首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In a new approach to isolating proteins which participate in the Ca2+-dependent regulation of membrane traffic in animal cells, two new Ca2+-binding proteins (Mr 67 000 and 32 500) have been identified in and purified from bovine liver, brain, and adrenal medulla. These proteins specifically and reversibly bind to chromaffin granule membranes at low Ca2+ concentrations (half-maximal binding at 5.5 microM Ca2+) and greatly potentiate the Ca2+-induced aggregation of these membranes at higher concentrations (above 10 microM). In the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetate, the isolated proteins have Stokes radii of 3.40 nm (Mr 67 000) and 2.53 nm (Mr 32 500) as estimated by gel filtration and therefore occur as monomers. They are slightly acidic proteins with pI's of 5.85 and 5.60. In bovine tissues, both proteins and a third protein of Mr 35 000 cross-react immunologically with each other and with Torpedo calelectrin (Mr 34 000) and are therefore identified as mammalian calelectrins. In all tissues of Torpedo marmorata tested, only a single molecular mass form of calelectrin exists, whereas multiple forms of calelectrin exist in mammalian tissues, indicating gene duplication during evolution. We suggest that the evolutionary conservation and diversification, the high tissue concentrations, and the Ca2+-specific interactions of the calelectrins make them candidates for Ca2+-dependent regulators of membrane events in animal cells.  相似文献   

2.
T C Südhof  J H Walker    J Obrocki 《The EMBO journal》1982,1(10):1167-1170
Calelectrin is a protein that can be purified to homogeneity from the cholinergically innervated electric organ of Torpedo marmorata where it is present in large amounts. It has been shown to bind to the membranes of the electric organ in a Ca2+-dependent and specific manner. Using the purified protein we now report that it is specifically self-aggregated by Ca2+ in micromolar concentrations but not by Mg2+ at much higher concentrations. Sr2+ is also completely inactive, while Ba2+ and the trivalent lanthanides Tb3+, Eu3 +, and La3+ can substitute for Ca2+. Calelectrin also greatly enhances the Ca2+-induced aggregation of isolated synaptic vesicle membranes from the cholinergic nerve terminals of T. marmorata and of chromaffin granule membranes from the bovine adrenal medulla. The potentiation of membrane aggregation is mainly due to the appearance of a fast aggregatory phase in the presence of calelectrin . It is saturable with respect to calelectrin and can be demonstrated at very low calelectrin concentrations, suggesting a specific calelectrin membrane-binding component. This component seems to be of lipid nature since the aggregation of total extracted lipids from Torpedo electric organ and from chromaffin granules could also be enhanced by calelectrin . The Ca2+-induced self-association of calelectrin and its aggregation enhancing effect may be of great importance to the structural organization of neural and secretory cells and the mechanism of exocytosis.  相似文献   

3.
H Rehm  B Wiedenmann    H Betz 《The EMBO journal》1986,5(3):535-541
Synaptophysin, a mol. wt 38 000 glycopolypeptide of the synaptic vesicle membrane, was solubilized using Triton X-100 and purified by immunoaffinity or ion-exchange chromatography. From gel permeation and sucrose-density centrifugation in H2O/D2O, a Stokes radius of 7.3 nm, a partial specific volume of 0.830 and a total mol. wt of 119 000 were calculated for the native protein. Cross-linking of synaptic vesicles with glutaraldehyde, dimethylsuberimidate, or Cu2+ -o-phenantroline, resulted in the formation of a mol. wt 76 kd dimer of synaptophysin. Crosslinking of the purified protein in addition produced tri- and tetrameric adducts of the polypeptide. Native synaptophysin thus is a homooligomeric protein. Synaptophysin is N-glycosylated, since cultivation of the rat phaeochromocytoma cell line PC12 in the presence of tunicamycin reduced its mol. wt by about 6 kd. Upon transfer to nitrocellulose and incubation with 45Ca2+, synaptophysin behaved as one of the major calcium-binding proteins of the synaptic vesicle membrane. Pronase treatment of intact synaptic vesicles abolished this 45Ca2+ binding indicating that the Ca2+ binding site of synaptophysin must reside on a cytoplasmic domain of the transmembrane polypeptide. Based on these data, we propose that synaptophysin may play an important role in Ca2+-dependent neurotransmitter release.  相似文献   

