首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The wide range of currently available treatments for metastatic prostate cancer have demonstrated a modest palliative effect, but none to date has shown an increase in overall survival. The immune system has evolved to protect against infection, however, the modulation of this system represents the possibility of allowing it to identify and destroy cancer cells. The immune system is capable of inciting a powerful immune response against tissues, in the form of transplant rejection, and the potential exists to harness these powers to fight against tumors. Modest clinical responses have been seen in patients with metastatic prostate cancer treated with DC therapies; however, no increase in overall survival has been demonstrated. The current state of DC immunotherapy for prostate cancer is reviewed.  相似文献   

2.
Cancer vaccines as a modality of immune-based cancer treatment offer the promise of a non-toxic and efficacious therapeutic alternative for patients. Emerging data suggest that response to vaccination largely depends on the magnitude of the type I immune response generated, epitope spreading and immunogenic modulation of the tumor. Moreover, accumulating evidence suggests that cancer vaccines will likely induce better results in patients with low tumor burden and less aggressive disease. To induce long-lasting clinical responses, vaccines will need to be combined with immunoregulatory agents to overcome tumor-related immune suppression. Immunotherapy, as a treatment modality for prostate cancer, has received significant attention in the past few years. The most intriguing characteristics that make prostate cancer a preferred target for immune-based treatments are (1) its relative indolence which allows sufficient time for the immune system to develop meaningful antitumor responses; (2) prostate tumor-associated antigens are mainly tissue-lineage antigens, and thus, antitumor responses will preferentially target prostate cancer cells. But, also in the event of eradication of normal prostate epithelium as a result of immune attack, this will have no clinical consequences because the prostate gland is not a vital organ; (3) the use of prostate-specific antigen for early detection of recurrent disease allows for the initiation of vaccine immunotherapy while tumor burden is still minimal. Finally, for improving clinical outcome further to increasing vaccine potency, it is imperative to recognize prognostic and predictive biomarkers of clinical benefit that may guide to select the therapeutic strategies for patients most likely to gain benefit.  相似文献   

3.
Challenges and prospects of immunotherapy as cancer treatment   总被引:6,自引:0,他引:6  
The concept of cancer immunotherapy stems from the proposed function of the immune system, called immunosurveillance, to protect against growing tumors. Due to genetic aberrations, tumor cells display an altered repertoire of MHC-associated peptides that can lead to the activation of immune cells able to eliminate the transformed cells. In some instances, under the pressure of the immune system, both the tumor and its microenvironment are shaped and immune-resistant tumor variants are selected initiating the process of cancer immunoediting. This can impair not only host-generated immunosurveillance, but also attempts to harness the immune response for therapeutic purposes, namely immunotherapy. Rather than being an exhaustive review of the different approaches of cancer immunotherapy, the focus of this review is to provide the reader with future challenges of the field by proposing 'second generation' immunotherapy approaches that take into account immunosubversive mechanisms adopted by tumor cells. After an introduction on the process of immunosurveillance and immunoescape we will analyze why current immunotherapy approaches have not fulfilled their promise and will finish by summarizing what are the challenges for future approaches.  相似文献   

4.
After decades of work to develop immune-based therapies for cancer, the first drugs designed specifically to engage the host anti-tumor immune response for therapeutic benefit were recently approved for clinical use. Sipuleucel-T, a vaccine for advanced prostate cancer, and ipilimumab, a monoclonal antibody that mitigates the negative impact of cytotoxic T lymphocyte antigen-4 signaling on tumor immunity, provide a modest clinical benefit in some patients. The arrival of these drugs in the clinic is a significant advance that we can capitalize on for even better clinical outcomes. The strategic and scientifically rational integration of vaccines and other direct immunomodulators with standard cancer therapeutics should lead to therapeutic synergy and high rates of tumor rejection. This review focuses on the use of cyclophosphamide, doxorubicin, and HER-2-specific monoclonal antibodies to dissect mechanisms of immune tolerance relevant to breast cancer patients and illustrates how appropriate preclinical models can powerfully inform clinical translation. The immune-modulating activity of targeted, pathway-specific, small molecule therapeutics is also discussed. Fully understanding how cancer drugs impact the immune system should lead to the ultimate personalized cancer medicine: effective combinatorial immunotherapy strategies that simultaneously target signaling pathways essential for tumor growth and progression, and systematically break multiple, distinct immune tolerance pathways to maximize tumor rejection and effect cure.  相似文献   

