首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various lipids were tested as substrates for the insulin receptor kinase using either receptor partially purified from rat hepatoma cells by wheat-germ-agglutinin-Sepharose chromatography or receptor purified from human placenta by insulin-Sepharose affinity chromatography. Phosphatidylinositol was phosphorylated to phosphatidylinositol 4-phosphate by the partially purified insulin receptor. In contrast, phosphatidylinositol 4-phosphate and diacylglycerol were not phosphorylated. In some, but not all preparations of partially purified insulin receptor, the phosphatidylinositol kinase activity was stimulated by insulin (mean effect 33%). Phosphatidylinositol kinase activity was retained in insulin receptor purified to homogeneity. Insulin regulation of the phosphatidylinositol kinase was lost in the purified receptor; however, dithiothreitol stimulated both autophosphorylation of the purified receptor and phosphatidylinositol kinase activity in parallel about threefold. (Glu80Tyr20)n, a polymeric substrate specific to tyrosine kinases, inhibited the phosphatidylinositol kinase activity of the purified receptor by greater than 90% and inhibited receptor autophosphorylation by 67%. Immunoprecipitation by specific anti-receptor antibodies depleted by greater than 90% the phosphatidylinositol kinase activity in the supernatant of the purified receptor and the phosphatidylinositol kinase activity was recovered in the precipitate in parallel with receptor autophosphorylation activity. These characteristics of the phosphatidylinositol kinase activity of the purified insulin receptor and its metal ion preference paralleled those of the receptor tyrosine kinase activity and differed from bulk phosphatidylinositol kinase activity in cell extracts, which was not significantly inhibited by (Glu80Tyr20)n, stimulated by dithiothreitol or depleted by immunoprecipitation with anti-(insulin receptor) antibody. These results suggest that the insulin receptor is associated with a phosphatidylinositol kinase activity; however, this activity is not well regulated by insulin. This kinase appears to be distinct from the major phosphatidylinositol kinase(s) of cells. Its relationship to insulin action needs further study.  相似文献   

2.
Abstract

The Ah receptor nuclear translocator protein (ARNT) is required for binding of the Ah (dioxin) receptor to the xenobiotic responsive element (XRE), and is a structural component of the XRE-binding form of the Ah receptor. The vitamin D receptor requires an accessory protein for binding to the vitamin D responsive element (VDRE) in the osteocalcin gene. Since the vitamin D receptor has similarities to the Ah receptor, we investigated whether ARNT is also required for vitamin D receptor activity. Two lines of evidence demonstrate that ARNT is not required for vitamin D receptor activity, and therefore does not correspond to the vitamin D receptor accessory protein: i) Antibodies to ARNT have no effect on binding of the vitamin D receptor to the VDRE. ii) c4, a mutant of Hepa-1 cells that is defective in ARNT activity, and in which binding of the Ah receptor to the XRE does not occur, possesses a vitamin D receptor with full activity for binding the VDRE.  相似文献   

3.
The insulin receptor is associated with a protein kinase activity. This has been shown for the receptor of liver, fat, and some other tissues which are not primary targets of insulin action. Here kinase activity is demonstrated for the insulin receptor of rat skeletal and cardiac muscle with similar characteristics. Insulin (10(-7) mol/l) stimulates phosphorylation of the 95-kDa receptor subunit 3- to 18-fold. The effect is detectable at 10(-10) mol/l insulin; the ED50 is approx. 3 X 10(-9) mol/l. The kinase phosphorylates exogenous substrate as well, and it is recovered after immunoprecipitation of the receptor with antireceptor antibody suggesting that kinase activity is intrinsic to the muscle receptor.  相似文献   

