共查询到20条相似文献,搜索用时 15 毫秒
1.
A two-stage Bayesian method is presented for analyzing case-control studies in which a binary variable is sometimes measured with error but the correct values of the variable are known for a random subset of the study group. The first stage of the method is analytically tractable and MCMC methods are used for the second stage. The posterior distribution from the first stage becomes the prior distribution for the second stage, thus transferring all relevant information between the stages. The method makes few distributional assumptions and requires no asymptotic approximations. It is computationally fast and can be run using standard software. It is applied to two data sets that have been analyzed by other methods, and results are compared. 相似文献
2.
We consider the proportional hazards model in which the covariates include the discretized categories of a continuous time-dependent exposure variable measured with error. Naively ignoring the measurement error in the analysis may cause biased estimation and erroneous inference. Although various approaches have been proposed to deal with measurement error when the hazard depends linearly on the time-dependent variable, it has not yet been investigated how to correct when the hazard depends on the discretized categories of the time-dependent variable. To fill this gap in the literature, we propose a smoothed corrected score approach based on approximation of the discretized categories after smoothing the indicator function. The consistency and asymptotic normality of the proposed estimator are established. The observation times of the time-dependent variable are allowed to be informative. For comparison, we also extend to this setting two approximate approaches, the regression calibration and the risk-set regression calibration. The methods are assessed by simulation studies and by application to data from an HIV clinical trial. 相似文献
3.
4.
5.
The Botswana Combination Prevention Project was a cluster-randomized HIV prevention trial whose follow-up period coincided with Botswana's national adoption of a universal test and treat strategy for HIV management. Of interest is whether, and to what extent, this change in policy modified the preventative effects of the study intervention. To address such questions, we adopt a stratified proportional hazards model for clustered interval-censored data with time-dependent covariates and develop a composite expectation maximization algorithm that facilitates estimation of model parameters without placing parametric assumptions on either the baseline hazard functions or the within-cluster dependence structure. We show that the resulting estimators for the regression parameters are consistent and asymptotically normal. We also propose and provide theoretical justification for the use of the profile composite likelihood function to construct a robust sandwich estimator for the variance. We characterize the finite-sample performance and robustness of these estimators through extensive simulation studies. Finally, we conclude by applying this stratified proportional hazards model to a re-analysis of the Botswana Combination Prevention Project, with the national adoption of a universal test and treat strategy now modeled as a time-dependent covariate. 相似文献
6.
Summary Quantal bioassay experiments relate the amount or potency of some compound; for example, poison, antibody, or drug to a binary outcome such as death or infection in animals. For infectious diseases, probit regression is commonly used for inference and a key measure of potency is given by the IDP , the amount that results in P% of the animals being infected. In some experiments, a validation set may be used where both direct and proxy measures of the dose are available on a subset of animals with the proxy being available on all. The proxy variable can be viewed as a messy reflection of the direct variable, leading to an errors‐in‐variables problem. We develop a model for the validation set and use a constrained seemingly unrelated regression (SUR) model to obtain the distribution of the direct measure conditional on the proxy. We use the conditional distribution to derive a pseudo‐likelihood based on probit regression and use the parametric bootstrap for statistical inference. We re‐evaluate an old experiment in 21 monkeys where neutralizing antibodies (nABs) to HIV were measured using an old (proxy) assay in all monkeys and with a new (direct) assay in a validation set of 11 who had sufficient stored plasma. Using our methods, we obtain an estimate of the ID1 for the new assay, an important target for HIV vaccine candidates. In simulations, we compare the pseudo‐likelihood estimates with regression calibration and a full joint likelihood approach. 相似文献
7.
Separate Cox analyses of all cause-specific hazards are the standard technique of choice to study the effect of a covariate in competing risks, but a synopsis of these results in terms of cumulative event probabilities is challenging. This difficulty has led to the development of the proportional subdistribution hazards model. If the covariate is known at baseline, the model allows for a summarizing assessment in terms of the cumulative incidence function. black Mathematically, the model also allows for including random time-dependent covariates, but practical implementation has remained unclear due to a certain risk set peculiarity. We use the intimate relationship of discrete covariates and multistate models to naturally treat time-dependent covariates within the subdistribution hazards framework. The methodology then straightforwardly translates to real-valued time-dependent covariates. As with classical survival analysis, including time-dependent covariates does not result in a model for probability functions anymore. Nevertheless, the proposed methodology provides a useful synthesis of separate cause-specific hazards analyses. We illustrate this with hospital infection data, where time-dependent covariates and competing risks are essential to the subject research question. 相似文献
8.
An estimator for the proportional hazards model with multiple longitudinal covariates measured with error 总被引:2,自引:0,他引:2
In many longitudinal studies, it is of interest to characterize the relationship between a time-to-event (e.g. survival) and several time-dependent and time-independent covariates. Time-dependent covariates are generally observed intermittently and with error. For a single time-dependent covariate, a popular approach is to assume a joint longitudinal data-survival model, where the time-dependent covariate follows a linear mixed effects model and the hazard of failure depends on random effects and time-independent covariates via a proportional hazards relationship. Regression calibration and likelihood or Bayesian methods have been advocated for implementation; however, generalization to more than one time-dependent covariate may become prohibitive. For a single time-dependent covariate, Tsiatis and Davidian (2001) have proposed an approach that is easily implemented and does not require an assumption on the distribution of the random effects. This technique may be generalized to multiple, possibly correlated, time-dependent covariates, as we demonstrate. We illustrate the approach via simulation and by application to data from an HIV clinical trial. 相似文献
9.
