首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 92 毫秒
1.
The regulation of gene expression plays a pivotal role in complex phenotypes, and epigenetic mechanisms such as DNA methylation are essential to this process. The availability of next-generation sequencing technologies allows us to study epigenetic variation at an unprecedented level of resolution. Even so, our understanding of the underlying sources of epigenetic variability remains limited. Twin studies have played an essential role in estimating phenotypic heritability, and these now offer an opportunity to study epigenetic variation as a dynamic quantitative trait. High monozygotic twin discordance rates for common diseases suggest that unexplained environmental or epigenetic factors could be involved. Recent genome-wide epigenetic studies in disease-discordant monozygotic twins emphasize the power of this design to successfully identify epigenetic changes associated with complex traits. We describe how large-scale epigenetic studies of twins can improve our understanding of how genetic, environmental and stochastic factors impact upon epigenetics, and how such studies can provide a comprehensive understanding of how epigenetic variation affects complex traits.  相似文献   

2.
What determines phenotype is one of the most fundamental questions in biology. Historically, the search for answers had focused on genetic or environmental variants, but recent studies in epigenetics have revealed a third mechanism that can influence phenotypic outcomes, even in the absence of genetic or environmental heterogeneity. Even more surprisingly, some epigenetic variants, or epialleles, can be inherited by the offspring, indicating the existence of a mechanism for biological heredity that is not based on DNA sequence. Recent work from mouse models, human monozygotic twin studies, and large-scale epigenetic profiling suggests that epigenetically determined phenotypes and epigenetic inheritance are more common than previously appreciated.  相似文献   

3.
Organisms often respond to environmental changes by producing alternative phenotypes. Epigenetic processes such as DNA methylation may contribute to environmentally induced phenotypic variation by modifying gene expression. Changes in DNA methylation, unlike DNA mutations, can be influenced by the environment; they are stable at the time scale of an individual and present different levels of heritability. These characteristics make DNA methylation a potentially important molecular process to respond to environmental change. The aim of this review is to present the implications of DNA methylation on phenotypic variations driven by environmental changes. More specifically, we explore epigenetic concepts concerning phenotypic change in response to the environment and heritability of DNA methylation, namely the Baldwin effect and genetic accommodation. Before addressing this point, we report major differences in DNA methylation across taxa and the role of this modification in producing and maintaining environmentally induced phenotypic variation. We also present the different methods allowing the detection of methylation polymorphism. We believe this review will be helpful to molecular ecologists, in that it highlights the importance of epigenetic processes in ecological and evolutionary studies.  相似文献   

4.
For most complex traits, results from genome-wide association studies show that the proportion of the phenotypic variance attributable to the additive effects of individual SNPs, that is, the heritability explained by the SNPs, is substantially less than the estimate of heritability obtained by standard methods using correlations between relatives. This difference has been called the “missing heritability”. One explanation is that heritability estimates from family (including twin) studies are biased upwards. Zuk et al. revisited overestimation of narrow sense heritability from twin studies as a result of confounding with non-additive genetic variance. They propose a limiting pathway (LP) model that generates significant epistatic variation and its simple parametrization provides a convenient way to explore implications of epistasis. They conclude that over-estimation of narrow sense heritability from family data (‘phantom heritability’) may explain an important proportion of missing heritability. We show that for highly heritable quantitative traits large phantom heritability estimates from twin studies are possible only if a large contribution of common environment is assumed. The LP model is underpinned by strong assumptions that are unlikely to hold, including that all contributing pathways have the same mean and variance and are uncorrelated. Here, we relax the assumptions that underlie the LP model to be more biologically plausible. Together with theoretical, empirical, and pragmatic arguments we conclude that in outbred populations the contribution of additive genetic variance is likely to be much more important than the contribution of non-additive variance.  相似文献   

