首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracellular membrane traffic, during endocytosis in mouse bone marrow-derived macrophages, was studied quantitatively by morphometric and kinetic analysis. Three functionally different markers were used: Horseradish peroxidase (HRP) served as a fluid-phase (FP) marker (1000 micrograms HRP/ml in the presence of mannan) or as a receptor-mediated (RM) membrane marker (25 micrograms HRP/ml) and, third, plasma membrane (PM) glycoconjugates, enzymatically labeled with [3H]galactose at the cell surface, served as a covalent membrane marker. The cell surface was labeled with [3H]galactose, followed by either FP or by RM uptake of HRP. The kinetics of the intracellular appearance of the markers were measured as the membrane area stained by HRP-reaction product and as the number of autoradiographic grains associated with these membranes. The following compartments were distinguished: PM, coated vesicles (VI), pinosomes or endosomes (VII), secondary lysosomes (VIII), and HRP-negative vesicles (EV). Tubular structures of VII became labeled with HRP only during RM uptake. The markers flowed first into VI and VII, and after 5 min into VIII. EV became labeled with the covalent membrane marker starting from 5 min. The ratio of autoradiographic grain number to HRP-stained membrane area remained constant with time although substantially different for the various compartments, viz. 100% (VI), 50% (VII and EV) and 30% (VIII) as compared to the PM (100%). This indicated that endosomes were only partially derived from internalized PM and that secondary lysosomes contained a substantial pool of PM constituents. The observed kinetics suggested that once every 30 to 40 min the entire PM was internalized, the bulk of which was recycled after 4 min from a prelysosomal compartment(s) leaving only 12 to 20% for recycling via membranes of secondary lysosomes after a residence time of 24 to 33 min.  相似文献   

2.
By conventional electron microscopy we observed in mitotic HeLa cells the structures termed Golgi clusters by Lucocq et al. (J. Cell Biol. 104, 865-874 (1987)) and interpreted by them as clusters of vesicular remnants of the Golgi apparatus. Golgi clusters consist of tubular and vesicular profiles about 50 nm in diameter, sometimes associated with larger 250 nm vesicles. When cultures of HeLa cells were incubated for 60 min or 120 min with medium containing high specific activity horseradish peroxidase (HRP) at 10 mg/ml we found that the membrane-bound compartments in the Golgi clusters in mitotic cells contained heavy deposits of HRP reaction product. Neither interphase nor mitotic HeLa cells contain an endogenous peroxidase activity. We concluded that Golgi clusters are an endocytic compartment and confirmed this by showing that Golgi clusters could be labeled with two other endocytic tracers--bovine serum albumin conjugated to colloidal gold and transferrin conjugated to HRP. When cultures were incubated with HRP for only 15 min most of the Golgi clusters in the mitotic cells were either unlabeled or consisted of a mixture of HRP-labeled and unlabeled profiles. Since during mitosis endocytosis is inhibited this was the expected result. When interphase HeLa cells were incubated with Brefeldin A (BFA), the Golgi apparatus disassembled and immunofluorescence microscopy showed that 1,4 beta galactosyltransferase had relocated to the endoplasmic reticulum. When cells in the presence of BFA and lacking the Golgi apparatus were allowed to endocytose HRP and then entered mitosis, typical HRP-labeled Golgi clusters were seen in the mitotic cells. It is therefore highly unlikely that these structures contain membrane derived from the Golgi cisternae that are sensitive to BFA, including in HeLa cells those containing galactosyltransferase. Finally, we found that interphase HeLa cells incubated with okadaic acid contain structures that are morphologically indistinguishable from Golgi clusters but can be labeled by endocytic tracer. Taken together, this evidence indicates that most, if not all, of the membrane-bound compartments in Golgi clusters are tubular early endosomes.  相似文献   