4.
TSH receptor antibody (TRAb) activity using chicken thyroid receptor (c-TRAb) and porcine thyroid receptor (p-TRAb) was determined by the incubation of 125I-bovine TSH with each receptor. Both c-TRAb and p-TRAb activity in LATS positive and negative Graves' sera were compared. 15 out of 39 LATS positive sera and 4 out of 46 LATS negative sera had positive c-TRAb activity. On the other hand, all LATS positive sera and 33 out of 46 LATS negative sera had positive p-TRAb activity. No relationship between c-TRAb and p-TRAb activity was observed, and there was also no correlation between c-TRAb and LATS activity. Changes in c-TRAb, p-TRAb and LATS activity in the clinical course of patients with Graves' disease were examined. These activities were parallel in some cases, but in others they were not. A weak c-TRAb activity was observed in 4 out of 29 Hashimoto's disease, but all cases with thyroid cancer and subacute thyroiditis showed no activity. Sera with positive c-TRAb activity did not stimulate chicken thyroid in chick bioassay. These results suggest that some cases of TRAb in Graves' disease (mainly LATS) inhibit TSH binding to chicken thyroid receptor (non-mammalian species) in the same way as mammalian thyroid, but may not have any stimulatory action on thyroid hormone synthesis. It is interesting to note that TRAb including LATS have the similar effect on TSH receptor even in nonmammalian species.  相似文献   

5.
A steady-state kinetic mechanism describing the interaction of M(2) muscarinic acetylcholine receptors and the guanine nucleotide-binding protein G(i)alpha(2)beta(1)gamma(3) are presented. Data are consistent with two parallel pathways of agonist-promoted GTPase activity arising from receptor coupled to a single or multiple guanine nucleotide-binding proteins. An aspartate 103 to asparagine receptor mutation resulted in a receptor lacking the ability to catalyze the binding of guanosine-5'-O-(3-thiotriphosphate) or guanosine triphosphate hydrolysis by the G protein. An aspartate 69 to asparagine receptor mutant was able to catalyze agonist-specific guanine nucleotide exchange and GTPase activity. A threonine 187 to alanine receptor mutation resulted in a receptor that catalyzed guanine nucleotide exchange comparable with wild-type receptors but had reduced ability to stimulate GTP hydrolysis. A tyrosine 403 to phenylalanine receptor mutation resulted in an increase in agonist-promoted GTPAse activity compared with wild type. The observation that the threonine 187 and tyrosine 403 mutants promote guanine nucleotide exchange similarly to wild type but alter GTPase activity compared with wild type suggests that the effects of the mutations arise downstream from guanine nucleotide exchange and may result from changes in receptor-G protein dissociation.  相似文献   

6.
D(1)-like receptors have been reported to decrease oxidative stress in vascular smooth muscle cells by decreasing phospholipase D (PLD) activity. However, the PLD isoform regulated by D(1)-like receptors (D(1) or D(5)) and whether abnormal regulation of PLD by D(1)-like receptors plays a role in the pathogenesis of hypertension are unknown. The hypothesis that the D(5) receptor is the D(1)-like receptor that inhibits PLD activity and serves to regulate blood pressure was tested using D(5) receptor mutant mice (D(5)(-/-)). We found that in the mouse kidney, PLD2, like the D(5) receptor, is mainly expressed in renal brush-border membranes, whereas PLD1 is mainly expressed in renal vessels with faint staining in brush-border membranes and collecting ducts. Total renal PLD activity is increased in D(5)(-/-) mice relative to congenic D(5) wild-type (D(5)(+/+)) mice. PLD2, but not PLD1, expression is greater in D(5)(-/-) than in D(5)(+/+) mice. The D(5) receptor agonist fenoldopam decreases PLD2, but not PLD1, expression and activity in human embryonic kidney-293 cells heterologously expressing the human D(5) receptor, effects that are blocked by the D(5) receptor antagonist SCH-23390. These studies show that the D(5) receptor regulates PLD2 activity and expression. The hypertension in the D(5)(-/-) mice is associated with increased PLD expression and activity. Impaired D(5) receptor regulation of PLD2 may play a role in the pathogenesis of hypertension.  相似文献   

