首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Distribution of 0-group cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) in August–September 2005 and 2006 was mainly restricted to the Atlantic waters of the western and central areas of the Barents Sea. The main distribution of 0-group fish overlapped largely with areas of high biomass (>7 gm−2 dry weight) of zooplankton. The copepod Calanus finmarchicus and krill Thysanoessa inermis, which are dominant zooplankton species in both Atlantic and boreal waters of the Barents Sea, were the main prey of 0-group cod and haddock. The main distribution, feeding areas and prey of 0-group cod and haddock overlapped, implying that competition for food may occur between the two species. However, though their diet coincided to a certain degree, haddock seems to prefer smaller and less mobile prey, such as Limacina and appendicularians. As 0-group fish increased in size, there seems to be a shift in diet, from small copepods and towards larger prey such as krill and fish. Overall, a largely pelagic feeding behaviour of 0-group cod and haddock was evident from this study.  相似文献   

2.
Hydroacoustical surveys in the Piaseczno reservoir were performed in May and September 2002 using a Biosonics 101 dual beam echo sounder. They have revealed very scarce fish populations in pelagic waters with twice-higher abundance in autumn (530 fish ha−1) as compared with spring (280 fish ha−1). Small and very small fish (below 10 cm length) dominated. Apart from fish, Chaoborus larvae were producing acoustical echoes of the TS similar or slightly weaker than that of small fish. Invertebrates formed a thin layer, less than 2 m thick at the border of an anoxic zone, and were changing their depth position between 6 and 16 m, both diurnally and seasonally.  相似文献   

3.
During the Circumpolar Flaw Lead System Study (CFL, 2007–2008), large aggregations of polar cod were detected in winter in the Amundsen Gulf (Western Canadian Arctic) using the EK60 echosounder of the CCGS Amundsen research icebreaker. Biomass estimated over 10 months reached a maximum of 0.732 kg m−2 in February. Aggregations were encountered only in the presence of an ice cover from December to April. The vertical extent of the aggregations was dictated by temperature and zooplankton prey distribution. In winter, polar cod generally occupied the relatively warm deep Atlantic Layer (>0°C), but a fraction of the densest aggregations occasionally followed zooplankton prey up into the cold Pacific Halocline (−1.6 to 0°C). The diel vertical migration of polar cod was precisely synchronized with the seasonally increasing photoperiod. Throughout winter, polar cod aggregations migrated to progressively deeper regions (from 220 to 550 m bottom depths) in response to increasing light intensity, presumably to avoid predation by visual predators such as the ringed seal. Comparing Amundsen Gulf and Franklin Bay indicates that the entrapment of polar cod in embayments during winter is an important mechanism to provide marine mammal predators with dense concentrations of their main prey within their diving range.  相似文献   

4.
The composition, abundance, diet and trophic status of zooplankton, bottom invertebrates, fish and nekton were analyzed based on the data collected by the staff of the TINRO-Center during complex bottom trawl catches on the Bering Sea shelf in the fall of 2004. The stomach contents of mass fish species were analyzed and the nitrogen and carbon isotopic composition of 36 mass species of plankton, benthos, nekton and nektobenthos, which together make up the basis of pelagic and bottom communities, was determined. It was found that zooplankton noticeably differ from benthic invertebrates in carbon isotopic composition: δ13C values in zooplankton varied from −20.3‰ to −17.9‰; in benthos—from −17.5‰to −13.0‰; and in fish—from −19.2‰ (juvenile walleye pollock) to −15.3‰ (saffron cod). The levels of 13C isotope in the tissues of fish depended mostly on the share of pelagic or benthic animals in their diet. δ15N values in the studied species ranged from 8.6‰ (in sea urchins) to 17.2‰ (in large Pacific cods), which corresponds to a trophic level of 2.8. Obviously the δ15N values reflect the degree of predation and generally show the ratio of primary, secondary and tertiary consumers in a fish’s diet. Trophic interactions manifest a high degree of interdependence between benthic and pelagic communities (even without taking into account such lower components of the food web as phytoplankton, bacteria, and protozoa) occurring in most nektonic species that depend on both bottom and pelagic food.  相似文献   

