首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recognition of the microbial loop as an important part of aquatic ecosystems disrupted the notion of simple linear food chains. However, current research suggests that even the microbial loop paradigm is a gross simplification of microbial interactions due to the presence of mixotrophs-organisms that both photosynthesize and graze. We present a simple food web model with four trophic species, three of them arranged in a food chain (nutrients-autotrophs-herbivores) and the fourth as a mixotroph with links to both the nutrients and the autotrophs. This model is used to study the general implications of inclusion of the mixotrophic link in microbial food webs and the specific predictions for a parameterization that describes open ocean mixed layer plankton dynamics. The analysis indicates that the system parameters reside in a region of the parameter space where the dynamics converge to a stable equilibrium rather than displaying periodic or chaotic solutions. However, convergence requires weeks to months, suggesting that the system would never reach equilibrium in the ocean due to alteration of the physical forcing regime. Most importantly, the mixotrophic grazing link seems to stabilize the system in this region of the parameter space, particularly when nutrient recycling feedback loops are included.  相似文献   

2.
This is the second of two papers dedicated to the relationship between population models of competition and biodiversity. Here, we consider species assembly models where the population dynamics is kept far from fixed points through the continuous introduction of new species, and generalize to such models the coexistence condition derived for systems at the fixed point. The ecological overlap between species and shared preys, that we define here, provides a quantitative measure of the effective interspecies competition and of the trophic network topology. We obtain distributions of the overlap from simulations of a new model based both on immigration and speciation, and show that they are in good agreement with those measured for three large natural food webs. As discussed in the first paper, rapid environmental fluctuations, interacting with the condition for coexistence of competing species, limit the maximal biodiversity that a trophic level can host. This horizontal limitation to biodiversity is here combined with either dissipation of energy or growth of fluctuations, which in our model limit the length of food webs in the vertical direction. These ingredients yield an effective model of food webs that produce a biodiversity profile with a maximum at an intermediate trophic level, in agreement with field studies.  相似文献   

3.
We develop a set of equations to describe the population dynamics of many interacting species in food webs. Predator-prey interactions are nonlinear, and are based on ratio-dependent functional responses. The equations account for competition for resources between members of the same species, and between members of different species. Predators divide their total hunting/foraging effort between the available prey species according to an evolutionarily stable strategy (ESS). The ESS foraging behaviour does not correspond to the predictions of optimal foraging theory. We use the population dynamics equations in simulations of the Webworld model of evolving ecosystems. New species are added to an existing food web due to speciation events, whilst species become extinct due to coevolution and competition. We study the dynamics of species-diversity in Webworld on a macro-evolutionary time-scale. Coevolutionary interactions are strong enough to cause continuous overturn of species, in contrast to our previous Webworld simulations with simpler population dynamics. Although there are significant fluctuations in species diversity because of speciation and extinction, very large-scale extinction avalanches appear to be absent from the dynamics, and we find no evidence for self-organized criticality.  相似文献   

4.
Abstract. 1. Relative to Nepenthes species in West Malaysia near the evolutionary centre of the genus, outlying species of Nepenthes in the Seychelles, Sri Lanka and Madagascar have fewer species of both prey and predator living in them, fewer and smaller guilds of species, much apparently empty niche space, less complex food webs, and a greater connectance. The ratios of prey to predators, and of connectance (C1) to the total number of trophic types present remain approximately constant.
2. Differences between the food webs appear to be related in a complex way to the size of the country and its degree of spatial and temporal isolation, the size of the local species pool capable of colonizing the pitchers, and the number of Nepenthes species present. However, the maximal length of food chains in the richest and most complex food webs is probably limited by energetic constraints or environmental predictability.
3. The data may illustrate how food webs change to become more complex, both by the addition of new guilds of species and the addition of species to existing guilds, while at the same time certain properties of the food web are kept approximately constant.  相似文献   