5.
Diseases of complex origin have a component of quantitative genetics that contributes to their susceptibility and phenotypic variability. However, after several studies, a major part of the genetic component of complex phenotypes has still not been found, a situation known as “missing heritability.” Although there have been many hypotheses put forward to explain the reasons for the missing heritability, its definitive causes remain unknown. Complex diseases are caused by multiple intermediate phenotypes involved in their pathogenesis and, very often, each one of these intermediate phenotypes also has a component of quantitative inheritance. Here we propose that at least part of the missing heritability can be explained by the genetic component of intermediate phenotypes that is not detectable at the level of the main complex trait. At the same time, the identification of the genetic component of intermediate phenotypes provides an opportunity to identify part of the missing heritability of complex diseases.  相似文献   

6.
Environment-sensitive epigenetics and the heritability of complex diseases   总被引:1,自引:0,他引:1  
Furrow RE  Christiansen FB  Feldman MW 《Genetics》2011,189(4):1377-1387
Genome-wide association studies have thus far failed to explain the observed heritability of complex human diseases. This is referred to as the "missing heritability" problem. However, these analyses have usually neglected to consider a role for epigenetic variation, which has been associated with many human diseases. We extend models of epigenetic inheritance to investigate whether environment-sensitive epigenetic modifications of DNA might explain observed patterns of familial aggregation. We find that variation in epigenetic state and environmental state can result in highly heritable phenotypes through a combination of epigenetic and environmental inheritance. These two inheritance processes together can produce familial covariances significantly higher than those predicted by models of purely epigenetic inheritance and similar to those expected from genetic effects. The results suggest that epigenetic variation, inherited both directly and through shared environmental effects, may make a key contribution to the missing heritability.  相似文献   

7.
刘姝丽  张胜利  俞英 《遗传》2016,38(12):1043-1055
同卵双胞胎来源于同一个受精卵,DNA序列基本一致,但在某些重要表型上如复杂疾病,并不完全一样。利用表型不一致的同卵双胞胎进行研究,能在遗传背景、母体效应、年龄性别效应等一致的基础上,深入研究分析复杂性状的表观调控机制。而DNA甲基化是最为稳定的一类表观遗传修饰。在人类中,利用同卵双胞胎对印记异常疾病、精神类疾病、自身免疫病及癌症等疾病的DNA甲基化调控研究已经揭示了多个致病基因,为研究疾病的表观调控以及表观遗传学药物的应用打下了基础。本文着重对同卵双胞胎DNA甲基化状态、DNA甲基化遗传力计算以及复杂性状DNA甲基化调控的研究应用及其进展展开综述,以期为复杂性状表观调控机制研究提供借鉴和参考。  相似文献   

8.
The classical twin study has been a powerful heuristic in biomedical, psychiatric and behavioural research for decades. Twin registries worldwide have collected biological material and longitudinal phenotypic data on tens of thousands of twins, providing a valuable resource for studying complex phenotypes and their underlying biology. In this Review, we consider the continuing value of twin studies in the current era of molecular genetic studies. We conclude that classical twin methods combined with novel technologies represent a powerful approach towards identifying and understanding the molecular pathways that underlie complex traits.  相似文献   

9.
ABSTRACT: Genetic factors are believed to play an important role in the etiology of adolescent idiopathic scoliosis (AIS). Discordant findings for monozygotic (MZ) twins with AIS show that environmental factors including different intrauterine environments are important in etiology, but what these environmental factors may be is unknown. Recent evidence for common chronic non-communicable diseases suggests epigenetic differences may underlie MZ twin discordance, and be the link between environmental factors and phenotypic differences. DNA methylation is one important epigenetic mechanism operating at the interface between genome and environment to regulate phenotypic plasticity with a complex regulation across the genome during the first decade of life. The word exposome refers to the totality of environmental exposures from conception onwards, comprising factors in external and internal environments. The word exposome is used here also in relation to physiologic and etiopathogenetic factors that affect normal spinal growth and may induce the deformity of AIS. In normal postnatal spinal growth we propose a new term and concept, physiologic growth-plate exposome for the normal processes particularly of the internal environments that may have epigenetic effects on growth plates of vertebrae. In AIS, we propose a new term and concept pathophysiologic scoliogenic exposome for the abnormal processes in molecular pathways particularly of the internal environment currently expressed as etiopathogenetic hypotheses; these are suggested to have deforming effects on the growth plates of vertebrae at cell, tissue, structure and/or organ levels that are considered to be epigenetic. New research is required for chromatin modifications including DNA methylation in AIS subjects and vertebral growth plates excised at surgery. In addition, consideration is needed for a possible network approach to etiopathogenesis by constructing AIS diseasomes. These approaches may lead through screening, genetic, epigenetic, biochemical, metabolic phenotypes and pharmacogenomic research to identify susceptible individuals at risk and modulate abnormal molecular pathways of AIS. The potential of epigenetic-based medical therapy for AIS cannot be assessed at present, and must await new research derived from the evaluation of epigenetic concepts of spinal growth in health and deformity. The tenets outlined here for AIS are applicable to other musculoskeletal growth disorders including infantile and juvenile idiopathic scoliosis.  相似文献   