4.
Calelectrin is a calcium-binding protein of Mr 36 000 which has previously been shown to be associated with membranes of the cholinergic synapse in a calcium-dependent manner. We report here that calelectrin was solubilized from the electric organ of Torpedo marmorata in the absence of calcium together with proteins of Mr 54 000 and Mr 15 000. In cholinergic nerve endings isolated from the electric organ only calelectrin was solubilized in a calcium-dependent manner. A specific antiserum to calelectrin was used to localize the antigen by immunofluorescence microscopy on sections of electric organ and showed that calelectrin is distributed throughout the postsynaptic cell. Calelectrin was also detected in axons and in the cell bodies of the cholinergic neurones where it was concentrated in discrete patches throughout the cells. Electric organ tissue was processed to localize calelectrin with the electron microscope using an immunoperoxidase method. The most intense staining was observed on the cytoplasmic face of the acetylcholine receptor-containing postsynaptic membrane and also associated with the intracellular filaments of the electrocyte. The intensity of staining associated with these structures could be greatly reduced by preincubating the tissue with calcium chelators. In nerve terminals calelectrin was associated with synaptic vesicles in a polarized fashion. Calelectrin was also found on the cytoplasmic face of the synaptosomal plasma membrane and associated with neurofilaments. No extracellular staining was ever observed. Our results strongly support our original hypothesis that calelectrin is a calcium-regulated component of intracellular structure associated both with membranes and filaments.  相似文献   

5.
Calmodulin-binding proteins from brain and other tissues.   总被引:8,自引:1,他引:7  
The calmodulin contents of rabbit brain, lung, kidney and liver, of bovine aorta and uterus, and of chicken gizzard have been determined. 2. The calmodulin in all of these tissues has been shown to be present in the form of very stable complexes with several other proteins. 3. A calmodulin-binding protein of mol.wt. 22 000 has been purified in high yield from bovine brain. It has been shown to interact with calmodulin and rabbit skeletal-muscle troponin C in a Ca2+-dependent manner. 4. The 22 000-mol.wt. protein inhibits the activation of bovine brain phosphodiesterase by calmodulin, but has very little affect on the activation of myosin light-chain kinase. 5. Calmodulin-binding proteins of mol.wts. 140000, 77000 and 61000 have also been partially purified from rabbit brain by affinity chromatography and have been shown to interact in a Ca2+-dependent manner with calmodulin. 6. The apparent molecular weights of the calmodulin-calmodulin-binding protein complexes, determined by gel filtration in the presence of 6M-urea, have been shown to be similar for most of the mammalian tissues examined. 7. By using 125I-labelled calmodulin, similar complexes have been demonstrated in rabbit skeletal muscle, although they are present at much lower concentrations.  相似文献   

6.
A new family of proteins (annexins) that bind to membranes at micromolar free Ca2+ has been recognized. Its members include an EGF-receptor kinase substrate (p35), a retroviral tyrosine kinase substrate (p36), the liver protein endonexin (p32) and an electric ray protein, calelectrin. Each protein contains four sequence repeats with a further 2-fold internal homology. Using the predicted secondary structure and pattern of conserved hydrophobic residues in each repeat, we have built a three-dimensional model that is largely isostructural with the known molecular conformation of bovine intestinal calcium-binding protein. The final (energy-refined) model had a core formed from the conserved hydrophobic residues. It differed from ICaBP principally in the length of the two Ca2+-binding loops with only one loop being able to bind. The model suggests a mechanism for interaction of these new Ca2+-binding proteins with phospholipid bilayers.  相似文献   

