首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The soil-borne fungus, Fusarium solani f. sp. phaseoli, attacks roots and hypocotyls of bean (Phaseolus vulgaris) plants causing a devastating disease called root and foot rot. In a study of the host-pathogen relationship it was found that young bean roots, with the radicle just emerging, were highly tolerant to the pathogen, whereas older bean seedlings, with a fully developed root system, were completely susceptible. Investigations by low-temperature scanning electron microscopy demonstrated that significantly fewer spores and hyphae were present on the root surface of young bean seedlings as compared to older ones. A similar pattern of attachment was found when bean roots were inoculated with spores of F. solani f. sp. pisi, a related pathogen causing disease on peas but not on beans. Light microscopic studies showed that F. solani f. sp. pisi did not penetrate the root but rapidly formed thick-walled resting spores on the root surface. F. solani f. sp. phaseoli on the other hand quickly penetrated the root and formed an extensive network of fungal hyphae. These results demonstrate that the ability of fungal propagules to adhere to and to penetrate host tissues are two distinct processes. Furthermore, the data indicate that young bean roots lack a surface component necessary for attachment of fungal spores which may help explain their tolerance to Fusarium root rot.  相似文献   

2.
The effects of co‐inoculation of Rhizoctonia solani and Colletotrichum lindemuthianum or Uromyces appendiculatus at different inoculum levels were studied on the disease dynamics and on the growth of bean plants under greenhouse conditions. Bean seeds were sown in R. solani‐infested soil. Additional experiments in which seedlings were transplanted to infested soil were also carried out. Conidial suspensions of C. lindemuthianum or uredospores of U. appendiculatus were inoculated onto leaves at plant developmental stages V2 and V3, respectively. Interactions between root rot and the aerial diseases were observed depending on the inoculum levels and on the timing of R. solani inoculation. Anthracnose severity tended to be higher on R. solani‐infected plants. Conversely, R. solani infection significantly reduced diameter of pustules and rust severity. When seedlings were transplanted to soil infested with low levels of R. solani, root rot severity and density of R. solani in the soil were magnified at high levels of C. lindemuthianum or U. appendiculatus. In these experiments, a synergistic interaction between root rot and anthracnose was observed to affect the plant dry weight. Antagonistic effects on the plant dry weight were found for the combination root rot/rust only when seeds were sown in infested soil.  相似文献   

3.
In common bean (Phaseolus vulgaris L.), Fusarium root rot (caused by Fusarium solani f. sp. phaseoli) disease severity is increased by environmental factors that stress the plant. The current study used reciprocal grafting techniques with the resistant cultivar FR266 and the susceptible cultivar Montcalm to determine if the genetic control of resistance is conferred by the rootstock (root genotype) or the scion (shoot genotype) and if root vigor played a role in resistance. The influence of a compacted layer on root and shoot genotype response and root rot resistance was studied. Root rot resistance was found to be controlled by the root genotype, such that on a scale of 1 to 7 (severe disease) the FR266 root had an average score of 2.3 and the Montcalm root had an average score of 4.4. However, when grafted plants were grown in the presence of a compacted layer, the FR266 root and/or shoot genotype in any graft combination with the susceptible Montcalm had reduced root rot (score = 2.4 average) than the Montcalm self graft (score = 4.5). Root mass was shown to be controlled by the root genotype in the absence of compaction such that the FR266 root was 26% larger that the Montcalm root when grafted onto a FR266 shoot or a Montcalm shoot. When a compacted layer was present the root and shoot genotype both contributed to root mass. Average root diameter was controlled by the shoot genotype, as the FR266 shoot grafted to Montcalm or FR266 roots had thicker roots (average diameter 0.455 mm) than the Montcalm shoot (average diameter 0.418 mm). This study shows evidence that root vigor in the presence of Fusarium disease pressure should be evaluated to effectively develop common bean lines resistant to Fusarium root rot across a range of environments.  相似文献   

