首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sixteen healthy volunteers took part in a cross-over study examining the effect of ethanol on the rate of sulphadimidine acetylation (blood ethanol concentration about 1 g/1). In both rapid and slow acetylators the apparent half life of the drug decreased by about 20% after ethanol (mean reduction 39 +/- SE 8 min) and the amount of drug acetylated, measured in blood and urine, increased. In three slow acetylators the rate of acetylation in blood increased so noticeably after ethanol that they would otherwise have been classified as rapid acetylators. Suspensions of isolated rat liver cells showed an increase of about 30% in the rate of sulphadimidine acetylation after the addition of ethanol (2 g/1). Patients'' usual alcohol consumption should be taken into account in determining their acetylator status.  相似文献   

2.
The N-acetylation polymorphisms of volunteers from the Moscow population analyzed by phenotyping and genotyping have been compared. The ratios between the proportions of fast acetylators (FAs) and slow acetylators (SAs) estimated by phenotyping and genotyping do not differ significantly from each other (47 and 44%, respectively). The absolute acetylation rate widely varies in both FAs and SAs. The NAT2 genotype and allele frequencies in the population sample have been calculated. The most frequent alleles are NAT2*4 (a "fast" allele), NAT2*5, and NAT2*6 ("slow" alleles); the most frequent genotypes are NAT2*5/*5, NAT2*4/*6, and NAT2*4/*5. Comparative analysis of N-acetylation polymorphism estimated by phenotyping and genotyping in the same subjects has shown a complete concordance between the phenotype and genotype in only 62 out of 75 subjects (87%). Comparative characteristics and presumed applications of the two approaches (quantitative estimation of acetylation rate and qualitative determination of the acetylator genotype) to the identification of individual acetylation status are presented.  相似文献   

3.
The NAT2 genetic polymorphism determines the individual acetylator status and, consequently, the capacity to metabolize, or not, drugs and xenobiotics which are substrates of NAT2. As the nature and frequency of the NAT2 polymorphisms vary remarkably between populations of different ethnic origins, genotyping strategies used to predict the acetylation phenotype need to be adapted for each particular population regarding their genetic backgrounds at this locus. As few data on the genetic polymorphism of NAT2 are available in the Senegalese population, we performed an extensive identification of NAT2 variants in 105 healthy non-smoker Senegalese subjects by direct PCR sequencing of the coding region. Eleven previously described SNPs were identified in this Senegalese population. Upon allele analysis, the four most frequent alleles were of the NAT2*5- (35.7?%), NAT2*6- (21.0?%), NAT2*12- (16.7?%) and NAT2*14- (10.0?%) type, the remaining alleles, including the wild-type NAT2*4, having each a frequency lower than 10?%. According to the observed genotypes, 51 and 50 subjects were predicted to be of the rapid (48.6?%) and slow (47.6?%) acetylator phenotype, respectively, while four individuals (3.8?%) were considered of unknown phenotype as they carry at least one allele with a yet unknown functional effect. These baseline data would be of particular interest to set up an efficient genotyping strategy to predict the acetylation status of Senegalese patients with tuberculosis and, thus, to optimize their isoniazid treatment.  相似文献   

4.
The N-acetylation polymorphisms of volunteers from the Moscow population analyzed by phenotyping and genotyping have been compared. The ratios between the proportions of fast acetylators (FAs) and slow acetylators (SAs) estimated by phenotyping and genotyping do not differ significantly from each other (47 and 44%, respectively). The absolute acetylation rate widely varies in both FAs and SAs. The NAT2 genotype and allele frequencies in the population sample have been calculated. The most frequent alleles are NAT2*4 (a “fast” allele), NAT2*5, and NAT2*6 (“slow” alleles); the most frequent genotypes are NAT2*5/*5, NAT2*4/*6, and NAT2*4/*5. Comparative analysis of N-acetylation polymorphism estimated by phenotyping and genotyping in the same subjects has shown a complete concordance between the phenotype and genotype in only 62 out of 75 subjects (87%). Comparative characteristics and presumed applications of the two approaches (quantitative estimation of acetylation rate and qualitative determination of the acetylator genotype) to the identification of individual acetylation status are presented.  相似文献   