7.
1. Protein synthesis has been investigated in different regions of the rat epididymis by measuring incorporation of [35S]methionine in tissue minces incubated in vitro followed by analysis of labelled proteins on polyacrylamide gels containing sodium dodecyl sulphate. Rates of synthesis were highest in the proximal cauda > distal cauda > initial segment > ductuli efferentes > corpus > distal caput > proximal caput. One protein (mol.wt. 23 000) characterized the initial segment, three proteins (mol.wts. 18 500, 19 000 and 32 000) the caput and one protein (mol.wt. 47 000) the cauda. 2. After castration, [35S]methionine incorporation in all regions of the epididymis was reduced to < 10% of that in normal animals but could be restored to control levels within 5 days by testosterone treatment. Other steroids (corticosterone, oestrogen or progesterone) were ineffective. 3. The synthesis of the 18 500, 19 000, and 32 000 mol.wt. proteins in the caput and the 47 000 mol.wt. protein in the cauda were preferentially regulated by androgens, whilst the synthesis of 23 000 and approx. 80 000 mol.wt. proteins in the initial segment was dependent upon factors present in testicular fluid. 4. The androgen-dependent and testicular fluid-dependent proteins were major components of epididymal secretion. Purification and characterization of the 18 500, 19 000, 23 000 and 32 000 mol.wt. proteins showed them to be acidic glycoproteins with a carbohydrate content of 7.6-13.2%. The 47 000 mol.wt. protein, on the other hand, is highly basic. 5. A possible role for these proteins in the acquisition of motility, fertilizing capacity and storage of spermatozoa in the epididymis is discussed.  相似文献   

8.
We report a fast (less than 1 day) and efficient (2-3 mg protein/100 g tissue) isolation method for calelectrin, a protein of Mr 34,000 in the electric organ of Torpedo marmorata that binds to membranes in the presence of Ca2+. Purified protein was used to investigate the nature of its interaction with membranes and with Ca2+. Calelectrin binds to liposomes composed of total extractable lipids from the electric organ in a Ca2+-dependent and -specific manner with half-maximal binding between 3 and 7 microM free Ca2+. This binding is totally inhibited by 1 mM mercaptoethanol. It is also shown that calelectrin directly binds Ca2+ in solution by two techniques: at 1 and 10 microM Ca2+ it binds 45Ca2+ as measured by gel permeation chromatography, and it contains saturable Tb3+-binding sites that are Ca2+-displaceable. An investigation of the protein's endogenous fluorescence shows that although it contains both tryptophan and tyrosine, there is no change in the apparent quantum yield as a function of Ca2+. Ca2+-dependent hydrophobic affinity chromatography of the total soluble proteins from Torpedo electric organ shows that Torpedo calelectrin, like calmodulin and mammalian calelectrins, is specifically retained in the presence of Ca2+ and eluted by EGTA. Calelectrin also contains high-affinity sites for hydrophobic fluorescence probes such as N-phenyl-1-naphthylamine, 2-CP-toluidinylnaphthalene-6-sulfonic acid, and 1-anilinonaphthalene-8-sulfonic acid, which again unlike calmodulin, show no changes as a function of Ca2+. We conclude that calelectrin is a Ca2+-binding protein whose binding to the lipid moieties of membranes is regulated by physiological change in the Ca2+ concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The Ca2+-regulated lipid-binding properties of the H- and L-forms of calelectrin present in the electric organ of Torpedo marmorata have been compared. Binding of H-calelectrin required Ca2+ in millimolar concentrations, whereas that of L-calelectrin occurred in the micromolar range. Dissociation of H-calelectrin previously bound to lipids in the presence of 2 mM Ca2+ took place only when the Ca2+ concentration was reduced to micromolar concentrations. Binding was most effective to acidic phospholipids such as phosphatidylserine. Both forms of calelectrin promoted the aggregation of membrane vesicles in the presence of Ca2+.Mg2+, Na+ and K+ inhibited the Ca2+-induced binding to phospholipid, decreasing in effectiveness in that order. Binding was also inhibited by high pH. The surface activity and hydrophobicity index showed that H-calelectrin is a hydrophilic molecule. It may represent a less active, more highly phosphorylated "down-regulated" form of L-calelectrin. The role of calcium in H-calelectrin binding to lipid appeared to be consistent with the formation of a ternary complex of the protein, an acidic lipid and Ca2+, rather than with a direct interaction of lipid with hydrophobic sequences in H-calelectrin whose accessibility is Ca2+-regulated.  相似文献   