5.
The structure of a plant-pollinator food web   总被引:5,自引:0,他引:5  
The pollination biology literature is dominated by examples of specialization between plants and their pollinators. However, a recent review shows that it is generalization that prevails in the field, with most plants having a number of pollinators and most pollinators visiting a number of plants. Consequently, the vast majority of plant–pollinator interactions are embedded in a complex web of plant–pollinator interactions. These plant-pollinator webs can be studied in the manner of conventional food webs and the aim of this paper is to illustrate how contemporary methods of web construction and analysis can be applied to plant-pollinator communities.  相似文献   

6.
The relationship between body mass (M) and size class abundance (N) depicts patterns of community structure and energy flow through food webs. While the general assumption is that M and N scale linearly (on log–log axes), nonlinearity is regularly observed in natural systems, and is theorized to be driven by nonlinear scaling of trophic level (TL) with M resulting in the rapid transfer of energy to consumers in certain size classes. We tested this hypothesis with data from 31 stream food webs. We predicted that allochthonous subsidies higher in the web results in nonlinear M–TL relationships and systematic abundance peaks in macroinvertebrate and fish size classes (latter containing salmonids), that exploit terrestrial plant material and terrestrial invertebrates, respectively. Indeed, both M–N and M–TL significantly deviated from linear relationships and the observed curvature in M–TL scaling was inversely related to that observed in M–N relationships. Systemic peaks in M–N, and troughs in M–TL occurred in size classes dominated by generalist invertebrates, and brown trout. Our study reveals how allochthonous resources entering high in the web systematically shape community size structure and demonstrates the relevance of a generalized metabolic scaling model for understanding patterns of energy transfer in energetically ‘open’ food webs.  相似文献   

7.
The cascade model successfuly predicts many patterns in reported food webs. A key assumption of this model is the existence of a predetermined trophic hierarchy; prey are always lower in the hierarchy than their predators. At least three studies have suggested that, in animal food webs, this hierarchy can be explained to a large extent by body size relationships. A second assumption of the standard cascade model is that trophic links not prohibited by the hierarchy occur with equal probability. Using nonparametric contingency table analyses, we tested this ”equiprobability hypothesis” in 16 published animal food webs for which the adult body masses of the species had been estimated. We found that when the hierarchy was based on body size, the equiprobability hypothesis was rejected in favor of an alternative, ”predator-dominance” hypothesis wherein the probability of a trophic link varies with the identity of the predator. Another alternative to equiprobabilty is that the probability of a trophic link depends upon the ratio of the body sizes of the two species. Using nonparametric regression and liklihood ratio tests, we show that a size-ratio based model represents a significant improvement over the cascade model. These results suggest that models with heterogeneous predation probabilities will fit food web data better than the homogeneous cascade model. They also suggest a new way to bridge the gap between static and dynamic food web models. Received: 3 February 1999 / Accepted: 26 October 1999  相似文献   

8.
Ecological processes in food webs depend on species interactions. By identifying broad‐scaled interaction patterns, important information on species' ecological roles may be revealed. Here, we use the group model to examine how spatial resolution and proximity influence group structure. We examine a data set from the Barents Sea, with food webs described for both the whole region and 25 subregions. We test how the group structure in the networks differ comparing (1) the regional metaweb to subregions and (2) subregion to subregion. We find that more than half the species in the metaweb change groups when compared to subregions. Between subregions, networks with similar group structure are spatially related. Interestingly, although species overlap is important for similarity in group structure, there are notable exceptions. Our results highlight that species ecological roles vary depending on fine‐scaled differences in the patterns of interactions, and that local network characteristics are important to consider.  相似文献   