5.
The introduction of immunotherapy into cancer treatment has radically changed clinical management of tumors. However, only a minority of patients (approximately 10 to 30%) exhibit long-term response to monotherapy with immunotherapy. Moreover, there are still many cancer types, including pancreatic cancer and glioma, which are resistant to immunotherapy. Due to the immunomodulatory effects of radiotherapy, the combination of radiotherapy and immunotherapy has achieved better therapeutic effects in a number of clinical trials. However, radiotherapy is a double-edged sword in the sense that it also attenuates the immune system under certain doses and fractionation schedules, not all clinical trials show improved survival in the combination of radiotherapy and immunotherapy. Therefore, elucidation of the interactions between radiotherapy and the immune system is warranted to optimize the synergistic effects of radiotherapy and immunotherapy. In this review, we highlight the dark side as well as bright side of radiotherapy on tumor immune microenvironment and immune system. We also elucidate current status of radioimmunotherapy, both in preclinical and clinical studies, and highlight that combination of radiotherapy and immunotherapy attenuates combinatorial effects in some circumstances. Moreover, we provide insights for better combination of radiotherapy and immunotherapy.  相似文献   

6.
Traditional therapies for cancer include surgery, chemotherapy, and radiation. Chemotherapy has widespread systemic cytotoxic effects against tumor cells but also affects normal cells. Radiation has more targeted local cytotoxicity but is limited to killing cells in the radiation field. Immunotherapy has the potential for systemic, specific killing of tumor cells. However, if the immune response is specific to a single antigen, tumor evasion can occur by down-regulation of that antigen. An immunotherapy approach that induces polyvalent immunity to autologous tumor antigens can provide a personalized vaccine with less potential for immunologic escape. A cytotoxic immunotherapy strategy creates such a tumor vaccine in situ. Immunogenic tumor cell death provides tumor antigen targets for the adaptive immune response and stimulates innate immunity. Attraction and activation of antigen presenting cells such as dendritic cells is important to process and present tumor antigens to T cells. These include cytotoxic T cells that kill tumor cells and T cells which positively and negatively regulate immunity. Tipping the balance in favor of anti-tumor immunity is an important aspect of an effective strategy. Clinically, immunotherapies may be most effective when combined with standard therapies in a complimentary way. An example is gene-mediated cytotoxic immunotherapy (GMCI) which uses an adenoviral vector, AdV-tk, to deliver a cytotoxic and immunostimulatory gene to tumor cells in vivo in combination with standard therapies creating an immunostimulatory milieu. This approach, studied extensively in animal models and early stage clinical trials, is now entering a definitive Phase 3 trial for prostate cancer.  相似文献   

7.
History of cancer immunotherapy lasts for more than 120 years. In 1891 William B. Coley injected bacteria into inoperable cancer (bone sarcoma) and observed tumor shrinkage. He is recognized as the "'"Father of Immunotherapy"'". Cancer immunotherapy is based on the ability of the immune system to recognize cancer cells and to affect their growth and expansion. Beside the fact that, tumor cells are genetically distinct from their normal counterparts, and should be recognized and eliminated by immune system, the tumor associated antigens (TAAs) are often poorly immunogenic due to immunoediting. This process allows tumor to evolve during continuous interactions with the host immune system, and eventually escape from immune surveillance. Furthermore, tumor microenvironment consists of immunosuppressive cells that release immunosuppressive factors including IL-6, IL-10, IDO, TGFβ or VEGF. Interactions between cancer and stroma cells create network of immunosuppressive pathways, while activation of immune defense is inhibited. A key to successful immunotherapy is to overcome the local immunosuppression within tumor microenvironment and activate mechanisms that lead to tumor eradication. There are two clinical approaches of immunotherapy: active and passive. Active immunotherapy involves stimulation of immune response to tumor associated antigens (TAAs), either non-specifically via immunomodulating agents or specifically employing cancer vaccines. This review presents the progress and breakthroughs in design, development and clinical application of selected cell-based tumor vaccines achieved due to the generation and development of gene transfer technologies.  相似文献   