10.
Two calcium-dependent proteins of apparent Mr 32,000 and 34,000 were isolated from bovine lung. Approx. 70 mg/kg of each was obtained. Two-dimensional gel electrophoresis in the presence of 8 M urea showed their apparent p/values to be 5.1 and 5.0, respectively. Both proteins are related immunologically to calelectrin from Torpedo marmorata. They also have very similar amino acid compositions to calelectrin. Partial sequence information shows that both proteins contain the highly conserved sequence described for the annexins, a new family of calcium-dependent membrane-binding proteins. In common with other members of this family, the new proteins bind to acidic phospholipids in a calcium-dependent manner.  相似文献   

11.
Pigeon heart microsomes contain three minor size protein kinase substrates of minimal molecular weights of 22 000, 15 000, and 11500, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When the microsomes were partially loaded with calcium oxalate and subjected to rate zonal and isopycnic centrifugations in sucrose density gradient columns, the 22 000 and the 15 000 dalton proteins settled in the heaviest fraction, which was composed mainly of vesicles of sarcoplasmic reticular membranes; the 11 500 dalton protein was concentrated in the lightest fractions, which consisted chiefly of vesicles of sarcolemmal origin. During incubation of the membrane fractions with Mg [gamma-32P]ATP significant amounts of 32P were incorporated into all these proteins. Incorporation of 32P into the 15 000 dalton protein was moderately and 32P incorporation into the 22 000 dalton protein was markedly enhanced in the presence of exogenous soluble cyclic AMP-dependent protein kinase and cyclic AMP. The phosphorylation of the three proteins was virtually unaffected by Ca2+ concentrations up to 0.1 mM and by ethyleneglycol-bis-(beta-aminoethyl-ether)-N,N'-tetraacetic acid in the absence of added Ca2+. Phosphorylation of the 22 000 and the 11 500 dalton proteins occurred mainly at serine residues. In the 15 000 dalton protein threonine residues were the main site of endogenous phosphorylation. Nearly equal amounts of [32P]-phosphate were incorporated into threonine and serine residues of this protein, when phosphorylation was supported by exogenous cyclic AMP-dependent protein kinase and cyclic AMP. The 15 000 dalton protein could be removed from its membrane attachment by extraction with an acidic chloroform/methanol mixture. This step opens the way for the purification of this membrane-bound protein kinase substrate.  相似文献   

12.
E Pfeuffer  S Mollner    T Pfeuffer 《The EMBO journal》1985,4(13B):3675-3679
The non-stimulated (basal) adenylate cyclase from bovine brain cortical membranes was purified 10 000-fold to apparent homogeneity by Lubrol PX extraction and two cycles of affinity chromatography on forskolin-agarose. The final product appears as one major band (mol. wt. 115 000) on SDS-polyacrylamide gels. Further identification was achieved by affinity cross-linking using Gs (stimulatory GTP-binding protein) that was [32P]ADP-ribosylated by cholera-toxin/[32P]NAD: cross-linking with disuccinimidyl suberate gave products with mol. wts. of 160 000, approximately 270 000 and higher. The distribution of these products was dependent on the concentration of cross-linker, suggesting aggregation of two or more adenylate cyclase complexes. In contrast, photo-affinity cross-linking with 4-azidobenzoyl-[32P]Gs yielded a single product with a mol. wt. of 160 000. Purified adenylate cyclase was completely unresponsive towards stimulators (GTP-analogs, NaF) acting via Gs suggesting that this component was removed during purification. On the other hand, stimulation by forskolin and by added activated Gs was preserved but to a smaller degree as compared with the crude enzyme. In contrast, the stimulation of Ca2+/calmodulin was only marginal. Purified adenylate cyclase reversibly bound to wheat germ agglutinin-Sepharose. This suggests that bovine brain adenylate cyclase is a glycoprotein.  相似文献   