5.
Relatively little is known about the distribution of fish in deep water (>200 m) in the Beaufort Sea. Data collected by an Acoustic Doppler Current Profiler operated in the Chukchi and Beaufort seas in summer were examined for evidence of fish biomass detections between 18 and 400 m. The presence of fish in waters between 1 and 30 m was explored opportunistically with a non-scientific echo sounder. Evaluation of findings was enhanced by measurements of water column properties (temperature, salinity, fluorescence and transmissivity). Relatively small shoals of fish were detected on the Chukchi shelf and eastern Chukchi shelf break, and also on the Alaskan and Canadian Beaufort shelves in the upper 20 m (T = 2–5°C). Much larger shoals (putative polar cod) were detected within Atlantic Water along the Beaufort continental slope (250–350 m) and near the bottom of Barrow and Mackenzie canyons, where temperatures were above 0°C. A warm-water plume of Alaska Coastal Current water with high concentrations of phytoplankton, zooplankton, and fish was found extending along the shelf 300 km eastward of Barrow Canyon. In contrast to the warm surface and Atlantic Water layers, very few fish were found in colder, intermediate depth Pacific-origin water between them. The large biomass of fish in the Atlantic Water along the continental slope of the Chukchi and Beaufort seas represents previously undescribed polar cod habitat. It has important implications with regard to considerations of resource development in this area as well as understanding impacts of climate change.  相似文献   

6.
Petroleum-related activities in Arctic waters are rapidly increasing parallel to the ongoing thinning of the Arctic sea ice. As part of a series of studies on petroleum-induced stress in polar cod Boreogadus saida, we tested the effects of acute (~60 min) and chronic (4 weeks) exposure to the water soluble fraction (WSF) of petroleum on whole body metabolism inferred from measurements of oxygen consumption rates. The exposure of polar cod to WSF leads to a statistically significant depression in routine metabolism in the order Control (0.260 mg O2 g fish−1 h−1; N = 6) > Chronic (0.191 mg O2 g fish−1 h−1; N = 6) > Acute (0.110 mg O2 g fish−1 h−1; N = 2), decoupling of routine metabolism and body mass but possibly also to a partial metabolic compensation after 4 weeks of exposure. The results are reviewed in context with similar studies on Antarctic and non-polar fishes.  相似文献   

7.
During summer 2007, Arctic microphytobenthic potential primary production was measured at several stations around the coastline of Kongsfjorden (Svalbard, Norway) at ≤5 m water depth and at two stations at five different water depths (5, 10, 15, 20, 30 m). Oxygen planar optode sensor spots were used ex situ to determine oxygen exchange in the overlying water of intact sediment cores under controlled light (ca. 100 μmol photons m−2 s−1) and temperature (2–4°C) conditions. Patches of microalgae (mainly diatoms) covering sandy sediments at water depths down to 30 m showed high biomass of up to 317 mg chl a m−2. In spite of increasing water depth, no significant trend in “photoautotrophic active biomass” (chl a, ratio living/dead cells, cell sizes) and, thus, in primary production was measured at both stations. All sites from ≤5 to 30 m water depth exhibited variable rates of net production from −19 to +40 mg O2 m−2 h−1 (−168 to +360 mg C m−2 day−1) and gross production of about 2–62 mg O2 m−2 h−1 (17–554 mg C m−2 day−1), which is comparable to other polar as well as temperate regions. No relation between photoautotrophic biomass and gross/net production values was found. Microphytobenthos demonstrated significant rates of primary production that is comparable to pelagic production of Kongsfjorden and, hence, emphasised the importance as C source for the zoobenthos.  相似文献   

8.
Anthropogenic inputs of CO2 are altering ocean chemistry and may alter the role of marine calcifiers in ocean ecosystems. Laboratory research and ocean models suggest calcifiers in polar waters are especially at risk, particularly pteropods: pelagic aragonite-shelled molluscs. However, baseline data for natural populations of pteropods are limited, especially for polar and sub-polar waters. In order to establish baseline data on diversity, preservation state and shell flux of in situ populations of Sub-Antarctic Southern Ocean pteropods, we deployed sediment traps above (1,000 m) and below (2,000 m) the aragonite saturation horizon (ASH) (currently at 1,200 m) from 1997 to 2006 at 47°S, 142°E. We identified seven pteropod taxa. We applied a shell opacity index to each shell collected and found 50% of shells collected above the ASH to be in pristine condition but only 3% of the shells collected below the ASH showed such a high degree of preservation. We estimated pteropod shell mass fluxes for the region (0.17–4.99 mg m−2 day−1), and we identified significant reductions in shell flux for Limacina helicina antarctica forma rangi and Clio recurva to the trap series above the ASH and for Limacina helicina antarctica forma rangi and Limacina helicina antarctica forma antarctica to the trap series below the ASH over the interval 1997–2006. Our data establish a temporal and vertical snapshot of the current Sub-Antarctic pelagic pteropod community and provide a baseline against which to monitor Southern Ocean pteropods responses, if any, to changing ocean conditions projected for the region in the coming decades.  相似文献   