8.
We have seen a surge in the use of immunotherapy for the treatment of cancer. Biological response modifiers can act passively by enhancing the immunologic response to tumor cells or actively by altering the differentiation/growth of tumor cells. Active immunotherapy with cytokines such as interferons (IFNs) and interleukins (IL-2) is a form of nonspecific active immune stimulation. The use of IL-2 has recently been approved by the United States Food and Drug Administration (FDA) for the treatment of renal cell carcinoma and metastatic colorectal cancer. Considerable success has been achieved with the use of immunotherapy, especially in the area of passive immunotherapy using monoclonal antibodies--in particular, radiolabeled monoclonal antibodies. In addition to the various monoclonal antibodies that have been used in clinical trials, other strategies such as the use of antiangiogenic agents and matrix metalloprotease inhibitors (MMPIs) have also met with some success. Recently, the FDA approved bevacizumab, an anti-vascular endothelial growth factor (VEGF) agent, for the treatment of metastatic melanoma. This review also sheds light on the various angiogenesis inhibitors in clinical trials, the increasing use of thalidomide in cancer, and the upcoming potential cancer vaccines designed to activate cell-mediated immune responses against tumor antigens.  相似文献   

9.
Cancer chemotherapy drugs have long been considered immune suppressive. However, more recent data indicate that some cytotoxic drugs effectively treat cancer in part by facilitating an immune response to the tumor when given at the standard dose and schedule. These drugs induce a form of tumor cell death that is immunologically active, thereby inducing an adaptive immune response specific for the tumor. In addition, cancer chemotherapy drugs can promote tumor immunity through ancillary and largely unappreciated immunologic effects on both the malignant and normal host cells present within the tumor microenvironment. These more subtle immunomodulatory effects are dependent on the drug itself, its dose, and its schedule in relation to an immune-based intervention. The recent approvals of two new immune-based therapies for prostate cancer and melanoma herald a new era in cancer treatment and have led to heightened interest in immunotherapy as a valid approach to cancer treatment. A detailed understanding of the cellular and molecular basis of interactions between chemotherapy drugs and the immune system is essential for devising the optimal strategy for integrating new immune-based therapies into the standard of care for various cancers, resulting in the greatest long-term clinical benefit for cancer patients.  相似文献   

10.
11.
Recent years have witnessed important breakthroughs in our understanding of tumor immunology. A variety of immunotherapeutic strategies has shown that immune manipulation can induce the regression of established cancer in humans. The identification of the genes encoding tumor-associated antigens (TAA) and the development of means for immunizing against these antigens have opened new avenues for the development of an effective anticancer immunotherapy. However, an efficient immune response against tumor requires an intricate cross-talk between cancer and immune system cells, which is still poorly understood. Only when the molecular basis underlying tumor susceptibility to an immune response is deciphered could new therapeutic strategies be designed to fit biologically defined mechanisms of cancer immune rejection. In this article, we address some of the critical issues that have been identified in cancer immunotherapy, in part from our own studies on immune therapies in melanoma patients treated with peptide-based vaccination regimens. This is not meant to be a comprehensive overview of the immunological phenomena accompanying cancer patient vaccination but rather emphasizes some emergent findings, puzzling controversies and unanswered questions that characterize this complex field of oncology. In addition to reviewing the main immunological concepts underlying peptide-based vaccination, we also review the available data regarding naturally occurring and therapeutically induced anticancer immune response, both at the peripheral and intratumoral level. The hypothesized role of innate immunity in predetermining tumor responsiveness to immunotherapeutic manipulation is also discussed.  相似文献   

