首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The GntR family regulators are widely distributed in bacteria and play critical roles in metabolic processes and bacterial pathogenicity. In this study, we describe a GntR family protein encoded by PA4132 that we named MpaR (M vfR-mediated P QS and a nthranilate r egulator) for its regulation of Pseudomonas quinolone signal (PQS) production and anthranilate metabolism in Pseudomonas aeruginosa. The deletion of mpaR increased biofilm formation and reduced pyocyanin production. RNA sequencing analysis revealed that the mRNA levels of antABC encoding enzymes for the synthesis of catechol from anthranilate, a precursor of the PQS, were most affected by mpaR deletion. Data showed that MpaR directly activates the expression of mvfR, a master regulator of pqs system, and subsequently promotes PQS production. Accordingly, deletion of mpaR activates the expression of antABC genes, and thus, increases catechol production. We also demonstrated that MpaR represses the rhl quorum-sensing (QS) system, which has been shown to control antABC activity. These results suggested that MpaR function is integrated into the QS regulatory network. Moreover, mutation of mpaR promotes bacterial survival in a mouse model of acute pneumonia infection. Collectively, this study identified a novel regulator of pqs system, which coordinately controls anthranilate metabolism and bacterial virulence in P. aeruginosa.  相似文献   

3.
4.
5.
In iron-replete environments, the Pseudomonas aeruginosa Fur (ferric uptake regulator) protein represses expression of two small regulatory RNAs encoded by prrF1 and prrF2. Here we describe the effects of iron and PrrF regulation on P. aeruginosa physiology. We show that PrrF represses genes encoding enzymes for the degradation of anthranilate (i.e. antABC), a precursor of the Pseudomonas quinolone signal (PQS). Under iron-limiting conditions, PQS production was greatly decreased in a DeltaprrF1,2 mutant as compared with wild type. The addition of anthranilate to the growth medium restored PQS production to the DeltaprrF1,2 mutant, indicating that its defect in PQS production is a consequence of anthranilate degradation. PA2511 was shown to encode an anthranilate-dependent activator of the ant genes and was subsequently renamed antR. AntR was not required for regulation of antA by PrrF but was required for optimal iron activation of antA. Furthermore, iron was capable of activating both antA and antR in a DeltaprrF1,2 mutant, indicating the presence of two distinct yet overlapping pathways for iron activation of antA (AntR-dependent and PrrF-dependent). Additionally, several quorum-sensing regulators, including PqsR, influenced antA expression, demonstrating that regulation of anthranilate metabolism is intimately woven into the quorum-sensing network of P. aeruginosa. Overall, our data illustrate the extensive control that both iron regulation and quorum sensing exercise in basic cellular physiology, underlining how intermediary metabolism can affect the regulation of virulence factors in P. aeruginosa.  相似文献   

6.
7.
8.
9.
10.
11.
Certain bacteria can coordinate group behaviors via a chemical communication system known as quorum sensing (QS). Gram-negative bacteria typically use N-acyl l-homoserine lactone (AHL) signals and their cognate intracellular LuxR-type receptors for QS. The opportunistic pathogen Pseudomonas aeruginosa has a relatively complex QS circuit in which two of its LuxR-type receptors, LasR and QscR, are activated by the same natural signal, N-(3-oxo)-dodecanoyl l-homoserine lactone. Intriguingly, once active, LasR activates virulence pathways in P. aeruginosa, while activated QscR can inactivate LasR and thus repress virulence. We have a limited understanding of the structural features of AHLs that engender either agonistic activity in both receptors or receptor-selective activity. Compounds with the latter activity profile could prove especially useful tools to tease out the roles of these two receptors in virulence regulation. A small collection of AHL analogs was assembled and screened in cell-based reporter assays for activity in both LasR and QscR. We identified several structural motifs that bias ligand activation towards each of the two receptors. These findings will inform the development of new synthetic ligands for LasR and QscR with improved potencies and selectivities.  相似文献   

12.
Pseudomonas sp. M18 is a rhizosphere isolate capable of producing two kinds of antifungal agents: phenazine-1-carboxylic acid (PCA) and pyoluteorin. Recently, the two well-studied quorum sensing (QS) systems of Pseudomonas aeruginosa, LasR/LasI and RhlR/RhlI, have also been identified in this strain. However, in this study, through the use of lacZ translational fusion expression analysis and acyl-homoserine lactone thin-layer chromatography (TLC) bioassays, we clearly display a more complex and distinctive hierarchy of the las and rhl QS systems in strain M18. In this QS cascade, expression of rhlI was negatively controlled by the LasR/LasI QS system. In contrast with lasI, which negatively regulated the rhlR induction, lasR exerted a positive influence on rhlR expression during the log-phase. This interrelationship indicated that the response regulators (LasR and RhlR) of the QS system are expressed independently of their cognate synthases (LasI and RhlI). Furthermore, the las system also modulated the timing and magnitude of the rhlI and rhlR maximal expression. In addition, our data imply that the lasR gene exerts its negative control on PCA production through modulation of rhlI expression. Thus, interactions between the two QS systems are strain specific.  相似文献   