13.
Calcium-accumulating vesicles were isolated by differential centrifugation of sonicated platelets. Such vesicles exhibit a (Ca2+ + Mg2+)-ATPase activity of about 10 nmol (min . mg)-1 and an ATP-dependent Ca2+ uptake of about 10 nmol (min . mg)-1. When incubated in the presence of Mg[gamma-32P]ATP, the pump is phosphorylated and the acyl phosphate bond is sensitive to hydroxylamine. The [32P]phosphate-labeled Ca2+ pump exhibits a subunit molecular weight of 120 000 when analyzed by lithium dodecyl sulfate-polyacrylamide gel electrophoresis. Platelet calcium-accumulating vesicles contain a 23 kDa membrane protein that is phosphorylatable by the catalytic subunit of cAMP-dependent protein kinase but not by protein kinase C. This phosphate acceptor is not phosphorylated when the vesicles are incubated in the presence of either Ca2+ or Ca2+ plus calmodulin. The latter protein is bound to the vesicles and represents 0.5% of the proteins present in the membrane fraction. Binding of 125I-labeled calmodulin to this membrane fraction was of high affinity (16 nM), and the use of an overlay technique revealed four major calmodulin-binding proteins in the platelet cytosol (Mr = 94 000, 87 000, 60 000 and 43 000). Some minor calmodulin-binding proteins were enriched in the membrane fractions (Mr = 69 000, 57 000, 39 000 and 37 000). When the vesicles are phosphorylated in the presence of MgATP and of the catalytic subunit of cAMP-dependent protein kinase, the rate of Ca2+ uptake is essentially unaltered, while the Ca2+ capacity is diminished as a consequence of a doubling in the rate of Ca2+ efflux. Therefore, the inhibitory effect of cAMP on platelet function cannot be explained in such simple terms as an increased rate of Ca2+ removal from the cytosol. Calmodulin, on the other hand, was observed to have no effect on the initial rate of calcium efflux when added either in the absence or in the presence of the catalytic subunit of the cyclic AMP-dependent protein kinase, nor did the addition of 0.5 microM calmodulin result in increased levels of vesicle phosphorylation.  相似文献   

14.
At least 23 soluble proteins (chromobindins) bind to chromaffin granule membranes in the presence of Ca2+. In order to further the identification of the chromobindins and to determine the roles they may play in exocytosis or other aspects of chromaffin cell biology, several of these proteins were compared to other known membrane-binding proteins. Chromobindin 4 was identified as a 32-kDa protein called calelectrin or endonexin. Immunologically related proteins were detected in bovine brain and human platelets. Chromobindin 20 was identified as a 67-kDa variant of calelectrin and was found to have the activities of the synexin inhibitory protein, synhibin. Chromobindin 8 was identified as p36, a substrate for the tyrosine-specific kinase, pp60v-src. Chromobindin 8 was also demonstrated to undergo phosphorylation predominantly on alkali-sensitive sites during stimulation of the chromaffin cell with 20 microM nicotine. Chromobindin 6 was identified as p35, a substrate for the tyrosine kinase activity associated with the epidermal growth factor receptor. Chromobindin 9, which is known to be a substrate for protein kinase C (Ca2+/phospholipid-dependent enzyme), was found to be immunologically related to p35 and may be a precursor of chromobindin 6. The identification of these proteins from the chromaffin system may be useful in the characterization of similar, complex groups of membrane-binding proteins that have been observed in other systems.  相似文献   