7.
The 5-HT1A receptor is implicated in depression and anxiety. This receptor couples to G(i) proteins to inhibit adenylyl cyclase (AC) activity but can stimulate AC in tissues (e.g. hippocampus) that express ACII. The role of ACII in receptor-mediated stimulation of cAMP formation was examined in HEK-293 cells transfected with the 5-HT1A receptor, which mediated inhibition of basal and G(s)-induced cAMP formation in the absence of ACII. In cells cotransfected with 5-HT1A receptor and ACII plasmids, 5-HT1A agonists induced a 1. 5-fold increase in cAMP level. Cotransfection of 5-HT1A receptor, ACII, and Galpha(i2), but not Galpha(i1), Galpha(i3), or Galpha(o), resulted in an agonist-independent 6-fold increase in the basal cAMP level, suggesting that G(i2) preferentially coupled the receptor to ACII. The 5-HT1B receptor also constitutively activated ACII. Constitutive activity of the 5-HT1A receptor was blocked by pertussis toxin and the Gbetagamma antagonist, betaCT, suggesting an important role for Gbetagamma-mediated activation of ACII. The Thr-149 --> Ala mutation in the second intracellular domain of the 5-HT1A receptor disrupted Gbetagamma-selective activation of ACII. Spontaneous 5-HT1A receptor activity was partially attenuated by 5-HT1A receptor partial agonists with anxiolytic activity (e.g. buspirone and flesinoxan) but was not altered by full agonists or antagonists. Thus, anxiolytic activity may involve inhibition of spontaneous 5-HT1A receptor activity.  相似文献   

8.
The regulation of the LDL receptor activity in the human hepatoma cell line Hep G2 was studied. In Hep G2 cells, in contrast with fibroblasts, the LDL receptor activity was increased 2.5-fold upon increasing the concentration of normal whole serum in the culture medium from 20 to 100% by volume. Incubation of the Hep G2 cells with physiological concentrations of LDL (up to 700 micrograms/ml) instead of incubation under serum-free conditions resulted in a maximum 2-fold decrease in LDL receptor activity (10-fold decrease in fibroblasts). Incubation with physiological concentrations of HDL with a density of between 1.16 and 1.20 g/ml (heavy HDL) resulted in an approximately 7-fold increase in LDL receptor activity (1.5-fold increase in fibroblasts). This increased LDL receptor activity is due to an increase in the number of LDL receptors. Furthermore, simultaneous incubation of Hep G2 cells with LDL and heavy HDL (both 200 micrograms/ml) resulted in a 3-fold stimulation of the LDL receptor activity as compared with incubation in serum-free medium. 3-Hydroxy-3-methylglutaryl-CoA reductase activity was also stimulated after incubation of Hep G2 with heavy HDL (up to 3-fold). The increased LDL receptor activity in Hep G2 cells after incubation with heavy HDL was independent of the action of lecithin:cholesterol acyltransferase during that incubation. However, previous modification of heavy HDL by lecithin:cholesterol acyltransferase resulted in an enhanced ability of heavy HDL to stimulate the LDL receptor activity. Our results indicate that in Hep G2 cells the heavy HDL-mediated stimulation of the LDL receptor activity overrules the LDL-mediated down-regulation and raises the suggestion that in man the presence of heavy HDL and the action of lecithin:cholesterol acyltransferase in plasma may be of importance in receptor-mediated catabolism of LDL by the liver.  相似文献   