9.
The feeding habits of harp seals (Phoca groenlandica) in the Barents Sea were examined in studies conducted during June 1991, September 1990 and 1991, and October 1992. Analyses of stomach and intestinal contents were carried out and concurrent estimates of prey abundance were made using trawl gear. Harp seals appeared to feed at low intensity in the pack ice belt during the first half of June. There was little potential prey in the water column, but prawns (Pandalus borealis), capelin (Mallotus villosus) and polar cod (Boreogadus saida) were abundant close to the bottom. In September, the seals sampled in the northern pack ice areas of the Barents Sea fed on the pelagic amphipod Parathemisto libellula, krill (Thysanoessa spp.), prawns and, to a lesser extent, on fish species such as polar cod, sculpins (Cottidae) and snailfish (Liparidae). Trawling revealed that large quantities of Parathemisto libellala were present in the upper layers of the water column. Fish, mainly capelin and polar cod, were less abundant and occurred in deeper waters. In mid-October, the diet of seals in the northern Barents Sea consisted mainly of amphipods (Parathemisto sp.). Later in October, when increasing pack ice cover forced the harp seals to move south, the diet seemed to change from amphipods to fish prey, predominantly capelin and polar cod.  相似文献   

10.
The Salton Sea is a highly saline lake that has long supported sportfishery and large populations of fish-eating birds. A study was initiated in 1999 to assess the status of orangemouth corvina (Cynoscion xanthulus), bairdiella (Bairdiella icistia) and tilapia (Oreochromis mossambicus × O. urolepis). Multimesh (50 × 2 m) gillnets were set at nine stations in 1999, ten stations in 2000 and six stations in 2002. These stations were sampled every two months in 1999, every three months in 2000 and once in 2002. O. mossambicus was the most abundant of the four species, with a maximum mean catch per unit effort (CPUE) 13.8 kg net−1 h−1 or 29.9 fish net−1 h−1 being observed at the river mouth stations in August 1999. From spring to summer, tilapia CPUE increased at nearshore and river mouth stations and decreased at pelagic stations, apparently reflecting migration away from midlake areas in response to anoxia or hypoxia caused by periodic springtime overturn events in deep waters. Tilapia catches in nearshore, river mouth and pelagic habitats were 83 and 60% males in 1999 and 2000, respectively. Tilapia catches in rivers in August 1999 averaged only 6% male. During 1999–2000, the tilapia population consisted essentially of only the 1995 and 2000 year classes. Harsh conditions at the Salton Sea have led to erratic reproduction and survival rates and unstable age structures for its resident fishes. Massive parasite infestations of fry and physiological stressors such as anoxia, high sulfide levels, high salinity and high and low temperatures are potential causes of the irregular recruitment and periodic dieoffs of tilapia. The abundance of all fish species declined over the years of study. Between 1999 and 2002, the late summer mean CPUEs for tilapia, bairdiella and orangemouth corvina at four nearshore stations dropped from 16 fish to 0.02 fish, from 4.7 fish net to 0.23 fish, and from 0.08 fish to 0.02 fish, respectively. During 2000–2003, parallel declines occurred in estimated numbers of adult fish involved in mass mortality events at the Sea. The boom-and-bust dynamics of tilapia and other fish populations in the Sea have major consequences for fish-eating bird populations, for other components of the ecosystem, and for the recreational value of the lake. Guest Editor: John M. Melack Saline Waters and their Biota  相似文献   

11.
The economic value of ecosystem services of vegetated habitats (seagrass and macroalgal beds) has been estimated to be among the highest of the various ecosystems on earth. However, fish production has not been included in the evaluations due to the difficulty of quantitative estimation of fish production in the field. In the present study, annual production and economic value of wild juvenile black rockfish, Sebastes cheni, a dominant fish species in seagrass and macroalgal beds in the central Seto Inland Sea were estimated. Juvenile S. cheni migrated into vegetated habitats at about 20 mm total length (TL) and grew up to about 60 mm TL by late May. Juvenile abundance was highest in April (2007) or March (2008). Eight cohorts with the same extrusion period (each cohort covering a 10-day period) were identified using otolith daily increments. The annual estimates of S. cheni juvenile production were 13,080 g ha−1 year−1 in 2007 and 18,360 g −1 year−1 in 2008. Based on the unit price of artificially raised S. cheni juveniles, the economic value of the annual wild juvenile production was converted to 654,000 JPY (Japanese yen: 100 JPY = ca. 1 USD) ha−1 year−1 for 2007 and 918,000 JPY ha−1 year−1 for 2008. Analyses of stomach contents and stable isotope (δ13C or δ15N) showed that juvenile S. cheni were highly dependent on copepods. The planktonic trophic pathway originating from phytoplankton supports the majority of the juvenile black rockfish production during the post-migration period (20–60 mm TL) in the seagrass and macroalgal beds through the production of copepod zooplankton. The total economic value of the ecosystem services of the vegetated habitat is suggested to be much higher than estimates in previous studies if the provisioning and regulating services which originate from fish production were included in the estimates.  相似文献   