9.
The commonness of omnivory in natural communities is puzzling, because simple dynamic models of tri-trophic systems with omnivory are prone to species extinction. In particular, the intermediate consumer is frequently excluded by the omnivore at high levels of enrichment. It has been suggested that adaptive foraging by the omnivore may facilitate coexistence, because the intermediate consumer should persist more easily if it is occasionally dropped from the omnivore's diet. We explore theoretically how species permanence in tri-trophic systems is affected if the omnivore forages adaptively according to the "diet rule", i.e., feeds on the less profitable of its two prey species only if the more profitable one is sufficiently rare. We show that, compared to systems where omnivory is fixed, adaptive omnivory may indeed facilitate 3-species persistence. Counter to intuition, however, facilitation of 3-species coexistence requires that the intermediate consumer is a more profitable prey than the basal resource. Consequently, adaptive omnivory does not facilitate persistence of the intermediate consumer but enlarges the persistence region of the omnivore towards parameter space where a fixed omnivore would be excluded by the intermediate consumer. Overall, the positive effect of adaptive omnivory on 3-species persistence is, however, small. Generally, whether omnivory is fixed or adaptive, 3-species permanence is most likely when profitability (=conversion efficiency into omnivores) is low for basal resources and high for intermediate consumers.  相似文献   

10.
Explaining the structure of ecosystems is one of the great challenges of ecology. Simple models for food web structure aim at disentangling the complexity of ecological interaction networks and detect the main forces that are responsible for their shape. Trophic interactions are influenced by species traits, which in turn are largely determined by evolutionary history. Closely related species are more likely to share similar traits, such as body size, feeding mode and habitat preference than distant ones. Here, we present a theoretical framework for analysing whether evolutionary history--represented by taxonomic classification--provides valuable information on food web structure. In doing so, we measure which taxonomic ranks better explain species interactions. Our analysis is based on partitioning of the species into taxonomic units. For each partition, we compute the likelihood that a probabilistic model for food web structure reproduces the data using this information. We find that taxonomic partitions produce significantly higher likelihoods than expected at random. Marginal likelihoods (Bayes factors) are used to perform model selection among taxonomic ranks. We show that food webs are best explained by the coarser taxonomic ranks (kingdom to class). Our methods provide a way to explicitly include evolutionary history in models for food web structure.  相似文献   

11.
A three-state, discrete-time Markov chain is used to model the dynamics of energy flow in a tri-trophic food web. The distribution of energy in the three trophic levels is related to the rates of flow between the trophic levels and calculated for the entire range of possible flow values. These distributions are then analysed for stability and used to test the idea that plants are resource-limited and herbivores are predation-limited. Low rates of death and decomposition, when coupled with low rates of herbivory and carnivory, tend to destabilize this food web. Food webs with higher rates of death and decomposition are relatively more stable regardless of rates of herbivory and carnivory. Plants are more prone to resource-limitation and herbivores are, in general, limited by their predators, which supports Hairston et al. (Am. Nat. 94 (1960) 421). The rate of decomposition often mediates the roles of top-down and bottom-up control of energy flow in the food web.  相似文献   

12.
13.
The integration of detailed information on feeding interactions with measures of abundance and body mass of individuals provides a powerful platform for understanding ecosystem organisation. Metabolism and, by proxy, body mass constrain the flux, turnover and storage of energy and biomass in food webs. Here, we present the first food web data for Lough Hyne, a species rich Irish Sea Lough. Through the application of individual-and size-based analysis of the abundance-body mass relationship, we tested predictions derived from the metabolic theory of ecology. We found that individual body mass constrained the flux of biomass and determined its distribution within the food web. Body mass was also an important determinant of diet width and niche overlap, and predator diets were nested hierarchically, such that diet width increased with body mass. We applied a novel measure of predator-prey biomass flux which revealed that most interactions in Lough Hyne were weak, whereas only a few were strong. Further, the patterning of interaction strength between prey sharing a common predator revealed that strong interactions were nearly always coupled with weak interactions. Our findings illustrate that important insights into the organisation, structure and stability of ecosystems can be achieved through the theoretical exploration of detailed empirical data.  相似文献   