3.
Several ligands undergo endocytosis into the Golgi apparatus. We have examined with a quantitative ultrastructural, autoradiographic method the sequential endocytosis of tritiated wheat germ agglutinin (3H-WGA) by cultured murine neuroblastoma cells. Cells were incubated with 3H-WGA for 1 hour at 4 degrees C, washed, and incubated in complete medium without ligand at 37 degrees C for 5, 15, 30, and 120 minutes. At 5 minutes, the optimized sources/micron 2 of neuroblastoma cell area, which represented the grain density of each compartment, were as follows: smooth vesicles and tubules, 1.03 +/- 0.88; Golgi-associated vesicles, i.e., clusters of vesicles within a 1 micron radius of the Golgi cisterns, 1.03 +/- 0.31; Golgi cisterns, less than 0.01; and lysosomes, 0.26 +/- 0.16. At 15 minutes grain densities were: smooth vesicles and tubules, 0.9 +/- 0.34; Golgi-associated vesicles, 1.41 +/- 0.28; Golgi cisterns, 0.73 +/- 0.41; and lysosomes, 0.1 +/- 0.09. At 30 minutes grain densities were: smooth vesicles and tubules, 0.46 +/- 0.46; Golgi-associated vesicles, 1.78 +/- 0.34; Golgi cisterns, 0.89 +/- 0.78; and lysosomes, 0.39 +/- 0.14. At 2 hours, smooth vesicles, tubules, and Golgi cisterns were not labeled, Golgi-associated vesicles were still labeled (0.71 +/- 0.1), and lysosomes were heavily labeled (2.17 +/- 0.22). These results are consistent with the hypotheses that either the Golgi complex (cisterns and associated vesicles) is an early and intermediate step of the endocytosis of 3H-WGA into lysosomes or that it constitutes part of a separate and quantitatively significant pathway of endocytosis of this ligand.  相似文献   

4.
We have studied the effects of brefeldin A (BFA) on the tubular endosomes in AtT20 and HeLa cells (Tooze, J., and M. Hollinshead. 1991. J. Cell Biol. 115:635-653) by electron microscopy of cells labeled with three endocytic tracers, HRP, BSA-gold, and transferrin conjugated to HRP, and by immunofluorescence microscopy. For the latter we used antibodies specific for transferrin receptor, and, in the case of AtT20 cells, also antibodies specific for synaptophysin. In HeLa cells BFA at concentrations ranging from 1 micrograms to 10 micrograms/ml causes the dispersed patches of network of preexisting tubular early endosomes to be incorporated within 5 min into tubules approximately 50 nm in diameter but up to 40-50 microns long. These long, straight tubular endosomes are aligned along microtubules; they branch relatively infrequently to form an open network or reticulum extending from the cell periphery to the microtubule organizing center (MTOC). As the incubation with BFA is prolonged beyond 5 min, a steady state is reached in which many tubules are located in a dense network enclosing the centrioles, with branches extending in a more open network to the periphery. This effect of BFA, which is fully reversed within 15-30 min of washing out, is inhibited by pre-incubating the cells with sodium azide and 2-deoxy-D-glucose. In AtT20 cells BFA at 5 micrograms/ml or above causes the same sorts of changes, preexisting tubular endosomes are recruited into a more continuous endosomal network, and there is a massive accumulation of this network around the MTOC. Maintenance of the BFA-induced endosomal reticulum in both cell types is dependent upon the integrity of microtubules. In AtT20 cells BFA at 1 microgram/ml has no detectable effect on the early endosomal system but the Golgi stacks are converted to clusters of tubules and vesicles that remain in the region of the MTOC during prolonged incubations. Therefore, the Golgi apparatus in these cells is more sensitive to BFA than the early endosomes. The morphological evidence suggests that all the tubular early endosomes in BFA-treated HeLa and AtT20 cells are linked together in a single reticulum. Consistent with this, incubations as short as 1-3 min with 10 or 20 mg/ml HRP in the medium result in the entire endosomal reticulum in most of the BFA-treated cells being filled with HRP reaction product.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Internalization of lectins in neuronal GERL   总被引:29,自引:16,他引:13       下载免费PDF全文
Conjugates of ricin agglutinin and phytohemagglutinin with horseradish peroxidase (HRP) were used for a cytochemical study of internalization of their plasma membrane "receptors" in cultured isolated mouse dorsal root ganglion neurons. Labeling of cells with lectin-HRP was done at 4 degrees C, and internalization was performed at 37 degrees C in a culture medium free of lectin-HRP. 15-20 min after incubation at 37 degrees C, lectin-HRP receptor complexes were seen in vesicles or tubules located near the plasma membrane. After 1-3 h at 37 degrees C, lectin-HRP-receptor complexes accumulated in vesicles and tubules corresponding to acid phosphatase-rich vesicles and tubules (GERL) at the trans aspect of the Golgi apparatus. A few coated vesicles and probably some dense bodies contained HRP after 3-6 h of incubation at 37 degrees C. Soluble HRP was not endocytosed under the conditions of this experiment or when it was present in the incubation medium at 37 degrees C. Internalization of lectin-HRP-receptor conjugates was decreased or inhibited by mitochondrial respiration inhibitors but not by cytochalasin B or colchicine. These studies indicate that lectin- labeled plasma membrane moieties of neurons are endocytosed primarily in elements of GERL.  相似文献   