12.
Recent warming has caused a northern extension in the distribution of many southern fish species in Icelandic waters. Polar cod (Boreogadus saida) around Iceland are near the southern limit of their distribution, but are poorly studied in the area. Therefore, material sampled during demersal fish surveys in March 1985–2013 and in pelagic 0-group surveys in Iceland–East Greenland waters in August–September 1974–2003 was used to investigate their distribution, abundance and biology. Demersal polar cod were most often caught on the outer shelf to the north-west and north of Iceland, but during years of widest distribution and highest abundance, they were caught farther to the east on the northern shelf. Pelagic 0-group polar cod were only caught sporadically and mainly confined to the waters off the north-west shelf of Iceland and the East Greenland shelf (southern Denmark Strait). In demersal hauls, the number of stations with polar cod decreased with increasing bottom temperature and polar cod were most widely distributed in the years 1989, 1994 and 1995. Highest numbers of demersal polar cod per haul were caught at temperatures of ?0.5 to 2.5 °C and at 200–450 m depth. The length of demersal polar cod ranged from 5 to 32 cm, while the fish caught in the pelagic trawl ranged from 2.2 to 19 cm. The polar cod in the subarctic waters north of Iceland most likely originate from the waters off East Greenland and further warming and decline in sea ice may eventually lead to the disappearance of polar cod from Icelandic waters.  相似文献   

13.
Ecosystem restoration by rewetting of degraded fens led to the new formation of large-scale shallow lakes in the catchment of the River Peene in NE Germany. We analyzed the biomass and the nutrient stock of the submersed (Ceratophyllum demersum) and the floating macrophytes (Lemna minor and Spirodela polyrhiza) in order to assess their influence on temporal nutrient storage in water bodies compared to other freshwater systems. Ceratophyllum demersum displayed a significantly higher biomass production (0.86–1.19 t DM = dry matter ha−1) than the Lemnaceae (0.64–0.71 t DM ha−1). The nutrient stock of submersed macrophytes ranged between 28–44 kg N ha−1 and 8–12 kg P ha−1 and that of floating macrophytes between 14–19 kg N ha−1 and 4–5 kg P ha−1 which is in the range of waste water treatment plants. We found the N and P stock in the biomass of aquatic macrophytes being 20–900 times and up to eight times higher compared to the nutrient amount of the open water body in the shallow lakes of rewetted fens (average depth: 0.5 m). Thereafter, submersed and floating macrophytes accumulate substantial amounts of dissolved nutrients released from highly decomposed surface peat layers, moderating the nutrient load of the shallow lakes during the growing season from April to October. In addition, the risk of nutrient loss to adjacent surface waters becomes reduced during this period. The removal of submersed macrophytes in rewetted fens to accelerate the restoration of the low nutrient status is discussed.  相似文献   

14.
The winter/spring vertical distributions of polar cod, copepods, and ringed seal were monitored at a 230-m station in ice-covered Franklin Bay. In daytime, polar cod of all sizes (7–95 g) formed a dense aggregation in the deep inverse thermocline (160–230 m, −1.0 to 0°C). From December (polar night) to April (18-h daylight), small polar cod <25 g migrated into the isothermal cold intermediate layer (90–150 m, −1.4°C) at night to avoid visual predation by shallow-diving immature seals. By contrast, large polar cod (25–95 g), with large livers, remained below 180 m at all times, presumably to minimize predation by deep-diving mature seals. The diel vertical migration (DVM) of small polar cod was precisely synchronized with the light/dark cycle and its duration tracked the seasonal lengthening of the photoperiod. The DVM stopped in May coincident with the midnight sun and increased schooling and feeding. We propose that foraging interference and a limited prey supply in the deep aggregation drove the upward re-distribution of small polar cod at night. The bioluminescent copepod Metridia longa could have provided the light needed by polar cod to feed on copepods in the deep aphotic layers.  相似文献   