10.
Non-linear epigenetic processes are a potential underlying source of phenotypic differences in development. Simulation studies of twin pairs using simple non-linear development models characterised by chaotic or near-chaotic behavior are presented. The effect of chaotic processes on correlations is to lower them from their initial values, but high initial correlations are affected much less by chaotic and near-chaotic processes than intermediate correlations. Therefore, we would predict that traits affected by chaotic processes would have high MZ and low DZ twin correlations and this is reminiscent of certain traits such as EEG spectra. However the much more frequent observation of MZ correlations close to twice their DZ counterparts would suggest that the role of chaos in development is quite limited.  相似文献   

11.
For most complex traits, only a small proportion of heritability is explained by statistically significant associations from genome-wide association studies (GWAS). In order to determine how much heritability can potentially be explained through larger GWAS, several different approaches for estimating total narrow-sense heritability from GWAS data have recently been proposed. These methods include variance components with relatedness estimates from allele-sharing, variance components with relatedness estimates from identity-by-descent (IBD) segments, and regression of phenotypic correlation on relatedness estimates from IBD segments. These methods have not previously been compared on real or simulated data. We analyze the narrow-sense heritability of nine metabolic traits in the Northern Finland Birth Cohort (NFBC) using these methods. We find substantial estimated heritability for several traits, including LDL cholesterol (54 % heritability), HDL cholesterol (46 % heritability), and fasting glucose levels (39 % heritability). Estimates of heritability from the regression-based approach are much lower than variance component estimates in these data, which may be due to the presence of strong population structure. We also investigate the accuracy of the competing approaches using simulated phenotypes based on genotype data from the NFBC. The simulation results substantiate the downward bias of the regression-based approach in the presence of population structure.  相似文献   

12.
Individual animals frequently exhibit repeatable differences from other members of their population, differences now commonly referred to as ‘animal personality’. Personality differences can arise, for example, from differences in permanent environmental effects―including parental and epigenetic contributors―and the effect of additive genetic variation. Although several studies have evaluated the heritability of behaviour, less is known about general patterns of heritability and additive genetic variation in animal personality. As overall variation in behaviour includes both the among-individual differences that reflect different personalities and temporary environmental effects, it is possible for personality to be largely genetically influenced even when heritability of behaviour per se is quite low. The relative contribution of additive genetic variation to personality variation can be estimated whenever both repeatability and heritability are estimated for the same data. Using published estimates to address this issue, we found that approximately 52% of animal personality variation was attributable to additive genetic variation. Thus, while the heritability of behaviour is often moderate or low, the heritability of personality is much higher. Our results therefore (i) demonstrate that genetic differences are likely to be a major contributor to variation in animal personality and (ii) support the phenotypic gambit: that evolutionary inferences drawn from repeatability estimates may often be justified.  相似文献   

13.
Loss or gain of DNA methylation can affect gene expression and is sometimes transmitted across generations. Such epigenetic alterations are thus a possible source of heritable phenotypic variation in the absence of DNA sequence change. However, attempts to assess the prevalence of stable epigenetic variation in natural and experimental populations and to quantify its impact on complex traits have been hampered by the confounding effects of DNA sequence polymorphisms. To overcome this problem as much as possible, two parents with little DNA sequence differences, but contrasting DNA methylation profiles, were used to derive a panel of epigenetic Recombinant Inbred Lines (epiRILs) in the reference plant Arabidopsis thaliana. The epiRILs showed variation and high heritability for flowering time and plant height (~30%), as well as stable inheritance of multiple parental DNA methylation variants (epialleles) over at least eight generations. These findings provide a first rationale to identify epiallelic variants that contribute to heritable variation in complex traits using linkage or association studies. More generally, the demonstration that numerous epialleles across the genome can be stable over many generations in the absence of selection or extensive DNA sequence variation highlights the need to integrate epigenetic information into population genetics studies.  相似文献   