14.
Large, complex networks of ecological interactions with random structure tend invariably to instability. This mathematical relationship between complexity and local stability ignited a debate that has populated ecological literature for more than three decades. Here we show that, when species interact as predators and prey, systems as complex as the ones observed in nature can still be stable. Moreover, stability is highly robust to perturbations of interaction strength, and is largely a property of structure driven by predator–prey loops with the stability of these small modules cascading into that of the whole network. These results apply to empirical food webs and models that mimic the structure of natural systems as well. These findings are also robust to the inclusion of other types of ecological links, such as mutualism and interference competition, as long as consumer–resource interactions predominate. These considerations underscore the influence of food web structure on ecological dynamics and challenge the current view of interaction strength and long cycles as main drivers of stability in natural communities. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Decreasing functional responses as a result of adaptive consumer behavior   总被引:1,自引:0,他引:1  
Summary Several different mechanisms that may produce decreasing functional responses are investigated using models that assume that an optimally foraging consumer is exploiting one or two resources. Decreasing functional responses are associated with situations in which there are costs to resource consumption. If the process of resource acquisition has costs, decreasing functional responses may occur when there is a single homogeneous resource. If the cost is solely a function of the amount of resource ingested, decreasing functional responses on a single resource do not occur. Both types of cost can produce decreasing functional responses when there are two resource types and a trade-off relationship between consumption of one and consumption of the other. Decreasing functional responses seem to be most likely to occur on a food that yields high benefits and costs per unit of foraging time or effort when there is an alternative resource which yields low benefits and costs. Given this type of foraging choice, the functional response is most likely to decrease when the benefits of ingestion increase at a decreasing rate, and the costs of ingestion increase at an increasing rate with amount ingested. An important and unique consequence of decreasing functional responses is the possibility of population cycles in differential equation models of consumer-resource systems with non-reproducing resources; this is illustrated with a simple comsumer-resource model.  相似文献   

16.
One of the key measures that have been used to describe the topological properties of complex networks is the “degree distribution”, which is a measure that describes the frequency distribution of number of links per node. Food webs are complex ecological networks that describe the trophic relationships among species in a community, and the topological properties of empirical food webs, including degree distributions, have been examined previously. Previously, the “niche model” has been shown to accurately predict degree distributions of empirical food webs, however, the niche model-generated food webs were referenced against empirical food webs that had their species grouped together based on their taxonomic and/or trophic relationships (aggregated food webs). Here, we explore the effects of species aggregation on the ability of the niche model to predict the total- (sum of prey and predator links per node), in- (number of predator links per node), and out- (number of prey links per node) degree distributions of empirical food webs by examining two food webs that can be aggregated at different levels of resolution. The results showed that (1) the cumulative total- and out-degree distributions were consistent with the niche model predictions when the species were aggregated, (2) when the species were disaggregated (i.e., higher resolution), there were mixed conclusions with regards to the niche model's ability to predict total- and out-degree distributions, (3) the model's ability to predict the in-degree distributions of the two food webs was generally inadequate. Although it has been argued that universal functional form based on the niche model could describe the degree distribution patterns of empirical food webs, we believe there are some limitations to the model's ability to accurately predict the structural properties of food webs.  相似文献   