6.
Cytokinesis is the final stage of cell division and produces two independent daughter cells. Vesicles derived from internal membrane stores, such as the Golgi, lysosomes, and early and recycling endosomes accumulate at the intracellular bridge (ICB) during cytokinesis. Here, we use electron tomography to show that many ICB vesicles are not independent but connected, forming a newly described ICB vesicular structure – narrow tubules that are often branched. These ‘midbody tubules’ labelled with horseradish peroxidase (HRP) within 10 min after addition to the surrounding medium demonstrating that they are derived from endocytosis. HRP‐labelled vesicles and tubules were observed at the rim of the ICB after only 1 min, suggesting that midbody tubules are likely to be generated by local endocytosis occurring at the ICB rim. Indeed, at least one tubule was open to the extracellular space, indicative of a local origin within the ICB. Inhibition of cholesterol‐dependent endocytosis by exposure to methyl‐β‐cyclodextrin and filipin reduced formation of HRP‐labelled midbody tubules, and induced multinucleation following ICB formation. In contrast, dynamin inhibitors, which block clathrin‐mediated endocytosis, induced multinucleation but had no effect on the formation of HRP‐labelled midbody tubules. Therefore, our data reveal the existence of a cholesterol‐dependent endocytic pathway occurring locally at the ICB, which contributes to the accumulation of vesicles and tubules that contribute to the completion of cytokinesis.   相似文献   

7.
Brefeldin A (BFA) has previously been shown to block protein transport from the endoplasmic reticulum (ER), to cause the redistribution of Golgi components to the ER, and to change profoundly the morphology of the Golgi apparatus. In order to quantitate the effects of this drug on the morphology of the ER and the Golgi apparatus in HeLa cells, the numerical, surface and volume densities of these organelles were determined by stereological means. We found that in cells treated with BFA (5 micrograms/ml) clusters of vesicles and tubules, often located near transitional elements of the ER, replaced the Golgi apparatus. The numerical density of these clusters in cells treated with BFA for 30 min or 4.5 h is similar to that of Golgi complexes and Golgi-related clusters in control cells. The surface density of the vesicles and tubules contained in these clusters is about 50% of that represented by Golgi elements in control cells. Concomitantly, a corresponding increase in the surface density of the ER-Golgi hybrid compartment was observed. This hybrid compartment contained Golgi-specific enzymes effecting modifications of N-linked oligosaccharides and the transfer of O-linked sugars. Antibodies recognizing different subcompartments of the Golgi apparatus or the intermediate compartment, labeled vesicles and tubules of the Golgi-related clusters. Applying low doses of BFA allowed for the dissection of the disassembly of the Golgi apparatus into at least two phases. At very low doses (10-20 ng/ml) the numerical density of vesicles in the clusters increased up to 4-fold above control, while the surface density did not markedly change, suggesting that vesiculation of the Golgi cisternae had occurred. Fusion of Golgi elements with the ER seemed to occur only at doses of BFA higher than 20 ng/ml. Contrary to observations on other cell types, removal of BFA from HeLa cell cultures resulted in a rather slow reformation (1-2 h) of the Golgi complex, which allowed us to observe several intermediate stages in this process. During this time period an ER was restored which no longer contained Golgi-specific O-glycosylation functions. Our results demonstrate that BFA does not simply cause the disappearance of the Golgi apparatus by fusion with the ER, but instead clusters of vesicles and tubules remain that contain Golgi-specific markers.  相似文献   