4.
Sixty isolates of Rhizoctonia spp. were obtained from Cuban bean fields during the period 2004–2007. Isolates were characterized with different techniques, including nuclei staining, pectic zymogram, PCR–RFLP analysis of the rDNA–ITS region and sequencing of the rDNA–ITS region. The majority of the isolates were identified as multinucleate Rhizoctonia solani isolates, representing two different anastomosis groups (AGs), AG 2‐2 WB and AG 4 HGI; the remaining isolates were binucleate Rhizoctonia isolates and belonged to AG F and AG A. AG 4 HGI isolates were equally distributed in all soil types; AG 2‐2 isolates were more frequently isolated from cambisols, whereas AG F isolates were related to calcisols. Pathogenicity experiments in vitro and in the greenhouse, revealed that binucleate isolates only caused root rot, whereas R. solani isolates were able to cause root rot and hypocotyl rot. Furthermore, differences in virulence level were observed between R. solani and binucleate isolates and among different AGs. Isolates of R. solani AG 4 HGI and R. solani AG 2‐2 WB were the most aggressive, binucleate isolates of AG F were intermediate aggressive, whereas a binucleate isolate of AG A was weakly aggressive. In contrast with other reports about R. solani in bean, web blight symptoms were never observed during this study.  相似文献   

5.
Five formulations of four benzimidazole derived fungicides, carbendazim, benomyl, thiophanate methyl and methyl 4-[2-(2-dimethylamino acetamide) phenyl]-3-thioallophanate were compared for their toxicity towards two pathogenic isolates of Rhizoctonia solani and three of R. bataticola. The isolates of two fungi showed significant differences in mycelial growth inhibition by the five fungicides. Benomyl and carbendazim were most inhibitory to all isolates of both fungi while the sesame isolate of R. bataticola was least sensitive to all fungicides. Disease control (90%) was obtained with low concentrations of benomyl against root rot of cowpea caused by R. solani, and with thiophanate methyl against root rot of sesame and sunflower, and leaf blight of mung bean caused by R. bataticola. The spread of stalk-end rot of sunflower heads was best checked with a spray of thiophanate methyl. The results suggest that benzimidazole fungicides having similar toxophores act differently for disease control in different host-parasite combinations.  相似文献   

6.
In Australia, in the past, pasture legumes were rotated mainly with cereals, but increasingly these rotations now involve pasture legumes with a wider range of crops, including legumes. This increasing frequency of the leguminous host in the rotation system may be associated with increased root rots in legumes in the current pasture-crop rotations. The primary aim of this study was to see whether the pathogenicity on pasture legumes of strains of Rhizoctonia solani sourced from lupins and cereals (common crops in rotation with pastures) is associated with increased incidence of root rots in pasture legumes in the disease conducive sandy soils of the Mediterranean regions of southern Australia. The second aim was to determine sources of resistance among newly introduced pasture legumes to R. solani strains originating from rotational crops as this would reduce the impact of disease in the pasture phase. Fifteen pasture legume genotypes were assessed for their resistance/susceptibility to five different zymogram groups (ZG) of the root rot pathogen R. solani under glasshouse conditions. Of the R. solani groups tested, ZG1–5 and ZG1–4 (both known to be pathogenic on cereals and legumes) overall, caused the most severe root disease across the genotypes tested, significantly more than ZG6 (known to be pathogenic on legumes), in turn significantly >ZG4 (known to be pathogenic on legumes) which in turn was >ZG11 (known to be pathogenic on legumes including tropical species). Overall, Ornithopus sativus Brot. cvs Cadiz and Margurita, Trifolium michelianum Savi. cvs Paradana and Frontier and T. purpureum Loisel. cv. Electro showed a significant level of resistance to root rot caused by R. solani ZG11 (root disease scores ≤1.2 on a 1–3 scale where 3 = maximum disease severity) while O. sativus cvs Cadiz and Erica showed a significant level of resistance to root rot caused by R. solani ZG4 (scores ≤1.2). O. compressus L. cvs Charano and Frontier, O. sativus cv. Erica, and T. purpureum cv. Electro showed some useful resistance to root rot caused by R. solani ZG6 (scores ≤1.8). This is the first time that cvs Cadiz, Electro, Frontier, Margurita and Paradana have been recognised for their levels of resistance to root rot caused by R. solani ZG11; and similarly for cvs Cadiz and Erica against ZG4; and for cvs Charano, Erica, and Electro against ZG6. These genotypes with resistance may also serve as useful sources of resistance in pasture legume breeding programs and also could potentially be exploited directly into areas where other rotation crops are affected by these R. solani strains. None of the tested genotypes showed useful resistance to R. solani ZG1–4 (scores ≥2.0) or ZG1–5 (scores ≥2.5). This study demonstrates the relative potential of the various R. solani ZG strains, and particularly ZG1–4, ZG1–5, ZG4 and ZG6 to attack legume pastures and pose a significant threat to non-pasture crop species susceptible to these strains grown in rotation with these pasture legumes. Significantly, the cross-pathogenicity of these strains could result in the continuous build-up of inoculum of these strains that may seriously affect the productivity eventually of legumes in all rotations. In particular, when choosing pasture legumes as rotation crops, caution needs to be exercised so that the cultivars deployed are those with the best resistance to the R. solani ZGs most likely to be prevalent at the location.  相似文献   