5.
Indirect evidences suggest that acetylation phenotype categories are heterogeneous and that subcategories, related to specific NAT2 variant alleles might exist. We analyzed the in vivo acetylation phenotype and genotype in 504 north-American subjects of Caucasian origin. The analyses of the SNPs rs1801280 and rs1799930 allowed the discrimination of five categories with different acetylation status within the study population. These categories are related to the distinct effect of NAT2 alleles on the acetylation status in vivo and to the occurrence of a gene-dose effect. These five phenotype categories, from higher to lower acetylation capacity, correspond to the genotypes NAT2*4/*4, NAT2*4/*5 or *4/*6, NAT2*5/*5, NAT2*5/*6 and NAT2*6/*6 (p≤0.001 for all comparisons). The NAT2*6/*6 genotype correspond to a phenotype category of very-slow acetylators. The refinement in phenotype prediction may help to identify risks associated to phenotype subcategories, and warrants the re-analysis of previous studies that may have overlooked phenotype subcategory-specific risks.  相似文献   

6.
Gu J  Liang D  Wang Y  Lu C  Wu X 《Mutation research》2005,581(1-2):97-104
Cigarette smoking is the predominant risk factor for bladder cancer (BC). Major carcinogens present in tobacco smoke include a number of aromatic and heterocyclic amines. Two distinct N-acetyl transferase (NAT) enzymes, NAT1 and NAT2, play important roles in the bio-activation and detoxification of these carcinogens. Genes encoding NAT1 and NAT2 are highly polymorphic among human populations, and these polymorphisms result in rapid or slow acetylator phenotypes. Recent studies have suggested that variant alleles leading to slow acetylation by the NAT2 enzyme or rapid acetylation by the NAT1 enzyme constitute possible risk factors for bladder cancer. In this case-control study, we sought to determine whether NAT1 and NAT2 polymorphisms are associated with bladder cancer risk in the largest sample size to date. PCR-RFLP assay was used to determine the presence of NAT1 and NAT2 polymorphisms in 507 Caucasian BC patients and 513 age-, gender-, and ethnicity-matched healthy controls. Overall, we found no significant association between BC risk and NAT1 NAT1*10 allele (OR=0.95; 95% CI 0.73-1.25). However, our data suggested that NAT2 slow acetylator genotypes were associated with a significant increased risk of BC (OR=1.31; 95% CI, 1.01-1.70). This elevated risk appeared more evident in older individuals (OR=1.41; 95% CI, 1.01-1.98) than in younger individuals (OR=1.15; 95% CI, 0.76-1.74). Moreover, the risk was greater for heavy smokers (OR=2.11; 95% CI, 1.33-3.35) than light smokers (OR=0.96; 95% CI, 0.61-1.53) and never smokers (OR=1.23; 95% CI, 0.79-1.90). Finally, a joint effect between NAT2 slow acetylators and heavy smokers was observed. Using never smokers with NAT2 rapid acetylator genotypes as a reference group, heavy smokers with NAT2 slow acetylator genotypes showed an over six-fold increase in BC risk. In a multiplicative interaction model, the interaction term was statistically significant (P=0.02). Our data suggest that having a NAT2 slow acetylator genotype is a significant risk factor for BC, particularly in smokers and older individuals.  相似文献   

7.
BACKGROUND: Orofacial clefts and spina bifida are midline defects with a multifactorial etiology. Maternal smoking and medication use periconceptionally have been studied as risk factors for these malformations. The biotransformation enzyme N-acetyltransferase 2 (NAT2), plays a part in the inactivation of toxic compounds in cigarette smoke and medication. We investigated maternal NAT2 phenotype and the interaction with smoking and medication use periconceptionally on orofacial cleft and spina bifida risk in offspring. METHODS: In this case-control study of 45 mothers of orofacial cleft children, 39 mothers of spina bifida children and 73 control mothers, NAT2 acetylator status was determined by measuring urinary caffeine metabolites. RESULTS: Slow NAT2 acetylators showed no increased risk for orofacial cleft (OR = 1.0, 95% CI: 0.4-2.3) or spina bifida offspring (OR = 0.7, 95% CI: 0.3-1.7) compared to fast NAT2 acetylators. More mothers with orofacial cleft and spina bifida offspring smoked cigarettes (36% and 23% respectively) and used medication periconceptionally (38% and 44% respectively) compared to control mothers (smoking:18%, medication use:19%). No interaction between maternal NAT2 acetylator status and smoking or medication use was observed for orofacial cleft and spina bifida risk. CONCLUSIONS: Maternal smoking and medication use is associated with orofacial cleft risk as well as medication use is with spina bifida. The maternal NAT2 acetylator status, however, was not associated with an increased risk for orofacial cleft or spina bifida offspring, nor in combination with periconceptional smoking or medication use.  相似文献   