9.
Affinity chromatography of the anterior pituitary D2-dopamine receptor   总被引:1,自引:0,他引:1  
The D2-dopamine receptor from bovine anterior pituitary has been solubilized with digitonin and purified approximately 1000-fold by affinity chromatography on a new affinity support. This support consists of a (carboxymethylene)oximino derivative of the D2-selective antagonist spiperone (CMOS) covalently attached to Sepharose 4B through a long side chain. The interaction of the solubilized receptor activity with the affinity gel was biospecific. Dopaminergic drugs blocked adsorption of solubilized receptor activity to the CMOS-Sepharose with the appropriate D2-dopaminergic potency and stereoselectivity. For agonists, (-)-N-n-propylnorapomorphine greater than 2-amino-6,7-dihydroxytetrahydronaphthalene approximately equal to apomorphine greater than dopamine, whereas for antagonists (+)-butaclamol much greater than (-)-butaclamol. The same D2-dopaminergic specificity was observed for elution of receptor activity from the gel. To observe eluted receptor binding activity, reconstitution of the eluted material into phospholipid vesicles was necessary. Typically, 70-80% of the solubilized receptor was adsorbed by CMOS-Sepharose, and 40-50% of the adsorbed activity could be recovered after reconstitution of the eluted material. The overall recovery of D2-receptor activity from bovine anterior pituitary membranes was 12-15% with specific binding activity of approximately 150 pmol/mg. The reconstituted affinity-purified receptor bound ligands with the expected D2-dopaminergic specificity, stereoselectivity, and rank order of potency.  相似文献   

10.
R Biswas  M Basu  A Sen-Majumdar  M Das 《Biochemistry》1985,24(14):3795-3802
The epidermal growth factor (EGF) receptor is a transmembrane polypeptide of 170 000 daltons (Da) with a cytoplasmically facing protein kinase domain. The regulation of the tyrosine kinase activity of the EGF receptor by added EGF and by receptor association state was studied in an in vitro system. The rate of autophosphorylation of the solubilized and purified EGF receptor was found to be independent of receptor concentration. To determine whether the zero-order kinetics observed point to intrapeptide phosphorylation, we measured the sedimentation characteristics of the undenatured solubilized receptor. The receptor was found to exist in two association-dissociation states-a monomeric 7.7S form and a dimeric 12S form. The 7.7S form is an active tyrosine kinase; it has high basal activity, and the activity is not further stimulated by EGF; it appears to be an EGF-independent form of the receptor kinase. The 12S form is devoid of catalytic activity, but in the presence of EGF it dissociates into the active monomeric form. Freshly purified receptor preparations contain mainly the monomeric receptor, have high basal kinase activity, and show low EGF stimulatability (less than 1.3-fold). Aging of the receptor results in progressive dimerization and decay of EGF-independent kinase activity (and increase in EGF stimulatability). All of these processes are reversed in the presence of EGF or dithiothreitol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We previously have shown that insulin treatment of cells greatly increases the activity of phosphatidylinositol (PI) 3-kinase in immunoprecipitates made with an antibody to phosphotyrosine. However, the association of PI 3-kinase activity with the activated insulin receptor is not significant under these conditions. In the present study, we have attempted to reconstitute the association of PI 3-kinase activity with the activated insulin receptor in vitro. PI 3-kinase activity does indeed associate with the autophosphorylated insulin receptor in our in vitro system. The autophosphorylation of the insulin receptor and/or its associated conformational change appear to be necessary for the association of PI 3-kinase activity with the receptor, since kinase negative receptor failed to bind PI 3-kinase activity. After binding, PI 3-kinase or its associated protein seems to be released from the activated receptor after the completion of its tyrosine phosphorylation by the receptor. Tyr960 in the juxtamembrane region of the insulin receptor beta-subunit seems to be involved in the association of PI 3-kinase activity with the receptor, but not C terminus region of the beta-subunit including two tyrosine autophosphorylation sites (Tyr1316 and Tyr1322). The in vitro assay system for the association of PI 3-kinase activity with the insulin receptor can be utilized to study the mechanism of interaction of these molecules and will be an useful method to detect other associated molecules with the insulin receptor.  相似文献   