7.
To investigate the biocontrol effectiveness of the antibiotic producing bacterium, Pseudomonas aureofaciens 63–28 against the phytopathogen Rhizoctonia solani AG-4 on Petri plates and in soybean roots, growth response and induction of PR-proteins were estimated after inoculation with P. aureofaciens 63–28 (P), with R. solani AG-4 (R), or with P. aureofaciens 63–28 + R. solani AG-4 (P + R). P. aureofaciens 63–28 showed strong antifungal activity against R. solani AG-4 pathogens in Petri plates. Treatment with P. aureofaciens 63–28 alone increased the emergence rate, shoot fresh weight, shoot dry weight and root fresh weight at 7 days after inoculation, when compared to R. solani AG-4; P + R treatment showed similar effects. Peroxidase (POD) and β-1,3-glucanase activity of P. aureofaciens 63–28 treated roots increased by 41.1 and 49.9%, respectively, compared to control roots. POD was 26% greater in P + R treated roots than R. solani treated roots. Two POD isozymes (59 and 27 kDa) were strongly induced in P + R treated roots. The apparent molecular weight of chitinase from treated roots, as determined through SDS-PAGE separation and comparison with standards, was about 29 kDa. Five β-1,3-glucanase isozymes (80, 70, 50, 46 and 19 kDa) were observed in all treatments. These results suggest that inoculation of soybean plants with P. aureofaciens 63–28 elevates plant growth inhibition by R. solani AG-4 and activates PR-proteins, potentially through induction of systemic resistance mechanisms.  相似文献   

8.
Rhizoctonia solani isolates used in this investigation were identified as anastomosis-4 (AG-40), collected from different localities from Assiut governorate in Egypt. Pathogenicity test of seven isolates of R. solani was evaluated on soybean Giza 111 cultivar under greenhouse conditions. All tested isolates were able to infect soybean plants causing root rot with different degrees of severities, isolate No. 1, 2 and 3 showed significantly highest root rot severity, while isolate No. 5 gave the lowest percentage of root rot rating. The sodium dodecyl sulphate polyacrylamide gel electrophoresis patterns were used to compare three isolates of R. solani. There are no variations among R. solani isolates except a few exceptions according to their protein patterns. DNA markers obtained from all isolates showed genetic similarity among different isolates obtained from different geographical regions barring few exceptions. Correlation between DNA patterns of R. solani isolates and their virulence was detected, but no correlation with anastomosis groups (AG).  相似文献   

9.
The present study was carried out to evaluate the ability of Trichoderma harzianum (ALL 42-isolated from Brazilian Cerrado soil) to promote common bean growth and to modulate its metabolism and defense response in the presence or absence of the phytopathogenic fungi Rhizoctonia solani and Fusarium solani using a proteomic approach. T. harzianum was able to promote common bean plants growth as shown by the increase in root/foliar areas and by size in comparison to plants grown in its absence. The interaction was shown to modulate the expression of defense-related genes (Glu1, pod3 and lox1) in roots of P. vulgaris. Proteomic maps constructed using roots and leaves of plants challenged or unchallenged by T. harzianum and phytopathogenic fungi showed differences. Reference gels presented differences in spot distribution (absence/presence) and relative volumes of common spots (up or down-regulation). Differential spots were identified by peptide fingerprinting MALDI-TOF mass spectrometry. A total of 48 identified spots (19 for leaves and 29 for roots) were grouped into protein functional classes. For leaves, 33%, 22% and 11% of the identified proteins were categorized as pertaining to the groups: metabolism, defense response and oxidative stress response, respectively. For roots, 17.2%, 24.1% and 10.3% of the identified proteins were categorized as pertaining to the groups: metabolism, defense response and oxidative stress response, respectively.  相似文献   