12.
Breast cancer (BC) is one of the most widespread malignancies in women worldwide. Breast cancer is mainly classified into a few key molecular subtypes in accordance with hormone and growth factor receptor expression, etc. In spite of numerous advances in the remedy of breast cancer, the development of metastatic disease remains an untreatable and repeated basis of cancer death for women. Preclinical and clinical studies of immunotherapy in cancer remedy have been in progress for the past quite a few decades by an effort to accelerate, augment, and modulate the immune system to spot and devastate cancer cells. Advancement of cancer immunotherapy is rapidly increasing with eminent and most interesting therapy compared to other therapy like targeted therapy, cytotoxic chemotherapy, radiation as well as surgery. Cancer immunotherapy, also known as biological therapy, which denotes the controlling and by means of the patient's own immune system to goal the cancer cells rather than using an extrinsic therapy. In that way, focusing of cancer immunotherapy developing mediators that stimulates or enhances the immune system's recognition and destroying the cancer cells. This review describes a holistic outlook and deeper understanding of the biology of immunotherapy within the system of tumor microenvironment of breast cancer that improve clinical research and constructive impact on the study conclusion.  相似文献   

13.
14.
A new era of cancer immunotherapy has brought not only successful cancer vaccines but also immunomodulators, such as those that target checkpoint blockade in order to induce endogenous host immune responses. However, the immune system of cancer patients can be compromised through multiple means, including immune suppression by the tumor and by prior therapies such as chemotherapy and radiation. Therefore, a comprehensive means of assessing patient immunocompetence would seem helpful for determining whether patients are ready to benefit from immunotherapy, and perhaps even which immunotherapy might be most appropriate for them. Unfortunately, there are no standardized tests for immune competence, nor is there agreement on what to measure and what will be predictive of outcome. In this review, we will discuss the technologies and assays that might be most useful for this purpose. We argue for a comprehensive approach that should maximize the chances of developing predictive biomarkers for eventual clinical use.  相似文献   

15.
Human papillomavirus type 16 (HPV16) infection has been linked to the development of cervical and anal dysplasia and cancer. One hallmark of persistent infection is the synthesis of the viral E7 protein in cervical epithelial cells. The expression of E7 in dysplastic and transformed cells and its recognition by the immune system as a foreign antigen make it an ideal target for immunotherapy. Utilizing the E7-expressing murine tumor cell line, TC-1, as a model of cervical carcinoma, an immunotherapy based on the administration of an adjuvant-free fusion protein comprised of Mycobacterium bovis BCG Hsp65 linked to HPV16 E7 (HspE7) has been developed. Initial in vitro analyses indicate that immunization with HspE7 results in the induction of a type 1 immune response based on the pattern of secreted cytokines and the presence of cytolytic activity following antigenic recall. It has been previously shown that prophylactic immunization with HspE7 protected mice against challenge with TC-1 cells and that these tumor-free animals are also protected against rechallenge with TC-1 cells. The present report shows that a single therapeutic immunization with HspE7 induces regression of palpable tumors, confers protection against tumor rechallenge, and is associated with long-term survival (>253 days). In vivo studies using mice with targeted mutations in CD8 or MHC class II or depleted of CD8 or CD4 lymphocyte subsets demonstrate that tumor regression following therapeutic HspE7 immunization is CD8 dependent and CD4 independent. These studies extend previous observations on the induction of CTL by Hsp fusion proteins and are consistent with the clinical application of HspE7 as an immunotherapy for human cervical and anal dysplasia and cancer.  相似文献   

16.
Direct vaccination with mRNA encoding tumor antigens is a novel and promising approach in cancer immunotherapy. CureVac's mRNA vaccines contain free and protamine-complexed mRNA. Such two-component mRNA vaccines support both antigen expression and immune stimulation. These self-adjuvanting RNA vaccines, administered intradermally without any additional adjuvant, induce a comprehensive balanced immune response, comprising antigen specific CD4+ T cells, CD8+ T cells and B cells. The balanced immune response results in a strong anti-tumor effect and complete protection against antigen positive tumor cells. This tumor inhibition elicited by mRNA vaccines is a result of the concerted action of different players. After just two intradermal vaccinations, we observe multiple changes at the tumor site, including the up-regulation of many genes connected to T and natural killer cell activation, as well as genes responsible for improved infiltration of immune cells into the tumor via chemotaxis. The two-component mRNA vaccines induce a very fast and boostable immune response. Therefore, the vaccination schedules can be adjusted to suit the clinical situation. Moreover, by combining the mRNA vaccines with therapies in clinical use (chemotherapy or anti-CTLA-4 antibody therapy), an even more effective anti-tumor response can be elicited. The first clinical data obtained from two separate Phase I/IIa trials conducted in PCA (prostate cancer) and NSCLC (non-small cell lung carcinoma) patients have shown that the two-component mRNA vaccines are safe, well tolerated and highly immunogenic in humans.  相似文献   