12.
Three monoclonal anti-insulin receptor antibodies have been labelled with 125I according to various methods (Cloramine T, Lactoperoxidase and IODO-GEN). The effect of labelling on antibody structure and function has been characterized using the following parameters: a) specific activity obtained in four different labelling procedures, at least; b) TCA labelled antibody precipitable 90 days after labelling; c) interaction between labelled antibodies and the insulin receptor; d) ability of antibodies to inhibit insulin-stimulated receptor auto-phosphorylation. Cloramine T method produced labelled antibody with constant specific activity; however, some preparations were unstable and showed reduced capacity to recognize the insulin receptor. Lactoperoxidase method produced stable antibodies; however, specific activity was highly variable and antibodies had low capacity to interact with the insulin receptor. The IODO-GEN method produced antibodies with constant specific activity, stable, high capacity to interact with the insulin receptor, and, moreover, maintaining in full the capacity to inhibit the insulin-stimulated auto-phosphorylation of the insulin receptor, since it does not induce antibody alterations which in turn affect antibody-receptor interaction biological action.  相似文献   

13.
The D1 dopamine receptor from rat corpus striatum has been purified 200-250-fold by using a newly developed biospecific affinity chromatography matrix based on a derivative of the D1 selective antagonist SCH 23390. This compound, (RS)-5-(4-aminophenyl)-8-chloro-2,3,4,5-tetrahydro-3-methyl-1H-3-benz azepin-7-o l (SCH 39111), possesses high affinity for the D1 receptor and, when immobilized on Sepharose 6B through an extended spacer arm, was able to adsorb digitonin-solubilized D1 receptors. The interaction between the solubilized receptor and the affinity matrix was biospecific. Adsorption of receptor activity could be blocked in a stereoselective fashion [SCH 23390 greater than SCH 23388; (+)-butaclamol greater than (-)-butaclamol]. The elution of [3H]SCH 23390 activity from the gel demonstrated similar stereoselectivity for antagonist ligands. Agonists eluted receptor activity with a rank order of potency consistent with that of a D1 receptor [apomorphine greater than dopamine greater than (-)-epinephrine much greater than LY 171555 greater than serotonin]. SCH 39111-Sepharose absorbed 75-85% of the soluble receptor activity, and after the gel was washed extensively, 35-55% of the absorbed receptor activity could be eluted with 100 microM (+)-butaclamol with specific activities ranging from 250 to 450 pmol/mg of protein. The affinity-purified receptor retains the ligand binding characteristics of a D1 dopamine receptor. This affinity chromatography procedure should prove valuable in the isolation and molecular characterization of the D1 dopamine receptor.  相似文献   

14.
Epidermal growth factor (EGF) receptor protein kinase activity, estimated by the use of peptide substrates, was reduced by as much as 70% after the treatment of intact A431 human carcinoma cells with EGF. The apparent decrease in protein kinase activity was observed after immunoprecipitation of the receptor or after purification of the receptor by lectin chromatography. By the use of [35S]methionine, it was determined that the total amount of receptor obtained was the same whether or not cells were treated with EGF. EGF stimulated the purified receptor protein kinase activity in vitro; however, the EGF-stimulated activity of receptor from EGF-treated cells continued to be reduced by as much at 70% compared to the EGF-stimulated activity from untreated cells. The reduction in receptor protein kinase activity induced by EGF may represent a feedback mechanism by which responsiveness to the growth factor is regulated.  相似文献   