15.
Exposure of 32P-labelled human platelets to ionophore A23187 results in an increased incorporation of 32P into polypeptides with apparent mol.wts. of 47 000 (P47) and 20 000 (P20), whereas exposure to prostaglandin E1 results in increased labelling of polypeptides with apparent mol.wts. of 24 000 (P24) and 22 000 (P22) [Haslam, Lynham & Fox (1979) Biochem. J. 178, 397-406]. Labelled platelets that had been incubated with ionophore A23187 or prostaglandin E1 were sonicated and rapidly separated into three fractions by differential centrifugation. Electron microscopy and measurement of marker enzymes indicated that the 1300-19 000 gav. particulate fraction was enriched in granules, mitochondria and plasma membranes, that the 19 000-90 000 gav. particulate fraction was enriched in both intracellular and plasma membranes and that the 90 000 gav. supernatant contained only soluble proteins. 32P-labelled phosphopolypeptide P47 was present almost exclusively in the 90 000 gav. supernatant, whereas phosphopolypeptide P20 was largely dephosphorylated under fractionation conditions that protected other phosphopolypeptides. 32P-labelled phosphopolypeptide P24 was enriched in both particulate fractions, but particularly in the 19 000-90 000 gav. fraction, and may therefore be present in both the intracellular and plasma membranes. Phosphopolypeptide P22 appeared to be similarly distributed. Both particulate fractions were capable of the ATP-dependent oxalate-stimulated uptake of Ca2+. When the 19 000-90 000 gav. membrane fraction was prepared from platelets that had been incubated with ionophore A23187, active uptake of Ca2+ did not occur, but when this fraction was isolated from platelets that had been exposed to prostaglandin E1, uptake of Ca2+ was significantly greater than observed with the corresponding membranes from control platelets. It is suggested that phosphorylation of polypeptide P24 (or P22) by a cyclic AMP-dependent protein kinase may promote the active transport of Ca2+ out of the platelet cytosol.  相似文献   

16.
Calelectrin is a new calcium-binding protein isolated from the cholinergic nerve terminals of the electric organ of Torpedo marmorata, which is widely distributed in nervous tissues and selectively binds to membranes, self-aggregates, and promotes calcium-induced membrane aggregation as a function of calcium concentration. We now show by immunofluorescence and immune blotting procedures that this protein is also present in human blood cells. Immunofluorescence demonstrates calelectrin in all human leucocytes, including mononuclear cells, but not in platelets or in erythrocytes. The immunofluorescence indicates an exclusively cytoplasmic location of calelectrin with a diffuse distribution and no primary association with the cytoskeleton or the cell membranes. SDS-polyacrylamide gel electrophoresis with immune blotting of fractionated blood cells (thrombocytes, mononuclear cells, granulocytes and erythrocytes) reveals the presence of a single protein crossreactive with calelectrin from Torpedo marmorata in the granulocyte and mononuclear cell fractions only. Human calelectrin has a molecular weight similar to Torpedo calelectrin (approximately 34-35 kD) and also binds to membranes in a Ca(2+)-dependent manner. Our results have several implications: (1) Calelectrin is conserved during evolution between the fish Torpedo marmorata and humans; (2) its expression in neural and mesenchymal cells points to an important functional role of the protein; (3) its absence from platelets excludes the hypothesis that it is a necessary participant in exocytosis per se and suggests some other function in Ca(2+)-triggered processes.  相似文献   

17.
Scinderin, a novel Ca2+-activated actin filament-severing protein, has been purified to homogeneity from bovine adrenal medulla using a combination of several chromatographic procedures. The protein has an apparent mol. wt of 79,600 +/- 450 daltons, three isoforms (pIs 6.0, 6.1 and 6.2) and two Ca2+ binding sites (Kd 5.85 x 10(-7) M, Bmax 0.81 mol Ca2+/mol protein and Kd 2.85 x 10(-6) M, Bmax 1.87 mol Ca2+/mol protein). Scinderin interacts with F-actin in the presence of Ca2+ and produces a decrease in the viscosity of actin gels as a result of F-actin filament severing as demonstrated by electron microscopy. Scinderin is a structurally different protein from chromaffin cell gelsolin, another actin filament-severing protein described. Scinderin and gelsolin have different mol. wts, isoelectric points, amino acid composition and yield different peptide maps after limited proteolytic digestion by either Staphylococcus V8 protease or chymotrypsin. Moreover, scinderin antibodies do not cross-react with gelsolin and gelsolin antibodies fail to recognize scinderin. Immunofluorescence with anti-scinderin demonstrated that this protein is mainly localized in the subplasmalemma region of the chromaffin cell. Immunoblotting tests with the same antibodies indicated that scinderin is also expressed in brain and anterior as well as posterior pituitary. Presence of scinderin and gelsolin, two Ca2+-dependent actin filament-severing proteins in the same tissue, suggests the possibility of synergistic functions by the two proteins in the control of cellular actin filament networks. Alternatively, the actin filament-severing activity of the two proteins might be under the control of different transduction and modulating influences.  相似文献   