10.
If Meloidogyne incognita preceded Rhizoctonia solani by 10 days or 21 days in roots of greenhouse-grown tobacco plants, root rot was more extensive than when the nematode and fungus were introduced either simultaneously or separately or when R. solani was added after artificial wounding. Histological examination of galled roots 72 days after inoculation with R. solani revealed extensive fungal colonization in the root-knot susceptible cultivar ''Dixie Bright 101'' when M. incognita preceded R. solani by 21 days. R. solani, normally nonpathogenic on mature tobacco roots, may cause severe losses when present with well-established root-knot nematode infections.  相似文献   

11.
The necrotrophic root pathogens Rhizoctonia solani AG-8 and R. oryzae cause Rhizoctonia root rot and damping-off, yield-limiting diseases that pose barriers to the adoption of conservation tillage in wheat production systems. Existing control practices are only partially effective, and natural genetic resistance to Rhizoctonia has not been identified in wheat or its close relatives. We report the first genetic resistance/tolerance to R. solani AG-8 and R. oryzae in wheat (Triticum aestivum L. em Thell) germplasm ‘Scarlet-Rz1’. Scarlet-Rz1 was derived from the allohexaploid spring wheat cultivar Scarlet using EMS mutagenesis. Tolerant seedlings displayed substantial root and shoot growth after 14 days in the presence of 100–400 propagules per gram soil of R. solani AG-8 and R. oryzae in greenhouse assays. BC2F4 individuals of Scarlet-Rz1 showed a high and consistent degree of tolerance. Seedling tolerance was transmissible and appeared to be dominant or co-dominant. Scarlet-Rz1 is a promising genetic resource for developing Rhizoctonia-tolerant wheat cultivars because the tolerance trait immediately can be deployed into wheat breeding germplasm through cross-hybridization, thereby avoiding difficulties with transfer from secondary or tertiary relatives as well as constraints associated with genetically modified plants. Our findings also demonstrate the utility of chemical mutagenesis for generating tolerance to necrotrophic pathogens in allohexaploid wheat. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. P. A. Okubara and C. M. Steber contributed equally to this work.  相似文献   

12.
Protocorms or protocorms with roots of an achlorophyllous orchidGaleola septentrionalis were inoculated with isolates ofRhizoctonia repens, R. solani, andRhizoctonia spp. The seedlings were infected with eight of twelve isolates ofR. repens. Fungal coils were formed in the cells, which was suggestive of a symbiotic association. The other isolates caused soft rot or no infection to the protocorms or the protocorms with a root. Contribution No. 97, Laboratories of Plant Pathology and Mycology, Institute of Agriculture and Forestry, University of Tsukuba, Tsukuba, Ibaraki 305, Japan.  相似文献   

13.
Cocoyam is the second most important staple crop of Cameroon and root rot is a destructive disease of this plant. Pythium myriotylum (Pm), Fusarium solani (Fs), and Rhizoctonia solani (Rs) were isolated from the rhizosphere of root rot affected cocoyams and from the soil of a cocoyam experimental field plot temporarily devoid of same in Mamu, Cameroon. Pm was isolated from the above soil by the cocoyam leaf disc baits. Fs and Rs were also isolated from the same soils by the water dilution method and from the roots of diseased cocoyams but were always associated with mycelial growth of Pm. Pathogenicity of Pm and in combinations with Fs or Rs or Fs + Rs all developed cocoyam root rot disease (CRRD) symptoms on 3– and 7–month old cocoyam plantlets 2–7 days after inoculation. Symptoms included rotted roots and wilting with general chlorosis of inoculated plantlets. No symptoms of CRRD were noted on cocoyam plantlets inoculated with Fs, Rs, Fs + Rs, and distilled water. Results indicated that CRRD is not caused by several pathogens but only by Pm. Pm isolates from the soils and roots of diseased cocoyams and those maintained in the ROTREP laboratory have significantly bigger diameter of mycelial colony growth in 24 h–period at 31 °C on lima bean sucrose agar, V–8 juice sucrose agar, and potato sucrose agar than on potato dextrose agar and 2 % water agar. The cocoyam plantlets were raised axenically from tissue culture of explants in the laboratory.  相似文献   