8.
The NAT2 product, N-acetyltransferase 2, is involved in biotransformation and detoxification of several aromatic amines (in particular, 2-aminofluorene, 4-aminobiphenyl, and 4-naphthylamine), which are strongly mutagenic and carcinogenic, and acetylates some drugs, affecting their metabolism. A biological microchip was developed to detect 16 point mutations, which determine 36 alleles and 660 genotypes of NAT2. The genotypes can be divided into four groups according to the acetylator phenotype: groups with rapid (R/R), intermediate (R/S), or slow (S/S) acetylation and a group combining intermediate and slow alleles (“R/S or S/S”). The last group includes the alleles determined by combinations of seven mutations (191G/A, 282C/T, 341T/C, 481C/T, 590G/A, 803A/G, and 857G/A), whose cis or trans position is detectable by restriction enzyme analysis. The NAT2 genotype was unequivocally established for 37 out of 71 DNA specimens, while the other 34 specimens were characterized by more than two genotypes. By the acetylator phenotype, 16 out of the 34 genotypes were assigned to the group “R/S or S/S,” combining mutations 282C/T, 341T/C, 481C/T, 590G/A, and 803A/G. Thus, the biochip allows primary analysis of most NAT2 polymorphic substitutions, the acetylator genotype being important to know in predictive medicine and individualized therapy.  相似文献   

9.
Introduction: Functional polymorphisms in drug metabolizing enzymes (DMEs) may be determinants of survival in oral and oropharyngeal squamous cell carcinoma (OOSCC). Methods: OOSCC cases (N = 159) with a history of either tobacco or alcohol use were genotyped for polymorphisms in eight DMEs. Overall and disease-specific survival were analyzed using Kaplan–Meier plots and the log-rank test. Cox proportional hazards regression was used to calculate hazard ratios (HR) and 95% confidence intervals (CI) in exploratory analyses of patient subgroups. Results: Kaplan–Meier analyses showed N-acteyltransferase-2 (NAT2) fast acetylators experienced a 19.7% higher 5-year survival rate than slow acetylators (P = 0.03) and this association was similar in oropharyngeal and oral cancer. After multiple adjustment, including tumor site and stage, the NAT2 fast acetylator phenotype was associated with improved overall survival (vs. slow acetylators) provided chemotherapy or radiation were not used (HR, 0.26; 95% CI, 0.10–0.66). However, NAT2 phenotype was unrelated to survival in patients treated with chemoradiotherapy (HR, 1.21; 95% CI, 0.54–2.73) or radiotherapy (HR, 0.67; 95% CI, 0.31–1.59) (P-for-NAT2/treatment-interaction = 0.04). Normal activity GSTP1 was associated with a 19.2% reduction in 5-year disease-specific survival relative to reduced activity GSTP1 (P = 0.04) but this association was not modified by treatment. Conclusions: Our results suggest that functional polymorphisms in NAT2 and GSTP1 are associated with OOSCC survival. Confirmation of these results in larger studies is required.  相似文献   