15.
The brown alga Fucus vesiculous is one of the few marine species in the Baltic Sea. Fucus vesiculosus shows high morphological and physiological variability as a response to its environmental conditions. The salinity in the Baltic Sea is 4–5 psu, compared to 35 psu in the Atlantic. Photosynthesis of algae is usually measured after collection and transportation to constant culture conditions. However, in this study, relative photosynthetic electron transport rates, calculated from chlorophyll a fluorescence parameters were compared in algae collected from 1 and 4 m depths by SCUBA divers. Measurements of light response curves from the same individuals of F. vesiculosus at different depths and times of the year have, to our knowledge, not been made previously. Measurements were performed on four different occasions during the spring of 2005 (25 February, 3 and 29 April, and 26 May) in the Baltic Sea, using rapid light curves generated with a Diving PAM. In addition, samples were collected for photoinhibition studies in the laboratory. The light response curves obtained in situ at 1 and 4 m depths for F. vesiculosus showed lower values of light saturation with depth. When algae from 1 and 4 m depths were exposed to high irradiances of photosynthetically active radiation (1,400 μmol photons m−2 s−1), algae from 1 m depth showed a higher degree of photoinhibition in comparison to algae from 4 m depth.  相似文献   

16.
A number of studies have investigated regional and continental scale patterns of carbon (C) stocks in forest ecosystems; however, the altitudinal changes in C storage in different components (vegetation, detritus, and soil) of forest ecosystems remain poorly understood. In this study, we measured C stocks of vegetation, detritus, and soil of 22 forest plots along an altitudinal gradient of 700–2,000 m to quantify altitudinal changes in carbon storage of major forest ecosystems (Pinus koraiensis and broadleaf mixed forest, 700–1,100 m; Picea and Abies forest, 1,100–1,800 m; and Betula ermanii forest, 1,800–2,000 m) on Mt Changbai, Northeast China. Total ecosystem C density (carbon stock per hectare) averaged 237 t C ha−1 (ranging from 112 to 338 t C ha−1) across all the forest stands, of which 153 t C ha−1 (52–245 t C ha−1) was stored in vegetation biomass, 14 t C ha−1 (2.2–48 t C ha−1) in forest detritus (including standing dead trees, fallen trees, and floor material), and 70 t C ha−1 (35–113 t C ha−1) in soil organic matter (1-m depth). Among all the forest types, the lowest vegetation and total C density but the highest soil organic carbon (SOC) density occurred in Betula ermanii forest, whereas the highest detritus C density was observed in Picea and Abies forest. The C density of the three ecosystem components showed distinct altitudinal patterns: with increasing altitude, vegetation C density decreased significantly, detritus C density first increased and then decreased, and SOC density exhibited increasing but insignificant trends. The allocation of total ecosystem C to each component exhibited similar but more significant trends along the altitudinal gradient. Our results suggest that carbon storage and partitioning among different components in temperate forests on Mt Changbai vary greatly with forest type and altitude.  相似文献   

17.
The Mediterranean spongofauna is relatively well-known for habitats shallower than 100 m, but, differently from oceanic basins, information upon diversity and functional role of sponge grounds inhabiting deep environments is much more fragmentary. Aims of this article are to characterize through ROV image analysis the population structure of the sponge assemblages found in two deep habitats of the Mediterranean Sea and to test their structuring role, mainly focusing on the demosponges Pachastrella monilifera Schmidt, 1868 and Poecillastra compressa (Bowerbank, 1866). In both study sites, the two target sponge species constitute a mixed assemblage. In the Amendolara Bank (Ionian Sea), where P. compressa is the most abundant species, sponges extend on a peculiar tabular bedrock between 120 and 180 m depth with an average total abundance of 7.3 ± 1.1 specimens m−2 (approximately 230 gWW m−2 of biomass). In contrast, the deeper assemblage of Bari Canyon (average total abundance 10.0 ± 0.7 specimens m−2, approximately 315 gWW m−2 of biomass), located in the southwestern Adriatic Sea between 380 and 500 m depth, is dominated by P. monilifera mixed with living colonies of the scleractinian Madrepora oculata Linnaeus, 1758, the latter showing a total biomass comparable to that of sponges (386 gWW m−2). Due to their erect growth habit, these sponges contribute to create complex three-dimensional habitats in otherwise homogenous environments exposed to high sedimentation rates and attract numerous species of mobile invertebrates (mainly echinoderms) and fish. Sponges themselves may represent a secondary substrate for a specialized associated fauna, such zoanthids. As demonstrated in oceanic environments sponge beds support also in the Mediterranean Sea locally rich biodiversity levels. Sponges emerge also as important elements of benthic–pelagic coupling in these deep habitats. In fact, while exploiting the suspended organic matter, about 20% of the Bari sponge assemblage is also severely affected by cidarid sea urchin grazing, responsible to cause visible damages to the sponge tissues (an average of 12.1 ± 1.8 gWW of individual biomass removed by grazing). Hence, in deep-sea ecosystems, not only the coral habitats, but also the grounds of massive sponges represent important biodiversity reservoirs and contribute to the trophic recycling of organic matter.  相似文献   