8.
We examined the uptake and fate of four horseradish peroxidase (HRP) isozymes (Type VI, VII, VIII, and IX) in isolated pancreatic acinar cells. The pattern of uptake was similar for all the isozymes examined, with the exception of Type IX. Very little Type IX HRP was internalized by the cells, and what endocytosis did occur was primarily from the apical cell surface in coated vesicles. In contrast, HRP Type VI, VII, and VIII appeared to be endocytosed largely at the basolateral cell surface. Initially, the tracer was found in smooth vesicles and tubules near the plasma membrane. The tubules resembled the basal lysosomes known to be present in these cells. At the early time points, HRP reaction product was also present in multivesicular bodies (MVBs). By 60 min, the HRP was localized in MVBs, vesicles, and tubules adjacent to the Golgi apparatus. By 12 hr after exposure to the isozymes, the tracer was present in small apical vesicles. At no time could reaction product be localized in the rough endoplasmic reticulum, Golgi saccules, or secretory granules. The results of this study suggest that the charge of a soluble-phase marker has little effect on its uptake or intracellular distribution.  相似文献   

9.
《The Journal of cell biology》1989,109(6):2703-2720
A morphological analysis of the compartments of the endocytic pathway in baby hamster kidney (BHK) cells has been made using the fluid-phase marker horseradish peroxidase (HRP). The endocytic structures labeled after increasing times of endocytosis have been identified and their volume and surface densities measured. In the first 2 min of HRP uptake the volume density of the labeled structures increased rapidly and thereafter remained constant for the next 13-18 min. This plateau represents the volume density of endosome organelles and accounts for 0.65% of the cytoplasmic volume (or 6.8 microns 3 per cell). The labeled structures consist of tubular-cisternal elements which are frequently observed in continuity with 300-400 nm vesicles. After 15-20 min of internalization the volume density of HRP-labeled structures again increased rapidly and reached a second plateau between 30 and 60 min of labeling. This second increase corresponded to detectable levels of HRP reaching later, acid phosphatase (AcPase)-reactive compartments. These structures, comprising the prelysosomes and lysosomes, were mostly vesicular and collectively accounted for 3.5% of the cytoplasmic volume (or 37 microns 3 per cell). The absolute peripheral surface areas of the two classes of organelles (endosomes and prelysosomes/lysosomes) were estimated to be 430 and 370 microns 2 per cell, respectively. The volume of fluid internalized in the first 2 min of uptake was five- to sevenfold less than the volume of the compartment labeled in this time. To account for these results we propose that, after uptake from the cell surface, HRP is delivered to, and diluted in, endosomes that are preexisting organelles initially devoid of the marker. With increasing times of endocytosis the concentration of HRP in the early endosomes increases, as more of the marker enters this compartment. An elevation in HRP concentration in endosomes during the early time points was shown directly using anti- HRP antibodies and colloidal gold on cryosections. The stereological values given in the present study, in combination with earlier studies, provide a minimum estimate for both the total surface area of membranes and the rate of membrane synthesis in a BHK cell.  相似文献   