14.
In naturally infested soil containingPythium ultimum, P. acanthicum andPhytophthora megasperma, onlyP. ultimum was associated with root rot and damped-off seedlings. Damping-off was promoted by low soil temperatures and by flooding. Seedling stands were markedly reduced when seed was pre-incubated in soil at 12°C but not at 25°C or 35°C. Dusting carrot seed with metalaxyl significantly increased seedling stands in the field at rates from 1.5–6 g kg−1 seed and in both flooded and unflooded, naturally infested soil at 3.15 g kg−1. In greenhouse experiments using artifically infested soil,P. ultimum andP. paroecandrum caused damping-off of carrot seedlings andRhizoctonia solani reduced root and shoot weights.R. solani caused damping-off in nutrient-enriched soil.P. acanthicum andP. megasperma were not pathogenic to seedlings, although both fungi colonized roots. Soil populations of allPythium spp., particularlyP. ultimum, increased during growth of seedlings and population growth ofP. megasperma was promoted by periodic flooding. Infestation of soil withP. acanthicum did not reduce damping-off of carrot seedlings byP. ultimum orP. paroecandrum, but significantly increased root and shoot weights and decreased root colonization byR. solani P. acanthicum has potential as a biocontrol agent againstR. solani.  相似文献   

15.
The necrotrophic fungus Thanatephorus cucumeris (anamorph Rhizoctonia solani) is among the most important soil‐borne pathogens which causes tomato foot and root rot worldwide. We investigated virulence and genetic relationships among and within different taxonomic groups of R. solani from the tomato‐growing regions in the north‐east of Iran. Characterization of R. solani taxonomic groups revealed that, of 56 isolates, four were AG‐2‐1, 16 were AG‐3 PT, 21 were AG‐4 HG‐I and 15 were AG‐4 HG‐II. Because interprimer binding site (iPBS), which is based on amplification of retrotransposons, is known as novel and powerful DNA fingerprinting technology, we selected four iPBS primers, which can detect polymorphisms of tomato foot root and root rot pathogen, for investigating genotypic variability of the isolates. The iPBS analyses separated various taxonomic groups of R. solani and showed great diversity among the isolates, demonstrating that the R. solani isolates obtained from tomato were not a clonal population. Crop rotation strategies and geographic location seem to be important factors affecting genetic structure of the isolates. Pathogenicity tests on tomato cultivar ‘Mobil’ showed significant differences in the virulence of various isolates. The overall results indicated that isolates of AG‐3 and AG‐4 were more virulent than AG‐2‐1. There was no significant correlation between genetic diversity and virulence of the isolates. This is the first report of R. solani AG‐4 HG‐II, causing tomato foot and root rot. Also, our research is the first in assessment of genetic diversity in fungal populations using iPBS molecular markers.  相似文献   

16.
Twenty fungicides were screened for their abilities to reduce the saprophytic growth of Rhizoctonia solani on agar and in soil, and to control root rot of wheat (Triticum aestivum) in pots of soil. Thirteen showed some activity against the in vitro growth of R. solani, the most promising being Sandoz 619F and flutolanil, although none of these reduced saprophytic growth of the fungus in soil. Only benomyl and thiabendazole, which were ineffective on agar and against disease in pots, reduced saprophytic growth in soil. None of the fungicides reduced the number of plants infected in the pot experiments and only six (flutriafol, diniconazole, Schering 539865, propiconazole, Bayer HWG1608 and flutolanil) of the thirteen active on agar (+ triadimefon which was not) reduced root rot severity. The results of this study indicate the differing reactions towards R. solani of chemicals in the three screening tests and confirm the potential for chemical control of rhizoctonia root rot of wheat.  相似文献   