15.
We studied the effects of low temperature (20–37°C), monensin, chloroquine, and microtubule drugs on the cellular distribution and activity of galactosyl (Gal) receptors in isolated rat hepatocytes. After equilibration at 37°C, hepatocytes were incubated at 37°C, 31°C, 25°C, or 20°C or treated with or without inhibitors at 37°C in the absence of ligand. The cells were then assayed at 4°C for 125I-asialo-orosomucoid binding, to measure receptor activity, or 125I-anti-Gal receptor IgG binding, to measure receptor protein. Surface or total (surface and intracellular) Gal receptor activity and protein were measured on intact or digitonin-permeabilized cells, respectively. These inhibitors fell into two categories. Type I inhibitors (sub-37°C temperatures or colchicine) induced receptor redistribution but not inactivation. Treated cells lost up to 40% of surface Gal receptor activity and protein. Lost surface receptors were recovered intracellularly with no loss of receptor activity. Type II inhibitors (monensin or chloroquine) induced receptor inactivation but not redistribution. Treated cells lost 50–65% of their surface Gal receptor activity but only ? 15% of their surface receptor protein. These cells lost up to 60% of total cellular Gal receptor activity with no loss of total receptor protein. Of the total inactive Gal receptors, up to 50% and75%, respectively, were present intracellularly in monensin-and chloroquine-treated cells. Loss of ligand binding to permeable treated cells was not due to changes in receptor affinity. A third category, Type III inhibitors (metabolic energy poisons that deplete ATP) induce both Gal receptor redistribution and inactivation (Biochemistry 27:2061, 1988). We conclude that only one of the two previously characterized subpopulations of Gal receptors on hepatocytes, termed State 2 receptors (J Biol Chem 265:629, 1990), recycles constitutively. The activity and distribution of State 2 but not State 1 Gal receptors are differentially affected by these specific drugs or treatments.  相似文献   

16.
Specific receptors for high density lipoproteins (HDL3) were solubilized from membranes of rat corpus luteum using different detergents. Among the detergents tested, octyl-beta-D-glucoside (40 mM) was most effective with respect to recovery of binding activity. The receptor activity released into 105,000 X g supernatant, can be assayed directly or with the precipitate obtained after dilution of the soluble supernatant. The 125I-HDL3 binding activity in the precipitated extract was linear with time, proportional to the amount of protein in the incubation mixture and saturable with increasing concentrations of 125I-HDL3. The solubilized receptor has an equilibrium dissociation constant (Kd) of 21.2 micrograms/ml and the binding activity was insensitive to Ca+2, EDTA and NaCl. These properties are similar to the membrane associated receptor. Administration of gonadotropin induced the HDL3 receptor in the solubilized membranes, suggesting that this receptor represents the physiologic receptor in the ovary.  相似文献   

17.
In the inner medullary collecting duct of the terminal nephron, the type A natriuretic peptide receptor (NPR-A) plays a major role in determining urinary sodium content. This nephron segment, by virtue of its medullary location, is subject to very high levels of extracellular tonicity. We have examined the ability of medium tonicity to regulate the activity and expression of this receptor in cultured rat inner medullary collecting duct cells. We found that NaCl (75 mm) and sucrose (150 mm), but not urea (150 mm), increased natriuretic peptide receptor activity, gene expression, and promoter activity. The osmotic stimulus also activated extracellular signal-regulated kinase (ERK), c-Jun NH(2)-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK). In the latter instance the beta isoform was selectively activated. Inhibition of p38 MAPK with SB203580 blocked the osmotic induction of receptor activity and expression, as well as receptor gene promoter activity, whereas inhibition of ERK with PD98059 had no effect. Cotransfection of p38 beta MAPK together with the receptor gene promoter resulted in amplification of the osmotic stimulation of the latter, whereas cotransfection of dominant negative MKK6, but not dominant-negative MEK, completely blocked the osmotic induction of receptor promoter activity. Collectively, the data indicate that extracellular osmolality stimulates receptor activity and receptor gene expression through a specific p38 beta-dependent mechanism, raising the possibility that changes in medullary tonicity could play an important role in the regulation of renal sodium handling in the terminal nephron.  相似文献   