17.
To elicit a therapeutic antitumor immune response, dendritic cells (DCs) have been employed as a cellular adjuvant. Among various DC-based approaches, fusion of DCs and tumor cells potentially confers not only DC functionality, but also a continuous source of unaltered tumor antigens. We have recently demonstrated successful generation of fusion hybrids by a large-scale electrofusion technique. The immunogenicity and therapeutic potential of fusion hybrids were further analyzed in a model system of a murine melanoma cell line expressing beta-galactosidase (beta-gal) as a surrogate tumor antigen. A single vaccination with fusion hybrids plus IL-12 induced a therapeutic immune response against 3-day established pulmonary metastases. This immunotherapy was beta-gal specific and involved both CD4 and CD8 T cells. In vitro, fusion hybrids stimulated specific IFN-gamma secretion from both CD4 and CD8 immune T cells. They also nonspecifically induced IL-10 secretion from CD4 but not CD8 T cells. Compared to other DC loadings, our results demonstrate the superior immunogenicity of fusion. The current technique of electrofusion is adequately developed for clinical use in cancer immunotherapy.  相似文献   

18.
Experimental vaccine strategies for cancer immunotherapy   总被引:10,自引:0,他引:10  
Recently, cancer immunotherapy has emerged as a therapeutic option for the management of cancer patients. This is based on the fact that our immune system, once activated, is capable of developing specific immunity against neoplastic but not normal cells. Increasing evidence suggests that cell-mediated immunity, particularly T-cell-mediated immunity, is important for the control of tumor cells. Several experimental vaccine strategies have been developed to enhance cell-mediated immunity against tumors. Some of these tumor vaccines have generated promising results in murine tumor systems. In addition, several phase I/II clinical trials using these vaccine strategies have shown extremely encouraging results in patients. In this review, we will discuss many of these promising cancer vaccine strategies. We will pay particular attention to the strategies employing dendritic cells, the central player for tumor vaccine development.  相似文献   

19.
Natural killer (NK) cells, key antitumor effectors of the innate immune system, are endowed with the unique ability to spontaneously eliminate cells undergoing a neoplastic transformation. Given their broad reactivity against diverse types of cancer and close association with cancer prognosis, NK cells have gained considerable attention as a promising therapeutic target for cancer immunotherapy. NK cell-based therapies have demonstrated favorable clinical efficacies in several hematological malignancies but limited success in solid tumors, thus highlighting the need to develop new therapeutic strategies to restore and optimize antitumor activity while preventing tumor immune escape. The current therapeutic modalities yielding encouraging results in clinical trials include the blockade of immune checkpoint receptors to overcome the immune-evasion mechanism used by tumors and the incorporation of tumor-directed chimeric antigen receptors to enhance NK cell antitumor specificity and activity. These observations, together with recent advances in the understanding of NK cell activation within the tumor microenvironment, will facilitate the optimal design of NK cell-based therapy against a broad range of cancers and, more desirably, refractory cancers.  相似文献   

20.
Cancer immunotherapy with monoclonal antibodies directed against regulatory pathways in T lymphocytes has been revolutionizing medical oncology, and the clinical success of monoclonal antibodies targeting either cytotoxic T lymphocyte antigen-4 (CTLA-4) or program death-1 (PD-1) in patients affected by melanoma, Hodgkin’s lymphoma, Merkel cell carcinoma, and head and neck, bladder, renal cell or non-small cell lung cancer is way beyond the most optimistic expectation. However, immune checkpoint blockade (ICB) has failed to arrest progression in a consistent amount of patients affected by those tumors, and various histological types, including breast, colon and prostate cancer, are less sensitive to this therapeutic approach. Such clinical findings have fueled massive research efforts in the attempt to identify pre-existing and acquired mechanisms of resistance to ICB. Here we focus on evidences emerging from studies in humans on how tumor cells and the tumor microenvironment contribute to the heterogeneous clinical responses, and we propose strategies stemming from pre-clinical models that might improve clinical outcomes for patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号