14.
N Zaitlen  P Kraft 《Human genetics》2012,131(10):1655-1664
Heritability, the fraction of phenotypic variation explained by genetic variation, has been estimated for many phenotypes in a range of populations, organisms, and time points. The recent development of efficient genotyping and sequencing technology has led researchers to attempt to identify the genetic variants responsible for the genetic component of phenotype directly via GWAS. The gap between the phenotypic variance explained by GWAS results and those estimated from classical heritability methods has been termed the "missing heritability problem". In this work, we examine modern methods for estimating heritability, which use the genotype and sequence data directly. We discuss them in the context of classical heritability methods, the missing heritability problem, and describe their implications for understanding the genetic architecture of complex phenotypes.  相似文献   

15.
Laboratory mice are valuable in biomedical research in part because of the extraordinary diversity of genetic resources that are available for studies of complex genetic traits and as models for human biology and disease. Chromosome substitution strains (CSSs) are important in this resource portfolio because of their demonstrated use for gene discovery, genetic and epigenetic studies, functional characterizations, and systems analysis. CSSs are made by replacing a single chromosome in a host strain with the corresponding chromosome from a donor strain. A complete CSS panel involves a total of 22 engineered inbred strains, one for each of the 19 autosomes, one each for the X and Y chromosomes, and one for mitochondria. A genome survey simply involves comparing each phenotype for each of the CSSs with the phenotypes of the host strain. The CSS panels that are available for laboratory mice have been used to dissect a remarkable variety of phenotypes and to characterize an impressive array of disease models. These surveys have revealed considerable phenotypic diversity even among closely related progenitor strains, evidence for strong epistasis and for heritable epigenetic changes. Perhaps most importantly, and presumably because of their unique genetic constitution, CSSs, and congenic strains derived from them, the genetic variants underlying quantitative trait loci (QTLs) are readily identified and functionally characterized. Together these studies show that CSSs are important resource for laboratory mice.  相似文献   

16.
Gene interactions are acknowledged to be a likely source of missing heritability in large‐scale genetic studies of complex neurological phenotypes. However, involvement of rare variants, de novo mutations, genetic lesions that are not easily detected with commonly used methods and epigenetic factors also are possible explanations. We used a laboratory evolution study to investigate the modulatory effects of background genetic variation on the phenotypic effect size of a null mutation with known impact on olfactory learning. To accomplish this, we first established a population that contained variation at just 23 loci and used selection to evolve suppression of the learning defect seen with null mutations in the rutabaga adenylyl cyclase. We thus biased the system to favor relatively simplified outcomes by choosing a Mendelian trait and by restricting the genetic variation segregating in the population. This experimental design also assures that the causal effects are among the known 23 segregating loci. We observe a robust response to selection that requires the presence of the 23 variants. Analyses of the underlying genotypes showed that interactions between more than two loci are likely to be involved in explaining the selection response, with implications for the missing heritability problem.  相似文献   