17.
Amendment of orchard soil with low-glucosinolate Brassica napus (rape) seed meal (RSM) suppresses infection of apple roots by Rhizoctonia solani but increases incidence of Pythium spp. infection. Following incorporation of Brassica sp. seed meals, soils were monitored for changes in populations of selected saprophytic and plant pathogenic microorganisms. When conducted in pasteurized soil, which possessed high numbers of Bacillus spp. and lower than detectable numbers of Streptomyces spp., RSM amendment did not provide control of R. solani. Populations of streptomycetes in RSM-amended soil increased to stable levels >20-fold higher than in non-amended soil. Disease suppressiveness was restored to pasteurized RSM-amended soil by adding any of several Streptomyces strains. Maximal rates of nitrification in orchard soil, determined by nitric oxide emission, were observed within two weeks following RSM amendment and inhibition of nitrification via application of nitrapyrin abolished the capacity of RSM to suppress R. solani infection of apple roots when seedlings were planted one day after soil amendment. Apple seedling mortality and Pythium spp. root infection were highest for seedlings planted immediately following incorporation of B. napus cv. Athena RSM, particularly when meal was added in a flake rather than powder form. Lower infection frequencies were observed for seedlings planted four weeks after RSM incorporation, even for soil in which densities of culturable Pythium spp. had not declined. Our results demonstrate that suppression of Rhizoctonia root rot in response to RSM amendment requires the activity of the resident soil microbiota and that initial disease control is associated with the generation of nitric oxide through the process of nitrification.  相似文献   

18.
Two isolates of Laetisaria arvalis and 10 of binucleate Rhizoctonia spp. (BNR) from the Ohio sugar beet production area, were tested in the greenhouse and field for biocontrol of Rhizoctonia crown and root rot of sugar beet, caused by Rhizoctonia solani anastomosis group 2, type 2. L. arvalis was ineffective in standard greenhouse tests, and the single isolate used in the field was generally ineffective. Seven of 10 BNR isolates effectively controlled crown and root rot in greenhouse tests. Delayed application of biocontrol agents to plants 5 – 10 wk old was generally more effective than applications made at planting. A BNR isolate significantly reduced % plant loss and disease ratings and increased yield in a 1985 field test as compared with the control infested with R. solani alone. Two BNR isolates were effective in a 1986 field test and increased yields c. 22% in comparison to a L. arvalis treatment, which did not differ from the R. solani-infested control. The Ohio binucleate Rhizoctonia isolates appear to have considerable potential as applied biocontrol agents and may play a role in the natural ecology of R. solani in the sugar beet production area of Ohio.  相似文献   

19.
Bacillus megaterium strainB153-2-2 is a potential bacterial biocontrol agentagainst Rhizoctonia solani isolate 2B12(ISG-2B). To study the role of antagonism (Ant),chemotaxis (Che), motility (Mot), and sporulation(Spo) of the biocontrol agent during seed and rootcolonization and the correlation between rootcolonization and the suppression of soybean (Glycine max) root rot caused by R. solani,strain B153-2-2(Che+Mot+Ant++Spo++) and the sevenderived mutants with altered antagonism, chemotaxis,motility, and/or sporulation were used. The bacterialcells were introduced into soil separately either asa soybean seed coating or soil application. Two soilmixtures defined as coarse and fine soil were used. The bacterial cell chemotactic response to soybeanroot and seed exudates and antagonism to R.solani were significantly (p = 0.05) correlatedwith root and seed colonization in some but not alltreatments. The sporulation-defective mutants had lowcell populations immediately after application and,therefore, reduced root colonization. The differencesin root colonization diminished among the mutants andstrain B153-2-2 when R. solani was present inthe soil or, as seedlings grew older. Soybean seedlingroots grown in coarse soil had significantly greatercolonization by B153-2-2 or its mutants and a lowerdisease index than that in fine soil. There was asignificant positive correlation (r 2 = 0.78)between root colonization by strain B153-2-2 or itsmutants and suppression of Rhizoctonia root rot.  相似文献   

20.
Severity of root rot (Rhizoctonia solani and Rhizoctonia bataticola) of cowpea (Vigna unguiculata L.) was reduced by 42.7 and 42.0%, respectively over control following the application of 10 μg/g Mn as manganese sulphate. Reduction in disease incidence was associated with increased levels of polyphenol oxidase (PPO), peroxidase (PO) and total phenols. PO activity was several times more as compared with PPO‐specific activity and increased markedly after infection either with R. solani or R. bataticola. Contrary to PPO and PO, the specific activity of catalase declined sharply. Infection also caused an increase in the content of reducing sugars, Cu, Zn and Mn but a decrease in o‐dihydric phenols, flavanols, total soluble sugars, non‐reducing sugars and Fe contents. It is suggested that Mn at the rate of 10 μg/g soil can be used to manage the root rot of cowpea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号