10.
Restriction fragment-length polymorphism of the gene coding for N-acetyltransferase 2 (NAT2) was typed in populations of the Volga-Ural region (Bashkirs, Tatars, Chuvashes, Udmurts, and Russians) as well as in patients with chronic obstructive pulmonary disease (COPD) and in healthy individuals. Rapid and slow acetylator phenotypes were determined based on the presence or absence of the KpnI, TaqI, and BamHI restriction endonuclease recognition sites. The proportion of slow acetylators in the populations examined varied from 40.00% in Bashkirs to 64.15% in Chuvashes with statistically significant difference between these two ethnic groups (chi 2 = 5.7; p = 0.02). Overall, in the Volga-Ural populations slow acetylators represented 56.25% of the subjects examined. This value was similar to those presented in other studies of Caucasoid populations. In the COPD patients a statistically significant decrease of the slow acetylator frequency to 48.28% compared to healthy individuals (62.18%) was observed (chi 2 = 4.60; p = 0.036). The data obtained suggest a possible association between the drug resistance in the COPD patients with the rapid acetylator phenotype, which can lead to the development of the chronic form of the disease.  相似文献   

11.
Three novel human NAT2 alleles (NAT2*5D, NAT2*6D, and NAT2*14G) were identified and characterized in a yeast expression system. The common rapid (NAT2*4) and slow (NAT2*5B) acetylator human NAT2 alleles were also characterized for comparison. The novel recombinant NAT2 allozymes catalyzed both N- and O-acetyltransferase activities at levels comparable with NAT2 5B and significantly below NAT2 4, suggesting that they confer slow acetylation phenotype. In order to investigate the molecular mechanism of slow acetylation in the novel NAT2 alleles, we assessed mRNA and protein expression levels and protein stability. No differences were observed in NAT2 mRNA expression among the novel alleles, NAT2*4 and NAT2*5B. However NAT2 5B and NAT2 5D, but not NAT2 6D and NAT2 14G protein expression were significantly lower than NAT2 4. In contrast, NAT2 6D was slightly (3.4-fold) and NAT2 14G was substantially (29-fold) less stable than NAT2 4. These results suggest that the 341T --> C (Ile(114) --> Thr) common to the NAT2*5 cluster is sufficient for reduction in NAT2 protein expression, but that mechanisms for slow acetylator phenotype differ for NAT2 alleles that do not contain 341T --> C, such as the NAT2*6 and NAT2*14 clusters. Different mechanisms for slow acetylator phenotype in humans are consistent with multiple slow acetylator phenotypes.  相似文献   

12.
N-Acetyltransferase 2 (NAT2) is involved in Phase II biotransformation of a variety of toxicants. Polymorphisms in the NAT2 gene result in a slow acetylator phenotype, which has been associated with various cancers and neurodegenerative diseases. To date most studies investigating NAT2 genotype/phenotype have adopted an RFLP approach, which is both expensive and time-consuming. Using the Wave DNA fragment analysis system, we have developed a fast and robust method of identifying two polymorphisms (C282T and T341C) of the NAT2 gene which allows identification of the most common slow acetylator alleles found in Caucasian populations: NAT2*5, NAT2*6, NAT2*7, and NAT2*14. This was done by comparing phenotype status in 126 samples genotyped by RFLP analysis and also by Wave analysis for the polymorphisms C282Tand T341C. All 126 samples analyzed by both RFLP and Wave analysis gave consistent phenotype results and 100% correlation was achieved between the two methods.  相似文献   

13.
The polymorphic arylamine N-acetyltransferase (NAT2; EC 2.3.1.5) is supposed to be a susceptibility factor for several drug side effects and certain malignancies. A group of 844 unrelated German subjects was genotyped for their acetylation type, and 563 of them were also phenotyped. Seven mutations of the NAT2 gene were evaluated by allele-specific PCR (mutation 341C to T) and PCR-RFLP for mutations at nt positions 191, 282, 481, 590, 803, and 857. From the mutation pattern eight different alleles, including the wild type coding for rapid acetylation and seven alleles coding for slow phenotype, were determined. Four hundred ninety-seven subjects had a genotype of slow acetylation (58.9%; 95% confidence limits 55.5%-62.2%). Phenotypic acetylation capacity was expressed as the ratio of 5-acetylamino-6-formylamino-3-methyluracil and 1-methylxanthine in urine after caffeine intake. Some 6.7% of the cases deviated in genotype and phenotype, but sequencing DNA of these probands revealed no new mutations. Furthermore, linkage pattern of the mutations was always confirmed, as tested in 533 subjects. In vivo acetylation capacity of homozygous wild-type subjects (NAT2*4/*4) was significantly higher than in heterozygous genotypes (P = .001). All mutant alleles showed low in vivo acetylation capacities, including the previously not-yet-defined alleles *5A, *5C, and *13. Moreover, distinct slow genotypes differed significantly among each other, as reflected in lower acetylation capacity of *6A, *7B, and *13 alleles than the group of *5 alleles. The study demonstrated differential phenotypic activity of various NAT2 genes and gives a solid basis for clinical and molecular-epidemiological investigations.  相似文献   