Influence functions for proportional hazards regression 总被引:2,自引:0,他引:2
10.
Competing events concerning individual subjects are of interest in many medical studies. For example, leukemia-free patients surviving a bone marrow transplant are at risk of developing acute or chronic graft-versus-host disease, or they might develop infections. In this situation, competing risks models provide a natural framework to describe the disease. When incorporating covariates influencing the transition intensities, an obvious approach is to use Cox's proportional hazards model for each of the transitions separately. A practical problem then is how to deal with the abundance of regression parameters. Our objective is to describe the competing risks model in fewer parameters, both in order to avoid imprecise estimation in transitions with rare events and in order to facilitate interpretation of these estimates. Suppose that the regression parameters are gathered into a p x K matrix B, with p and K as the number of covariates and transitions, respectively. We propose the use of reduced rank models, where B is required to be of lower rank R, smaller than both p and K. One way to achieve this is to write B = AGamma(intercal) with A and Gamma matrices of dimensions p x R and K x R, respectively. We shall outline an algorithm to obtain estimates and their standard errors in a reduced rank proportional hazards model for competing risks and illustrate the approach on a competing risks model applied to 8966 leukemia patients from the European Group for Blood and Marrow Transplantation. 相似文献
11.
12.
We propose a new type of residual and an easily computed functional form test for the Cox proportional hazards model. The proposed test is a modification of the omnibus test for testing the overall fit of a parametric regression model, developed by Stute, González Manteiga, and Presedo Quindimil (1998, Journal of the American Statistical Association93, 141-149), and is based on what we call censoring consistent residuals. In addition, we develop residual plots that can be used to identify the correct functional forms of covariates. We compare our test with the functional form test of Lin, Wei, and Ying (1993, Biometrika80, 557-572) in a simulation study. The practical application of the proposed residuals and functional form test is illustrated using both a simulated data set and a real data set. 相似文献
13.
In the presence of covariate measurement error with the proportional hazards model, several functional modeling methods have been proposed. These include the conditional score estimator (Tsiatis and Davidian, 2001, Biometrika 88, 447-458), the parametric correction estimator (Nakamura, 1992, Biometrics 48, 829-838), and the nonparametric correction estimator (Huang and Wang, 2000, Journal of the American Statistical Association 95, 1209-1219) in the order of weaker assumptions on the error. Although they are all consistent, each suffers from potential difficulties with small samples and substantial measurement error. In this article, upon noting that the conditional score and parametric correction estimators are asymptotically equivalent in the case of normal error, we investigate their relative finite sample performance and discover that the former is superior. This finding motivates a general refinement approach to parametric and nonparametric correction methods. The refined correction estimators are asymptotically equivalent to their standard counterparts, but have improved numerical properties and perform better when the standard estimates do not exist or are outliers. Simulation results and application to an HIV clinical trial are presented. 相似文献
14.
15.
Farrington CP 《Biometrics》2000,56(2):473-482
We develop diagnostic tools for use with proportional hazards models for interval-censored survival data. We propose counterparts to the Cox-Snell, Lagakos (or martingale), deviance, and Schoenfeld residuals. Many of the properties of these residuals carry over to the interval-censored case. In particular, the interval-censored versions of the Lagakos and Schoenfeld residuals may be derived as components of suitable score statistics. The Lagakos residuals may be used to check regression relationships, while the Schoenfeld residuals can help to detect nonproportional hazards in semiparametric models. The methods apply to parametric models and to the semiparametric model with discrete observation times. 相似文献
16.
17.
In this article, we consider nonparametric regression when covariates are measured with error. Estimation is performed using boosted regression trees, with the sum of the trees forming the estimate of the conditional expectation of the response. Both binary and continuous response regression are investigated. An approach to fitting regression trees when covariates are measured with error is described, and the boosting algorithms consist of its repeated application. The main feature of the approach is that it handles situations where multiple covariates are measured with error. Some simulation results are given as well as its application to data from the Framingham Heart Study. 相似文献
18.
A class of maximum weighted Kaplan-Meier test statistics is described where the weight functions are chosen from a family of smooth functions. The investigated test statistic is robust and sensitive to a variety of alternatives that are often observed in cancer prevention and screening trials. A simulation study is performed to compare the size and power properties between the proposed test statistics and some existing ones. We illustrate the procedure using data from a clinical trial of a breast cancer screening program. 相似文献
19.
20.
To assess the protective effects of a time-varying covariate, we develop a stochastic model based on tumor biology. The model assumes that individuals have a Poisson-distributed pool of initiated clones, which progress through predetectable, detectable mortal and detectable immortal stages. Time-independent covariates are incorporated through a log-linear model for the expected number of clones, resulting in a proportional hazards model for disease onset. By allowing time-dependent covariates to induce clone death, with rate dependent on a clone's state, the model is flexible enough to accommodate delayed disease onset and remission or cure of preexisting disease. Inference uses Bayesian methods via Markov chain Monte Carlo. Theoretical properties are derived, and the approach is illustrated through analysis of the effects of childbirth on uterine leiomyoma (fibroids). 相似文献