13.
14.
The rhl quorum-sensing (QS) system plays critical roles in the pathogenesis of P. aeruginosa. However, the regulatory effects that occur directly upstream of the rhl QS system are poorly understood. Here, we show that deletion of gene encoding for the two-component sensor BfmS leads to the activation of its cognate response regulator BfmR, which in turn directly binds to the promoter and decreases the expression of the rhlR gene that encodes the QS regulator RhlR, causing the inhibition of the rhl QS system. In the absence of bfmS, the Acka-Pta pathway can modulate the regulatory activity of BfmR. In addition, BfmS tunes the expression of 202 genes that comprise 3.6% of the P. aeruginosa genome. We further demonstrate that deletion of bfmS causes substantially reduced virulence in lettuce leaf, reduced cytotoxicity, enhanced invasion, and reduced bacterial survival during acute mouse lung infection. Intriguingly, specific missense mutations, which occur naturally in the bfmS gene in P. aeruginosa cystic fibrosis (CF) isolates such as DK2 strains and RP73 strain, can produce BfmS variants (BfmSL181P, BfmSL181P/E376Q, and BfmSR393H) that no longer repress, but instead activate BfmR. As a result, BfmS variants, but not the wild-type BfmS, inhibit the rhl QS system. This study thus uncovers a previously unexplored signal transduction pathway, BfmS/BfmR/RhlR, for the regulation of rhl QS in P. aeruginosa. We propose that BfmRS TCS may have an important role in the regulation and evolution of P. aeruginosa virulence during chronic infection in CF lungs.  相似文献   

15.
16.
The evolution of host–parasite interactions could be affected by intraspecies variation between different host and parasite genotypes. Here we studied how bacterial host cell‐to‐cell signaling affects the interaction with parasites using two bacteria‐specific viruses (bacteriophages) and the host bacterium Pseudomonas aeruginosa that communicates by secreting and responding to quorum sensing (QS) signal molecules. We found that a QS‐signaling proficient strain was able to evolve higher levels of resistance to phages during a short‐term selection experiment. This was unlikely driven by demographic effects (mutation supply and encounter rates), as nonsignaling strains reached higher population densities in the absence of phages in our selective environment. Instead, the evolved nonsignaling strains suffered relatively higher growth reduction in the absence of the phage, which could have constrained the phage resistance evolution. Complementation experiments with synthetic signal molecules showed that the Pseudomonas quinolone signal (PQS) improved the growth of nonsignaling bacteria in the presence of a phage, while the activation of las and rhl quorum sensing systems had no effect. Together, these results suggest that QS‐signaling can promote the evolution of phage resistance and that the loss of QS‐signaling could be costly in the presence of phages. Phage–bacteria interactions could therefore indirectly shape the evolution of intraspecies social interactions and PQS‐mediated virulence in P. aeruginosa.  相似文献   

17.
Many bacteria possess cell density-dependent quorum-sensing (QS) systems that often regulate cooperative secretions involved in host-microbe or microbe-microbe interactions. These secretions, or “public goods,” are frequently coregulated by stress and starvation responses. Here we provide a physiological rationale for such regulatory complexity in the opportunistic pathogen Pseudomonas aeruginosa. Using minimal-medium batch and chemostat cultures, we comprehensively characterized specific growth rate-limiting macronutrients as key triggers for the expression of extracellular enzymes and metabolites directly controlled by the las and rhl QS systems. Expression was unrelated to cell density, depended on the secreted product''s elemental composition, and was induced only when the limiting nutrient was not also a building block of the product; rhl-dependent products showed the strongest response, caused by the largely las-independent induction of the regulator RhlR and its cognate signal. In agreement with the prominent role of the rhl system, slow growth inverted the las-to-rhl signal ratio, previously considered a characteristic distinguishing between planktonic and biofilm lifestyles. Our results highlight a supply-driven, metabolically prudent regulation of public goods that minimizes production costs and thereby helps stabilize cooperative behavior. Such regulation would be beneficial for QS-dependent public goods that act broadly and nonspecifically, and whose need cannot always be accurately assessed by the producing cell. Clear differences in the capacities of the las and rhl systems to integrate starvation signals help explain the existence of multiple QS systems in one cell.  相似文献   

18.
QscR is a quorum‐sensing (QS) signal receptor that controls expression of virulence genes in the prevalent opportunistic pathogen, Pseudomonas aeruginosa. Unlike the previously reported LuxR‐type QS receptor proteins, that is, LasR and TraR, QscR can be obtained as an apo‐protein that can reversibly form an active complex in vitro with its cognate signal molecule, 3‐oxododecanoyl‐homoserine lactone (3OC12‐HSL), and subsequently bind to target promoter DNA sequences. To search for potential QS inhibitors, an in vitro gel retardation assay was developed using the purified QscR. Both the in vitro assay and the in vivo cell‐based assay using QscR‐overproducing recombinant strains were applied in the screening process. Furanones were chosen for testing the activity as QS inhibitors because they have been reported to strongly inhibit expression of QS‐related genes in Agrobacterium tumefaciens. Among more than a hundred furanones tested, three compounds showed strong and dose‐dependent inhibitory effects on QscR in both assays. One compound in particular, designated as F2, could completely inhibit the 3OC12‐HSL‐dependent QscR activity in vitro at a concentration of 50‐fold molar excess over 3OC12‐HSL. However, with the furanones F3 and F4, which are structurally similar to F2 but with a nitro group instead of the amine moiety, significantly decreased activities were observed. These results suggest that (i) the in vitro assay is a sensitive and reliable tool for screening QS inhibitors, and (ii) furanones are potentially important QS inhibitors for many LuxR‐type receptor proteins. Biotechnol. Bioeng. 2010; 106: 119–126. © 2010 Wiley Periodicals, Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号