14.
N-acetyltransferases (EC 2.3.1.5) catalyze O-acetylation of heterocyclic amine carcinogens to DNA-reactive electrophiles that bind and mutate DNA. An acetylation polymorphism exists in humans and Syrian hamsters regulated by N-acetyltransferase-2 (NAT2) genotype. Some human epidemiological studies suggest a role for NAT2 phenotype in predisposition to cancers related to heterocyclic amine exposures, including breast cancer. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a heterocyclic amine carcinogen prevalent in the human environment and induces a high incidence of mammary tumors in female rats. PhIP-induced carcinogenesis was examined in female rapid and slow acetylator Syrian hamsters congenic at the NAT2 locus. In both rapid and slow acetylators, PhIP-DNA adduct levels were highest in pancreas, lower in heart, small intestine, and colon, and lowest in mammary gland and liver. Metabolic activation of N-hydroxy-PhIP by O-acetyltransferase was highest in mammary epithelial cells, lower in liver and colon, and lowest in pancreas. Metabolic activation of N-hydroxy-PhIP by O-sulfotransferase was low in liver and colon and below the limit of detection in mammary epithelial cells and pancreas. Unlike the rat, PhIP did not induce breast or any other tumors in female rapid and slow acetylator congenic hamsters administered high-dose PhIP (10 doses of 75 mg/kg) and a high-fat diet.  相似文献   

15.
Characterization of human lymphocyte N-acetyltransferase (NAT) for specific activity, substrate specificity, inhibition, pH optimum, apparent Km, kinetic mechanism, trypsin stability, freezing stability, and heat stability was carried out in rapid and slow isoniazid (INH) acetylators. There is a statistically significant difference in the heat stability of lymphocyte NAT from rapid and slow INH phenotypes. The lymphocyte enzyme from rapid INH acetylators is less heat stable than the lymphocyte enzyme from slow INH acetylators. This is an indication of a structural, possibly polymorphic, difference in lymphocyte NAT from the two acetylator phenotypes.  相似文献   

16.
The human polymorphism in the hepatic enzyme N-acetyltransferase (NAT) affects the rate at which individuals acetylate, and in many cases detoxify, aromatic amine and hydrazine drugs and xenobiotics. Differences in NAT activity are known to affect individual susceptibility to drug toxicities and are thought to play a part in some spontaneous disorders. A mouse model for the human acetylation polymorphism has been previously characterized and involves the A/J (slow acetylator) and C57BL/6J (rapid acetylator) inbred strains. Strain distribution analysis of 40 A x B and B x A recombinant inbred (RI) strains indicated linkage between the N-acetyltransferase gene (Nat) and the esterase 1 (Es-1) gene, located on mouse chromosome 8. A double backcross involving 107 animals confirmed the recombination frequency between Nat and Es-1 to be 12 +/- 3% (mean +/- SE). The information obtained in the backcross and RI studies was combined, yielding a 13 +/- 2.8% (mean +/- SD) recombination frequency. The Es-1 genotype was determined in our newly developed congenic strains A.B6-Natr and B6.A-Nats. The B6.A-Nats strain has the Es-1 genotype of its inbred partner, the B6 strain, and the A.B6-Natr strain has the Es-1 genotype of the donor strain. These congenic strains will be important in determining the role of the NAT genotype in susceptibility to arylamine-induced cancer and other disorders.  相似文献   