10.
1. The endocytic pathway of horseradish peroxidase (HRP) was investigated in the perikarya of cultured neurons by electron microscopy and enzyme cytochemistry. The tracer was observed in endocytic pits and vesicles, endosomes, multivesicular bodies, and lysosomes. It took approximate 15 min for the transfer of HRP from the exterior of the cell to the lysosomes. 2. Monensin induced distension of the Golgi apparatus and formation of intracellular vacuoles. When neurons were incubated with both monensin and HRP for 30 to 120 min, the number of HRP-labeled endosomes was greater than that in the monensin-free group, whereas the reverse was seen for HRP-positive lysosomes. The formation of HRP-positive lysosomes in monensin-treated cells was blocked by 47 to 79%. 3. These results indicate that the intracellular transport of the endocytosed macromolecule is pH dependent. It is also possible that the export of lysosomal enzymes is inhibited by monensin, resulting in an accumulation of the endosomes and a reduction of the lysosomes.  相似文献   

11.
African trypanosomes multiply rapidly during the course of infection obtaining nutrients from the host blood and other body fluids. The organelles involved in endocytosis were revealed ultrastructurally using horseradish peroxidase (HRP) and colloidal gold coupled to bovine transferrin (Au-Tf) or bovine serum albumin (Au-BSA). At 0 degree C the markers bound to the cell surface and neither entered the flagellar pocket nor were internalized. Upon warming to 37 degrees C, the markers were found in the flagellar pocket and appeared to enter all the intracellular endocytic organelles within 5 min. Serial sectioning of resin-embedded cells was employed to obtain pseudo three-dimensional views of these organelles. The organelles involved were of three types: (1) small vesicles and cisternae (20-25 nm in diameter), (2) large tubular networks (200 nm diameter) similar to endosomes of mammalian cells, and (3) large lysosome-like vesicles. These organelles were located between the flagellar pocket and the nucleus and were also associated with one face of the Golgi apparatus. In pulse-chase experiments HRP was not detected in intracellular organelles after 410 min but Au-Tf was seen in residual bodies. No exocytosis of Au-Tf from the flagellar pocket was observed. The data suggests that the processes of endocytosis in these parasitic protozoa may be similar to the endocytic processes found in mammalian cells.  相似文献   

12.
To examine whether and how internalized plasma membrane components are routed to the compartment of the biosynthetic-exocytic pathway in cultured atrial myocytes, the plasma membrane labeled with wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) was traced electron microscopically by cytochemical detection of HRP. The WGA-HRP label was internalized via a coated pit-small vesicle pathway and reached vacuoles and endosomes by 3 min. Labeled endosomes comprised vacuoles and tubular elements containing reaction product. By 15 min, similar tubular structures containing reaction product accumulated in the area of the trans-Golgi network (TGN). The labeled TGN consisted of interconnected tubular elements, which often connected to atrial granules containing reaction product. In contrast, neither native HRP nor Lucifer Yellow reached Golgi elements or atrial granules. These results suggest that a proportion of the plasma membrane labeled with WGA-HRP is delivered to endosomes, from which tubules might bud off to transfer the tracer molecules to the TGN, where the lectin conjugate and associated membranes are packaged into atrial granules.  相似文献   

13.
Immunoelectron microscopy was used to localize the brush border hydrolases sucrase-isomaltase (SI) and dipeptidylpeptidase IV (DPPIV) in the human colon carcinoma cell line Caco-2. Both enzymes were detected at the microvillar membrane, in small vesicles and multivesicular bodies (MVBs), and in lysosomal bodies. In addition, DPPIV was found in the Golgi apparatus, a variety of apical vesicles and tubules, and at the basolateral membrane. To investigate whether the hydrolases present in the lysosomal bodies were endocytosed from the apical membrane, endocytic compartments were marked with the endocytic tracer cationized ferritin (CF). After internalization from the apical membrane through coated pits, CF was first recovered in apical vesicles and tubules, and larger electronlucent vesicles (early endosomes), and later accumulated in MVBs (late endosomes) and lysosomal bodies. DPPIV was localized in a subpopulation of both early and late endocytic vesicles, which contained CF after 3 and 15 min of uptake, respectively. Also, internalization of the specific antibody against DPPIV and gold labeling on cryosections showed endocytosed DPPIV in both early and late endosomes. However, unlike CF, no accumulation of DPPIV was seen in MVBs or lysosomal bodies after longer chase times. The results indicate that in Caco-2 cells the majority of brush border hydrolases present in lysosomal bodies are not endocytosed from the brush border membrane. Furthermore, the labeling patterns obtained, suggest that late endosomes may be involved in the recycling of endocytosed DPPIV to the microvilli.  相似文献   