18.
Homogenates of neural lobes of bovine pituitary glands were fractionated on Ficoll gradients to yield neurosecretosomes (nerve endings). The neurosecretosomes were lysed in a hypo-osmotic buffer and the membranes were separated from the soluble components by centrifugation. On incubation with [gamma-32P]ATP this membrane preparation showed an endogenous phosphorylation activity, which was studied by means of gel electrophoresis in the presence of sodium dodecyl sulphate, and subsequent autoradiography. The major part of the [32P]Pi detected on the gel was shown to be incorporated into three protein bands, termed A, B and C, with minimal mol.wts. of 83 000, 59 000 and 47 000 respectively. The phosphorylation of these three proteins was studied under a variety of experimental conditions. The patterns obtained were partly similar. However, important individual differences were noted, particularly with respect to the effects of cyclic AMP, Mg2+ and Ca2+. On the basis of these differences, it is suggested that in this system the phosphorylation activity is heterogenous, bands A, B and C each reflecting the presence of a different site of phosphate turnover. The relationship of bands A, B and C to several of the previously described phosphoproteins in the brain is discussed.  相似文献   

19.
Nucleocytoplasmic exchange of macromolecules   总被引:18,自引:0,他引:18  
Quantitative measurements of the cytoplasm-to-nucleus exchange of specific protein tracers were correlated with known physical properties (size and electrical charge) of the proteins. Tracers differing in their molecular parameters were produced by fluorescence labelling of wellcharacterized proteins (bovine serum albumin, mol. wt 67 500; ovalbumin, mol. wt 45 000; myoglobin, mol. wt 17 500; lysozyme, mol. wt 14 500; and cytochrome c, mol. wt 13 000) with fluorescein isothiocyanate. The labelled proteins were microinjected into the cytoplasm of living cells, and their uptake into the nucleus was followed by quantitative fluorescence microscopy. In addition, the distribution of cytoplasmically injected ferritin (mol. wt 465 000) was observed with the electron microscope.  相似文献   

20.
Endonexin II is a member of the family of Ca2+-dependent phospholipid binding proteins known as annexins. We cloned human endonexin II cDNA and expressed it in Escherichia coli. The apparent size and Ca2+-dependent phospholipid binding properties of purified recombinant endonexin II were indistinguishable from those of the placental protein. A single mRNA of approximately 1.6 kilobase pairs was found to be expressed in human cell lines and placenta and was in close agreement with the length of the cDNA clone (1.59 kilobase pairs). The cDNA predicted a 320-amino acid protein with a sequence that was in agreement with the previously determined partial amino acid sequence of endonexin II isolated from placenta. Endonexin II contained 58, 46, and 43% sequence identity to protein II, calpactin I (p36, protein I), and lipocortin I (p35), respectively. The partial sequence of bovine endonexin I was aligned with the sequence of endonexin II to give 63% sequence identity. Like these other proteins, endonexin II had a 4-fold internal repeat of approximately 70 residues preceded by an amino-terminal domain lacking similarity to the repeated region. It also had significant sequence identity with 67-kDa calelectrin (p68), a protein with an 8-fold internal repeat. Comparing the amino-terminal domains of these four proteins of known sequence revealed that, in general, only endonexin II and protein II had significant sequence identity (29%). Endonexin II was not phosphorylated by Ca2+/phospholipid-dependent enzyme (protein kinase C) even though it contained a threonine at a position analogous to the protein kinase C phosphorylation sites of lipocortin I, calpactin I, and protein II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号