18.
The depth-related patterns in the benthic megafauna of the NE Weddell Sea shelf at the edge of the Fimbul Ice Shelf were investigated at seven sites using towed camera platform photographs. Megafaunal density decreased with depth from 77,939 ha−1 at 245 m to 8,895 ha−1 at 510 m. While diversity was variable, with H′ ranging between 1.34 and 2.28, there were no depth related patterns. Multivariate analyses revealed two distinct assemblages; a shallow assemblage with dense patches of suspension feeders in undisturbed areas and a deep assemblage where these were not present. Disturbance from icebergs explained many observed patterns in faunal distribution. In shallow waters probable effects of disturbance were observed as changes in successional stages; in deeper waters changes in habitat as a result of past disturbance explained faunal distributions. In deeper areas ice ploughing created a mosaic landscape of fine and coarse sediments. Total megafaunal density was highest in areas of coarse sediment (up to 2.9 higher than in finer sediment areas) but diversity was highest in intermediate areas (H′ = 2.35).  相似文献   

19.
The processes driving primary productivity and its impacts on fish production were investigated in field trials in eight seasonal earthen wetland ponds ‘Fingerponds’ (192 m2) in Uganda between 2003 and 2005. The ponds were stocked by the seasonal flood with predominantly Oreochromis spp. at densities ranging from 0.1 to 0.5 fish m−2. Chicken manure (521, 833 or 1,563 kg ha−1) was applied fortnightly. Results showed that primary productivity was enhanced with maximum average net primary productivity (±Standard Error) of 11.7 (±2.5) g O2 m−2 day−1 at the Gaba site and 8.3 (±1.5) g O2 m−2 day−1 at the Walukuba site. Net fish yields were higher in manured ponds with up to 2,670 kg ha−1 yield for a 310 day growth period compared to less than 700 kg ha−1 in unmanured ponds. Fish production was limited mainly by high recruitment, falling water levels, light limitation from high suspended solids and turbidity, and low zooplankton biomass. It was concluded that Fingerponds have a high potential for sustainable fish production and can contribute to the alleviation of protein shortages amongst the riparian communities around Lake Victoria. Production can be enhanced further with improved stock management.  相似文献   

20.
In September 2008, the villagers of Kia Island, Fiji, opened their customary managed closure (Cakaulevu tabu) to fishing for a fundraiser that lasted for 5 weeks. We report on opportunistic before-after-control-impact surveys describing changes to coral reef communities both 4 weeks into the harvest and 1 year later compared with pre-harvest conditions. Prior to the harvest, there was a gradient in mean fish abundance and biomass per transect, with highest levels in the north of the closure (250 fish transect−1, 8,145.8 kg ha−1), intermediate levels in the south of the closure (159 fish transect−1, 4,672.1 kg ha−1) and lowest levels in the control area open to fishing (109 fish transect−1, 594.0 kg ha−1). During the harvest, there were extensive depletions in large-bodied, primary targeted fish species, with significant loss in biomass of Acanthuridae and Carangidae in the north and Lutjanidae and Serranidae in the south. We also observed significant increases in Acanthuridae, Lethrinidae and Scaridae in the control, suggesting a “bail-out” effect whereby fish left the closure in response to a rapid increase in fishing pressure. These changes were coupled with a large increase in turf algal cover at all survey areas, despite a large numerical increase in small, roving acanthurids (e.g., Ctenochaetus striatus) and scarids (e.g., Chlorurus sordidus). By 1 year later, fish biomass was significantly lower within the closure than before the harvest, while values in the control returned to pre-harvest levels, suggesting non-compliance with the reinstated fishing ban. We use the lessons learned from this event to suggest recommendations for promoting effective management of periodically harvested customary closures that are a common feature across much of Oceania.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号