14.
Cholera toxin (CT), covalently attached to horseradish peroxidase (HRP), is a specific cytochemical marker for GM1 ganglioside (GM1) and retains the ability of the native toxin to raise levels of cyclic AMP in avian erythrocytes. Using a cytochemical stain for HRP, we found that 9% of control cultured murine neuroblastoma cells bound cholera toxin-horseradish peroxidase conjugates (CT-HRP) on their surfaces after incubations for 1 h at 4 degrees C. Exogenous GM1, the natural receptor of CT, becomes associated in the culture medium with the plasma membranes of these cells so that 96% of cells are stained. Cells preincubated with GM1 at 4 degrees C were exposed to CT-HRP for 1 h at 4 degrees C. After washing, cells were incubated at 37 degrees C for 30 min-24 h. Endocytosis of CT-HRP occurred within 30 min and CT-HRP remained, throughout the 24-h period, in tubules, vesicles, and cisternae often found near the Golgi apparatus; this aggregate of peroxidase-positive elements probably corresponds to Golgi apparatus-endoplasmic reticulum-lysosomes (GERL) of neurons. In metaphase cells, CT-HRP was observed in aggregates of vesicles and tubules clustered near the centriole. Conjugates of HRP with subunit B, the GM1 binding component of CT, were internalized by cells pretreated with GM1 as was CT-HRP. The 9% of neuroblastoma cells binding CT-HRP in the absence of exogenous GM1 internalized the ligand in a manner indistinguishable from that of the treated cells. These findings indicate that, in neuroblastoma cells, a system of vesicles, tubules, and cisternae, analogous to GERL of neurons, is the primary recipient of adsorptive endocytosis of CT bound to endogenous or exogenously introduced GM1.  相似文献   

15.
In the course of spermiogenesis in the mouse, spermatid cytoplasm contains numerous membrane pits, vesicles and membranous tubules which are frequently anastomosed. Pale and dense multivesicular bodies (MVB) and secondary lysosome-like structures are also present in the cytoplasm. In order to study the pathway of non-specific adsorptive endocytosis in spermatids, cationic ferritin (CF) was directly microinjected into the lumen of seminiferous tubules, and added to germinal cell culture. Tissue and cultures were fixed at various time intervals after injection. Two-5 hr after microinjection of tracer, CF was found simultaneously in vesicles, tubules, MVB and in lysosome-like bodies present in spermatids at all steps of spermiogenesis. Various membranous components of the Golgi medulla, and the innermost transsaccule of the Golgi cortex were labelled simultaneously. In primary cultures of spermatids, the vesicles contained the marker 5 min after its deposition; 10 min after deposition, CF was evident in tubules; at 30 min, CF was present in pale MVB; at 1 hr, the dense MVB and lysosome-like bodies were labelled. Finally, at 2 hr 30 min, vesicles and tubules of the Golgi medulla contained CF grains. Apparently spermatids are very active cells in the process of adsorptive endocytosis throughout spermiogenesis. Endocytosis in spermatids is probably one of the mechanisms involved in the uptake of material used to build up spermatozoa components. The strong labelling of the Golgi region probably point to its role in recycling endocytosed membranes.  相似文献   

