologs reside in small clusters of conserved synteny. Comparative analyses revealed a core set of orthologous genes that illuminate dictyostelid physiology, as well as differences in gene family content. Interesting patterns of gene conservation and divergence are also evident, suggesting function differences; some protein families, such as the histidine kinases, have undergone little functional change, whereas others, such as the polyketide synthases, have undergone extensive diversification. The abundant amino acid homopolymers encoded in both genomes are generally not found in homologous positions within proteins, so they are unlikely to derive from ancestral DNA triplet repeats. Genes involved in the social stage evolved more rapidly than others, consistent with either relaxed selection or accelerated evolution due to social conflict.

Conclusions

The findings from this new genome sequence and comparative analysis shed light on the biology and evolution of the Dictyostelia.
  相似文献   

16.
Trapp SC  Croteau RB 《Genetics》2001,158(2):811-832
Terpenoids are the largest, most diverse class of plant natural products and they play numerous functional roles in primary metabolism and in ecological interactions. The first committed step in the formation of the various terpenoid classes is the transformation of the prenyl diphosphate precursors, geranyl diphosphate, farnesyl diphosphate, and geranylgeranyl diphosphate, to the parent structures of each type catalyzed by the respective monoterpene (C(10)), sesquiterpene (C(15)), and diterpene synthases (C(20)). Over 30 cDNAs encoding plant terpenoid synthases involved in primary and secondary metabolism have been cloned and characterized. Here we describe the isolation and analysis of six genomic clones encoding terpene synthases of conifers, [(-)-pinene (C(10)), (-)-limonene (C(10)), (E)-alpha-bisabolene (C(15)), delta-selinene (C(15)), and abietadiene synthase (C(20)) from Abies grandis and taxadiene synthase (C(20)) from Taxus brevifolia], all of which are involved in natural products biosynthesis. Genome organization (intron number, size, placement and phase, and exon size) of these gymnosperm terpene synthases was compared to eight previously characterized angiosperm terpene synthase genes and to six putative terpene synthase genomic sequences from Arabidopsis thaliana. Three distinct classes of terpene synthase genes were discerned, from which assumed patterns of sequential intron loss and the loss of an unusual internal sequence element suggest that the ancestral terpenoid synthase gene resembled a contemporary conifer diterpene synthase gene in containing at least 12 introns and 13 exons of conserved size. A model presented for the evolutionary history of plant terpene synthases suggests that this superfamily of genes responsible for natural products biosynthesis derived from terpene synthase genes involved in primary metabolism by duplication and divergence in structural and functional specialization. This novel molecular evolutionary approach focused on genes of secondary metabolism may have broad implications for the origins of natural products and for plant phylogenetics in general.  相似文献   

17.
18.
Hao da C  Yang L  Huang B 《Genetica》2009,135(2):123-135
Evolutionary patterns of sequence divergence were analyzed in genes from the conifer genus Taxus (yew), encoding paclitaxel biosynthetic enzymes taxadiene synthase (TS) and 10-deacetylbaccatin III-10β-O-acetyltransferase (DBAT). N-terminal fragments of TS, full-length DBAT and internal transcribed spacer (ITS) were amplified from 15 closely related Taxus species and sequenced. Premature stop codons were not found in TS and DBAT sequences. Codon usage bias was not found, suggesting that synonymous mutations are selectively neutral. TS and DBAT gene trees are not consistent with the ITS tree, where species formed monophyletic clades. In fact, for both genes, alleles were sometimes shared across species and parallel amino acid substitutions were identified. While both TS and DBAT are, overall, under purifying selection, we identified a number of amino acids of TS under positive selection based on inference using maximum likelihood models. Positively selected amino acids in the N-terminal region of TS suggest that this region might be more important for enzyme function than previously thought. Moreover, we identify lineages with significantly elevated rates of amino acid substitution using a genetic algorithm. These findings demonstrate that the pattern of adaptive paclitaxel biosynthetic enzyme evolution can be documented between closely related Taxus species, where species-specific taxane metabolism has evolved recently.  相似文献   

19.
The biosynthesis of the aromatic polyene macrolide antibiotic candicidin, produced by Streptomyces griseus IMRU 3570, begins with a p-aminobenzoic acid (PABA) molecule which is activated to PABA-CoA and used as starter for the head-to-tail condensation of four propionate and 14 acetate units to produce a polyketide molecule to which the deoxysugar mycosamine is attached. Using the gene coding for the PABA synthase ( pabAB) from S. griseusIMRU 3570 as the probe, a 205-kb region of continuous DNA from the S. griseus chromosome was isolated and partially sequenced. Some of the genes possibly involved in the biosynthesis of candicidin were identified including part of the modular polyketide synthase (PKS), genes for thioesterase, deoxysugar biosynthesis, modification, transport, and regulatory proteins. The regulatory mechanisms involved in the production of candicidin, such as phosphate regulation, were studied using internal probes for some of the genes involved in the biosynthesis of the three moieties of candicidin (PKS, aromatic moiety and amino sugar). mRNAs specific for these genes were detected only in the production medium (SPG) but not in the SPG medium supplemented with phosphate or in the inoculum medium, indicating that phosphate represses the expression of genes involved in candicidin biosynthesis. The modular architecture of the candicidin PKS and the availability of the PKSs involved in the biosynthesis of three polyene antibiotics (pimaricin, nystatin, and amphotericin B) shall make possible the creation of new, less toxic and more active polyene antibiotics through combinatorial biosynthesis and targeted mutagenesis.  相似文献   

20.
Volatile organic compounds have been reported to serve some important roles in plant communication with other organisms, but little is known about the biological functions of most of these substances. To gain insight into this problem, we have compared differences in floral and vegetative volatiles between two closely related plant species with different life histories. The self-pollinating annual, Arabidopsis thaliana, and its relative, the outcrossing perennial, Arabidopsis lyrata, have markedly divergent life cycles and breeding systems. We show that these differences are in part reflected in the formation of distinct volatile mixtures in flowers and foliage. Volatiles emitted from flowers of a German A. lyrata ssp. petraea population are dominated by benzenoid compounds in contrast to the previously described sesquiterpene-dominated emissions of A. thaliana flowers. Flowers of A. lyrata ssp. petraea release benzenoid volatiles in a diurnal rhythm with highest emission rates at midday coinciding with observed visitations of pollinating insects. Insect feeding on leaves of A. lyrata ssp. petraea causes a variable release of the volatiles methyl salicylate, C11- and C16-homoterpenes, nerolidol, plus the sesquiterpene (E)-β-caryophyllene, which in A. thaliana is emitted exclusively from flowers. An insect-induced gene (AlCarS) with high sequence similarity to the florally expressed (E)-β-caryophyllene synthase (AtTPS21) from A. thaliana was identified from individuals of a German A. lyrata ssp. petraea population. Recombinant AlCarS converts the sesquiterpene precursor, farnesyl diphosphate, into (E)-β-caryophyllene with α-humulene and α-copaene as minor products indicating its close functional relationship to the A. thaliana AtTPS21. Differential regulation of these genes in flowers and foliage is consistent with the different functions of volatiles in the two Arabidopsis species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号