17.
N-acetyltransferase 2 (NAT2) is phase II enzyme with major roles in catalyzing the detoxification of aromatic amines, which are known risk factors for bladder cancer, and are ubiquitously present in the environment. We assessed the association between common polymorphisms in NAT2 gene and the risk of bladder cancer in 90 Slovak patients and 274 ethnicity-matched healthy controls. Effect modifications by smoking, age and gender were also evaluated. Overall, NAT2 slow acetylation was associated with significantly increased risk of bladder cancer (OR = 1.90; 95% CI, 1.15–3.16). In stratified analyses by age and gender, the elevated risk conferred by slow acetylator genotype was evident in older individuals (OR = 3.55; 95% CI, 1.77–7.35) and males (OR = 4.65; 95% CI, 1.68–16.10), with further increasing in NAT2*5B/*6A genotype carriers. Smoking was confirmed to be important risk factor, moreover, the risk was markedly increased in smokers with NAT2 slow acetylator genotype, and NAT2*5B/*6A carriers especially. In summary, these findings are consistent with previous literature suggesting that individual susceptibility to bladder cancer may be modulated by NAT2 polymorphisms, particularly in interaction with relevant environmental exposures such as smoking.  相似文献   

18.
Isoniazid (INH), one of the most important drugs used in antituberculosis (anti-TB) treatment, is also the major drug involved in hepatotoxicity. Differences in INH-induced toxicity have been attributed to genetic variability at several loci, such as NAT2, CYP2E1, GSTM1 and GSTT1, that code for drug-metabolising enzymes. Our goal was to examine the polymorphisms in these enzymes as susceptibility factors to anti-TB drug-induced hepatitis in Brazilian individuals. In a case-control design, 167 unrelated active tuberculosis patients from the University Hospital of the Federal University of Rio de Janeiro, Brazil, were enrolled in this study. Patients with a history of anti-TB drug-induced acute hepatitis (cases with an increase to 3 times the upper limit of normal serum transaminases and symptoms of hepatitis) and patients with no evidence of anti-TB hepatic side effects (controls) were genotyped for NAT2, CYP2E1, GSTM1 and GSTT1 polymorphisms. Slow acetylators had a higher incidence of hepatitis than intermediate/rapid acetylators [22% (18/82) vs. 9.8% (6/61), odds ratio (OR), 2.86, 95% confidence interval (CI), 1.06-7.68, p = 0.04). Logistic regression showed that slow acetylation status was the only independent risk factor (OR 3.59, 95% CI, 2.53-4.64, p = 0.02) for the occurrence of anti-TB drug-induced hepatitis during anti-TB treatment with INH-containing schemes in Brazilian individuals.  相似文献   

19.
20.
The sulfones are the drug of choice in the treatment of leprosy, with dapsone as the clear favorite. The major route for dapsone metabolism leading to its inactivation and excretion is via acetylation by hepaticN-acetyl transferase (NAT), as is the case with isoniazid (INH) and sulfamethazine (SMZ). The enzyme is known to exhibit genetic polymorphism. The object of the present study is mainly to determine the incidence of acetylator phenotype in a population of leprosy patients with a view to evaluating the degree of association, if any, between phenotype and the disease. Obviously a knowledge of the incidence of the phenotypes may provide a valuable contribution to the institution of more rational and successful therapy. In the normal or control subjects, as well as in the leprosy patients, the frequency distribution histograms of the percentage acetylsulfamethazine in urine and serum samples are bimodal, and this indicates the existence of a genetic polymorphism. Based on the bimodality, individuals were classified as either rapid or slow acetylators, and the incidence of the slow acetylator phenotype of about 51% was observed in the leprosy population. This gives a relatively high incidence of the allele controlling the slow acetylator (q=0.73). Although there is evidence that the mean percentage of SMZ acetylated in leprosy patients of the slow acetylator phenotype is significantly higher than that observed for the same phenotype in the controls (t=4.86,P<0.02), statistical analyses show that there is no association between the slow acetylator phenotype and the disease. Most of the individuals in the slow acetylator phenotype tend to show some adverse reactions when a total weekly dose of 600 mg is given. Such adverse reactions include heightened lepra reactions, blurring of vision, and headache. These reactions, we think, are due to accumulation of the drug in the subjects. This therefore brings into sharp focus the desirability of knowing the acetylator phenotype of an individual before the initiation of dapsone therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号