16.
Receptor-mediated endocytosis of transferrin by Sertoli cells of the rat   总被引:1,自引:0,他引:1  
Binding of 125I-transferrin (125I-Tf) to the plasma membrane of Sertoli cells and its endocytosis were analyzed by means of light- and electron-microscope quantitative radioautography. Five minutes after 125I-Tf was injected into the interstitial space of the testis, a strong labeling of the basal aspect of the seminiferous epithelium was observed in light-microscope radioautographs. Injection of the same dose of 125I-Tf plus a 200-fold excess of cold transferrin resulted in a marked diminution of the radioautographic reaction, indicating that the initial strong labeling with radiolabeled transferrin was specific. These results were consistent with the localization of immunoreactive fluorescence of transferrin receptor at the base of the seminiferous epithelium. In electron-microscope radioautographs of tubules collected at 5 min after injection, the membrane of Sertoli cells facing the basement membrane was well labeled with 125I-Tf. At 15 and 30 min, the plasma membrane was less intensely labeled, but the silver grains were then seen overlying multivesicular bodies with an electron-lucent matrix, identified as endosomes. This population of endosomes was always seen at a short distance from the basal membrane of Sertoli cells. At 90 min, no more labeling of the plasma membrane, endosomes, or any other cytoplasmic component was observed. Isolated seminiferous tubules and Sertoli cells labeled with 125I-Tf at 4 degrees C were rinsed and reincubated in a label-free medium at 37 degrees C for various periods of time from 5 to 90 min. A radioactive protein precipitated by trichloroacetic acid, presumably intact transferrin, was released from the tubules into the incubating medium; when measured, it was found to increase rapidly from 5 to 45 min and stabilize thereafter. These results suggest that transferrin was internalized by receptor-mediated endocytosis, reached endosomes, and then was released to the extratubular space. When native ferritin (NF), a tracer for fluid-phase endocytosis, was infused within the lumen of seminiferous tubules and 125I-Tf was simultaneously injected into the interstitial space, both markers rapidly reached different populations of endosomes. Endosomes labeled with NF, scattered throughout the cytoplasm, evolved with time into dense multivesicular bodies and secondary lysosomes, whereas radiolabeled transferrin reached only the endosomes located in the basal cytoplasm of Sertoli cells. The latter thus appeared to be principally involved in the uptake and recycling of transferrin.  相似文献   

17.
The nonciliated cells lining the ductuli efferentes presented three distinct cytoplasmic regions. The apical region contained, in addition to cisternae of endoplasmic reticulum and mitochondria, two distinct membranous elements. The tubulovesicular system consisted of dilated tubules connected to the apical plasma membrane and subjacent distended vesicular profiles. The apical tubules, not connected to the cell surface, consisted of numerous densely stained tubules of small size which contain a compact, finely granulated material. The supranuclear region, in addition to a Golgi apparatus and ER cisternae, contained dilated vacuoles, pale and dense multivesicular bodies, as well as numerous dense granules identified cytochemically as lysosomes. The basal region contained the nucleus and many lipid droplets. The endocytic activity of these cells was investigated using cationic ferritin (CF) and concanavalin-A-ferritin (Con-A-ferritin) as markers of adsorptive endocytosis; and native ferritin (NF), concanavalin-A-ferritin in the presence of alpha-methyl mannoside, and horseradish peroxidase or albumin bound to colloidal gold for demonstrating fluid-phase endocytosis. These tracers were injected separately into the rete testis, and animals were sacrificed at various time intervals after injection. At 1 min, CF or Con-A-ferritin were seen bound to the apical plasma membrane, to the membrane of microvilli, and to the membrane delimiting elements of the tubulovesicular system. Between 2 and 5 min, these tracers accumulated in the densely stained apical tubules and at 15 min in the dilated vacuoles. Between 30 min and 1 hr, the tracers appeared in multivesicular bodies of progressively increasing density, whereas at 2 hr and later time intervals, many dense lysosomal elements became labeled. The tracers for fluid-phase endocytosis showed a distribution similar to that for CF or Con-A-ferritin except that they did not bind to the apical plasma membrane, microvilli, or membrane delimiting the tubulovesicular system. At no time interval were any of the tracers observed in the abluminal spaces. Thus, the nonciliated epithelial cells of the ductuli efferentes are actively involved in fluid-phase and adsorptive endocytosis, both of which result in the sequestration of endocytosed material within the lysosomal apparatus of the cell.  相似文献   