17.
Many previous attempts to quantify the contribution of genetic factors to human dental variation using the classical twin design have been based on untested assumptions that lead to unreliable estimates of heritability. We have applied structural equation modelling to several different dental phenotypes in a sample of over 600 pairs of Australian twins, enabling the goodness-of-fit of the data to be tested against genetic models incorporating different components of genetic and environmental variance. Our results indicate that the contribution of additive genetic effects to phenotypic variation differs considerably between different dental traits. Heritability estimates for intercuspal distances of molar teeth and for incisal overbite and overjet are low to moderate in magnitude, whereas heritabilities for overall molar crown size and arch dimensions are moderate to high. We propose that after formation of the enamel knots during odontogenesis, the emerging pattern of molar cusps results from a cascade of local epigenetic events, rather than being under direct genetic control. Variation in molar crown size is explained best by a model incorporating additive genetic effects, as well as environmental influences that are both unique and common to co-twins. These environmental influences presumably operate in utero during the early stages of molar odontogenesis prior to crown calcification. The relatively low heritabilities noted for occlusal traits are consistent with the importance of masticatory activity and muscle function in determining the interrelationships between teeth in opposing dental arches. We believe that well-designed studies of twins, coupled with modern genome-scanning approaches, offer great potential to identify key “dental” genes and to clarify how these genes interact with the environment during development.  相似文献   

18.
This study investigated the influence of genes and environment on the variation of apolipoprotein and lipid levels, which are important intermediate phenotypes in the pathways toward cardiovascular disease. Heritability estimates are presented, including those for apolipoprotein E and AII levels which have rarely been reported before. We studied twin samples from the Netherlands (two cohorts; n = 160 pairs, aged 13-22 and n = 204 pairs, aged 34-62), Australia (n = 1362 pairs, aged 28-92) and Sweden (n = 302 pairs, aged 42-88). The variation of apolipoprotein and lipid levels depended largely on the influences of additive genetic factors in each twin sample. There was no significant evidence for the influence of common environment. No sex differences in heritability estimates for any phenotype in any of the samples were observed. Heritabilities ranged from 0.48-0.87, with most heritabilities exceeding 0.60. The heritability estimates in the Dutch samples were significantly higher than in the Australian sample. The heritabilities for the Swedish were intermediate to the Dutch and the Australian samples and not significantly different from the heritabilities in these other two samples. Although sample specific effects are present, we have shown that genes play a major role in determining the variance of apolipoprotein and lipid levels in four independent twin samples from three different countries.  相似文献   

19.
DNA methylation is a key epigenetic mechanism involved in the developmental regulation of gene expression. Alterations in DNA methylation are established contributors to inter-individual phenotypic variation and have been associated with disease susceptibility. The degree to which changes in loci-specific DNA methylation are under the influence of heritable and environmental factors is largely unknown. In this study, we quantitatively measured DNA methylation across the promoter regions of the dopamine receptor 4 gene (DRD4), the serotonin transporter gene (SLC6A4/SERT) and the X-linked monoamine oxidase A gene (MAOA) using DNA sampled at both ages 5 and 10 years in 46 MZ twinpairs and 45 DZ twin-pairs (total n = 182). Our data suggest that DNA methylation differences are apparent already in early childhood, even between genetically identical individuals, and that individual differences in methylation are not stable over time. Our longitudinal-developmental study suggests that environmental influences are important factors accounting for interindividual DNA methylation differences, and that these influences differ across the genome. The observation of dynamic changes in DNA methylation over time highlights the importance of longitudinal research designs for epigenetic research.Key words: epigenetics, DNA methylation, twin, heritability, dynamic, environment  相似文献   

20.
Developmental plasticity, the capacity of a single genotype to give rise to different phenotypes, affects evolutionary dynamics by influencing the rate and direction of phenotypic change. It is based on regulatory changes in gene expression and gene products, which are partially controlled by epigenetic mechanisms. Plasticity involves not just epigenetic changes in somatic cells and tissues; it can also involve changes in germline cells. Germline epigenetic plasticity increases evolvability, the capacity to generate heritable, selectable, phenotypic variations, including variations that lead to novel functions. I discuss studies that show that some complex adaptive responses to new challenges are mediated by germline epigenetic processes, which can be transmitted over variable number of generations, and argue that the heritable variations that are generated epigenetically have an impact on both small-scale and large-scale aspects of evolution. First, I review some recent ecological studies and models that show that germline (gametic) epigenetic inheritance can lead to cumulative micro-evolutionary changes that are rapid and semi-directional. I suggest that “priming” and “epigenetic learning” may be of special importance in generating heritable, fine-tuned adaptive responses in populations. Second, I consider work showing how genomic and environmental stresses can also lead to epigenome repatterning, and produce changes that are saltational.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号