17.
Hernandez AD  Sukhdeo MV 《Oecologia》2008,156(3):613-624
Relatively few published food webs have included parasites, and in this study we examined the animal community in a stream across eight contiguous seasons to test how inclusion of helminth parasites alters the topology or structure of the food web. Food webs constructed for each season and analyzed using common binary matrix measures show that species richness, linkage density, and the number of observed and possible links increased when parasites were included as individual species nodes. With parasite–parasite and predator–parasite links omitted, measures of community complexity, such as connectance (C), generally increased over multiple seasons. However, relative nestedness (n*) decreased when parasites were included, which may be a result of low resolution of basal resources inflating specialist-to-specialist links. Overall, adding parasites resulted in moderate changes in food web measures when compared to those of four other published food webs representing different ecosystems. In addition, including parasites in the food web revealed consistent pathways of energy flow, and the association of parasite life histories along these pathways suggest stable evolutionary groups of interacting species within the community. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Many terrestrial endotherm food webs constitute three trophic level cascades. Others have two trophic level dynamics (food limited herbivores; plants adapted to tackle intense herbivory) or one trophic level dynamic (herbivorous endotherms absent, thus plants compete for the few places where they can survive and grow). According to the Exploitation Ecosystems Hypothesis (EEH), these contrasting dynamics are consequences of differences in primary productivity. The productivity thresholds for changing food web dynamics were assumed to be global constants. We challenged this assumption and found that several model parameters are sensitive to the contrast between persistently warm and seasonally cold climates. In persistently warm environments, three trophic level dynamics can be expected to prevail almost everywhere, save the most extreme deserts. We revised EEH accordingly and tested it by compiling direct evidence of three and two trophic level dynamics and by studying the global distribution of felids. In seasonally cold environments, we found evidence for three trophic level dynamics only in productive ecosystems, while evidence for two trophic level dynamics appeared in ecosystems with low primary productivity. In persistently warm environments, we found evidence for three trophic level dynamics in all types of ecosystems. The distribution of felids corroborated these results. The empirical evidence thus indicates that two trophic level dynamics, as defined by EEH, are restricted to seasonally cold biomes with low primary productivity, such as the artic–alpine tundra and the temperate steppe.  相似文献   

19.
Species interactions form food webs, impacting community structure and, potentially, ecological dynamics. It is likely that global climatic perturbations that occur over long periods of time have a significant influence on species interaction patterns. Here, we integrate stable isotope analysis and network theory to reconstruct patterns of trophic interactions for six independent mammalian communities that inhabited mammoth steppe environments spanning western Europe to eastern Alaska (Beringia) during the Late Pleistocene. We use a Bayesian mixing model to quantify the contribution of prey to the diets of local predators, and assess how the structure of trophic interactions changed across space and the Last Glacial Maximum (LGM), a global climatic event that severely impacted mammoth steppe communities. We find that large felids had diets that were more constrained than those of co-occurring predators, and largely influenced by an increase in Rangifer abundance after the LGM. Moreover, the structural organization of Beringian and European communities strongly differed: compared with Europe, species interactions in Beringian communities before—and possibly after—the LGM were highly modular. We suggest that this difference in modularity may have been driven by the geographical insularity of Beringian communities.  相似文献   

20.
Abstract. 1. Three species of Tanypodinae (Chironomidae) were found in an acid and iron-rich stream in southern England. Maximum abundance was achieved in summer and they were sparse at other times. Individuals were aggregated on the stream bed and were overrepresented in accumulations of leaf litter.
2. The diets of all three species consisted of a mixture of prey (prominently detritivorous chironomid larvae) and detritus. More detritus and fewer prey were taken in winter than in summer.
3. When comparing large tanypod species with small and, intraspecifically, late instars with early, the proportion of guts containing prey increased with increasing body size.
4. Stonefly larvae were more prominent in the diet of Zavrelimyia barbatipes (Kieffer) in summer than in winter but for the other two species the reverse was true. A bigger proportion of Trissopelopia longimana (Staeger) guts contained prey in early summer than in August whereas more Macropelopia goetghebueri (Kieffer) guts contained prey in August. This was apparently a consequence of seasonal differences in the distribution of body size among the populations of these two species.
5. The stream contains two further common predators, Plectrocnemia conspersa (Curtis) and Sialis fuliginosa Pict. These are important predators of tanypod larvae but might also compete with them since they severely deplete populations of prey taken in common.
6. Analysis of the food-web in Broadstone Stream reveals remarkably high values of connectance (C and Cmax) and of species richness times connectance (SCmax). Such characteristics are theoretically associated with fragile and dynamically unstable food webs, and may be found in 'constant' environments. There is also an apparently unusual prevalence of omnivory in the community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号