18.
The linear (1 --> 6)-beta-d-glucans pustulan and luteose were effective competitive inhibitors of killer toxin action. Affinity chromatography of killer toxin on a pustulan-Sepharose column showed that toxin bound directly to a (1 --> 6)-beta-linked polysaccharide. Other polysaccharides found in yeast cell walls, including (1 --> 3)-beta-d-glucan, mannan, chitin, and glycogen, were not effective as inhibitors of toxin. Fractionation of yeast cell walls was attempted to identify the toxin receptor in sensitive Saccharomyces cerevisiae. The receptor activity was retained among the insoluble glucans in alkali-washed cells; yeast mannan and alkali-soluble glucan had little receptor activity. A minor fraction of receptor activity was removed from alkali-washed cells by hot acetic acid extraction, a procedure which solubilized some (1 --> 6)-beta-d-glucan and glycogen. The major fraction (>70%) of receptor activity remained with the acid-insoluble (1 --> 6)-beta-and (1 --> 3)-beta-glucans. Zymolyase, an endo-(1 --> 3)-beta-d-glucanase, solubilized a substantial fraction of the receptor activity in the acid-insoluble glucans. The receptor activity in yeast cell walls was periodate and (1 --> 6)-beta-d-glucanase sensitive, but was resistant to (1 --> 3)-beta-d-glucanase and alpha-amylase. The acid-soluble glucan fractions of a sensitive strain and a krel-l receptor-defective toxin-resistant mutant were examined. The krel-l strain had a reduced amount (ca. 50%) of (1 --> 6)-beta-d-glucan compared with the sensitive parent strain. A sensitive revertant of the krel-l strain regained the parental level of glucan. These results implicate (1 --> 6)-beta-d-glucan as a component of the yeast cell wall receptor for killer toxin.  相似文献   

19.
Desensitization of the cardiac muscarinic K+ channel was studied in cultured neonatal rat atrial cells and in Chinese hamster ovary (CHO) cells transfected with muscarinic receptor (HM(2)), G protein-coupled inward rectifying K+ channels 1 and 4, and G protein-coupled receptor kinase 2. In atrial cells incubated in 10 microM carbachol for 24 h, channel activity in cell-attached patches was substantially reduced as a result of long-term desensitization. The long-term desensitization was also observed in CHO cells transfected with the wild-type receptor and receptor kinase (as well as the channel). However, long-term desensitization was greatly reduced or abolished if the cells were 1) not transfected with the receptor kinase, 2) transfected with a mutant receptor lacking phosphorylation sites (rather than the wild-type receptor), or 3) transfected with a mutant receptor kinase lacking kinase activity (rather than the wild-type receptor kinase). We suggest that long-term desensitization of the cardiac muscarinic receptor-K+ channel system to muscarinic agonist may involve phosphorylation of the receptor by receptor kinase.  相似文献   

20.
The technique of radiation inactivation has been used on a highly purified insulin receptor in order to determine the functional molecular size responsible for tyrosine-specific protein kinase activity. When both insulin binding and kinase activities were analyzed with the same receptor preparations, the functional size for kinase activity was found to be larger than that for insulin binding activity. The radiation inactivation curve for kinase activity was multiphasic. This indicates that at least two components contribute to total kinase activity. The average minimal functional size for the kinase was 370,000 +/- 60,000 daltons (n = 7) which corresponds to the alpha 2 beta 2 form of the insulin receptor. The average functional size for larger forms was estimated to be approximately 4 X 10(6) daltons. (To minimize the complexity of the model used in this analysis, we have analyzed the radiation inactivation curves of the insulin receptor kinase activity with a two-component model. However, we believe that the larger component, greater than 1 X 10(6) daltons, is probably not a single molecular weight species but rather represents a continuum of sizes or aggregates of the alpha 2 beta 2 form of the receptor.) These larger forms contributed 93% of the total activity. Mild reduction of the insulin receptor preparation with dithiothreitol (DTT) activated the total kinase activity by 3.5-fold. Under this condition, the minimal functional kinase size was 380,000 +/- 30,000 daltons (n = 6) while the average functional size for the larger forms was approximately 3 X 10(6) daltons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号