18.
Transferrin is taken up by receptor-mediated endocytosis into intracellular vesicles and tubules, and then recycles rapidly to the plasma membrane (diacytosis). We applied double-label cytochemistry to study whether the recycling structures containing transferrin fuse with the intracellular membranous structures that deliver newly synthesized membrane glycoproteins from the ER to the plasma membrane (exocytosis) or whether they remain independent. KB and Vero cells were infected with the temperature-sensitive transport mutant 0-45 of vesicular stomatitis virus (VSV). Temperature-regulated exocytosis of membrane glycoprotein "G" occurred simultaneously with diacytosis of transferrin. The exocytic "G" protein, as detected by immunoperoxidase electron microscopy, passed through the cisternal Golgi stacks and vacuolar, tubular, vesicular, and pit-like structures of the Golgi system. A transferrin-ferritin conjugate used in ultrastructural double-label experiments was detected in diacytic vesicles and tubules that accumulated in the proximal (trans-reticular) Golgi area of the cell. The ferritin-labeled vesicles/tubules were often close to and intermixed with the VSV-"G" containing membranous structures, but in most cases at early times (15-20 min) the transferrin and VSV-"G" containing vesicular structures remained distinct. At later times (30-45 min), the two labels were occasionally found in the same structures. These results indicate that rapid recycling of endocytosed materials and exocytosis of membrane glycoproteins to the cell surface usually occur in distinct vesicles, possibly along the same general morphologic exit pathway.  相似文献   

19.
《The Journal of cell biology》1989,109(6):3303-3314
To study the fusion and separation of endocytic compartments, we have used digital image analysis to quantify the accumulation of fluorescent ligands in endosomes during continuous endocytosis for periods of 1-20 min. Fluorescently labeled transferrin (Tf) and low density lipoproteins (LDL) were used as markers of recycling receptors and lysosomally directed ligands respectively. By measuring the intensity of individual endosomes, we found that the amount of LDL per endosome increases 30-40-fold between 1 and 10 min and then plateaus. In contrast, the amount of Tf per endosome reaches a steady state within 2 min at a level that is only three to four times that at 1 min. We used pulse-chase double label methods to demonstrate that Tf cycles through the compartment in which the LDL accumulates. When both Tf and LDL are added to cells simultaneously for 2 min, nearly all endosomes contain both labels. With 2-4 min further incubation in the absence of external ligands, LDL-containing compartments become depleted of Tf as Tf is directed to para-Golgi recycling endosomes. However, if Tf is added to the medium 2-4 min after a pulse with LDL, most of the LDL-containing endosomes become labeled with Tf. The data indicate that at least 30-40 endocytic vesicles containing both Tf and LDL fuse with an endosomal compartment over a period of 5-10 min. LDL accumulates within this compartment and Tf is simultaneously removed. Simple mathematical models suggest that this type of iterative fractionation can lead to very high efficiency sorting.  相似文献   

20.
We have studied the effects of brefeldin A (BFA) on endocytosis and intracellular traffic in polarized MDCK cells by using the galactose-binding protein toxin ricin as a membrane marker and HRP as a marker of fluid phase transport. We found that BFA treatment rapidly increased apical endocytosis of both ricin and HRP, whereas basolateral endocytosis was unaffected, as was endocytosis of HRP in the poorly polarized carcinoma cell lines HEp-2 and T47D. Tubular endosomes were induced by BFA both apically and basolaterally in some MDCK cells, comparable with those seen in HEp-2 and T47D cells. In addition, in MDCK cells, BFA induced formation of small (< 300 nm) vesicles, labeled both after apical and basolateral uptake of HRP, as well as some very large (> 700 nm) vacuoles, which were only labeled when HRP was present in the apical medium. In contrast, neither in MDCK nor in HEp-2 or T47D cells, did BFA have any effect on lysosomal morphology. Moreover, transcytosis in the basolateral-apical direction was stimulated both for HRP and ricin. Other vesicular transport routes were less affected or unaffected by BFA treatment. Two closely related structural analogues of BFA (B16 and B21), unable to produce the changes in Golgi and endosomal morphology seen after BFA treatment in a number of different cell lines, were also unable to mimic the effects of BFA on MDCK cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号