首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 285 毫秒
1.
The last step of the folding reaction of myoglobin is the incorporation of a prosthetic group. In cells, myoglobin is soluble, while heme resides in the mitochondrial membrane. We report here an exhaustive study of the interactions of apomyoglobin with lipid vesicles. We show that apomyoglobin interacts with large unilamellar vesicles under acidic conditions, and that this requires the presence of negatively charged phospholipids. The pH dependence of apomyoglobin interactions with membranes is a two-step process, and involves a partially folded state stabilized at acidic pH. An evident role for the interaction of apomyoglobin with lipid bilayers would be to facilitate the uptake of heme from the outer mitochondrial membrane. However, heme binding to apomyoglobin is observed at neutral pH when the protein remains in solution, and slows down as the pH becomes more favorable to membrane interactions. The effective incorporation of soluble heme into apomyoglobin at neutral pH suggests that the interaction of apomyoglobin with membranes is not necessary for the heme uptake from the lipid bilayer. In vivo, however, the ability of apomyoglobin to interact with membrane may facilitate its localization in the vicinity of the mitochondrial membranes, and so may increase the yield of heme uptake. Moreover, the behavior of apomyoglobin in the presence of membranes shows striking similarities with that of other proteins with a globin fold. This suggests that the globin fold is well adapted for soluble proteins whose functions require interactions with membranes.  相似文献   

2.
Spectrophotometric titration of ferric octaethylporphyrin (OEP) with apomyoglobin revealed their 1:1 complex formation. Proton NMR spectrum of the OEP-reconstituted deoxymyoglobin exhibits an exchangeable peak from the proximal F8 histidine at 78.5 ppm, indicating the incorporation of iron OEP into the heme cavity to form the Fe-N(His-F8) bond. OEP metmyoglobin without external ligand has an iron-bound water that deprotonates above pH 7.8. Affinities of the aquometmyoglobin for several ionic ligands were comparable with those of native metmyoglobin. Deoxy OEP myoglobin at 25 degrees C reversibly binds oxygen with an affinity of P50 = 0.8 mm Hg, which is similar to that of native protein. These results indicate that iron OEP serves as a prosthetic group for myoglobin with normal function, despite the significant structural and electronic difference between OEP and protoporphyrin. The unexpected functional similarity between native and OEP myoglobins was interpreted in terms of a structural perturbation at the heme distal site caused by introduction of bulky OEP into the heme pocket.  相似文献   

3.
E Bismuto  E Gratton    D C Lamb 《Biophysical journal》2001,81(6):3510-3521
The dynamics of the binding reaction of ANS to native and partly folded (molten globule) tuna and horse apomyoglobins has been investigated by fluorescence correlation spectroscopy and frequency domain fluorometry. The reaction rate has been measured as a function of apomyoglobin and ANS concentrations, pH, and temperature. Examination of the autocorrelation functions shows that the reaction rate is fast enough to be observed in tuna apomyoglobin, whereas the reaction rate in horse apomyoglobin is on the same time scale as diffusion through the volume or longer. Specifically, for tuna apomyoglobin at pH 7 and room temperature the on rate is 2200 microM(-1) s(-1) and the off rate is 5900 s(-1), in comparison with k(on) = 640 microM(-1) s(-1) and k(off) = 560 s(-1) for horse myoglobin as measured previously. The independence of the reaction rate from the ANS concentration indicates that the reaction rate is dominated by the off rate. The temperature dependence of the on-rate shows that this rate is diffusion limited. The temperature dependence of the off rates analyzed by Arrhenius and Ferry models indicates that the off rate depends on the dynamics of the protein. The differences between horse and tuna apomyoglobins in the ANS binding rate can be explained in terms of the three-dimensional apoprotein structures obtained by energy minimization after heme removal starting from crystallographic coordinates. The comparison of the calculated apomyoglobin surfaces shows a 15% smaller cavity for tuna apomyoglobin. Furthermore, a negative charge (D44) is present in the heme cavity of tuna apomyoglobin that could decrease the strength of ANS binding. At pH 5 the fluorescence lifetime distribution of ANS-apomyoglobin is bimodal, suggesting the presence of an additional binding site in the protein. The binding rates determined by FCS under these conditions show that the protein is either in the open configuration or is more flexible, making it much easier to bind. At pH 3, the protein is in a partially denatured state with multiple potential binding sites for ANS molecule, and the interpretation of the autocorrelation function is not possible by simple models. This conclusion is consistent with the broad distribution of ANS fluorescence lifetimes observed in frequency domain measurements.  相似文献   

4.
1. No ferrihaem was detected in the precipitate formed by metmyoglobin with an antiserum to apomyoglobin and the extinction at 410mmu of metmyoglobin, due to ferrihaem, was decreased by the univalent fragments of apomyoglobin antibodies. It was concluded that the combination of apomyoglobin antibodies with metmyoglobin caused the release of ferrihaem. As the removal of ferrihaem from metmyoglobin is accompanied by a conformational change, it was concluded that the conformation of metmyoglobin was altered by the apomyoglobin antibodies. 2. Antisera to metmyoglobin were divided into two groups; antisera of the first group revealed differences between the immunological reactivities of metmyoglobin and apomyoglobin, whereas no differences were detected with antisera of the second group. 3. Metmyoglobin was only partially re-formed by adding haematin to the precipitate produced by apomyoglobin with an antiserum of the first group, whereas complete re-formation of metmyoglobin was achieved in the presence of antisera of the second group. No metmyoglobin was formed on the addition of haematin to the precipitates produced by either metmyoglobin or apomyoglobin with the anti-apomyoglobin serum. 4. Immune precipitates formed by antisera to metmyoglobin dissociated at pH1.8, whereas those formed by the anti-apomyoglobin serum did not dissociate. 5. These results suggest that apomyoglobin possessed different conformations when combined with metmyoglobin antibodies and apomyoglobin antibodies.  相似文献   

5.
Sn-protoporphyrin is a strong competitive inhibitor of heme oxygenase and a potential pharmacological agent for the treatment of neonatal hyperbilirubinemia. Little is otherwise known about the biochemistry of tin porphyrins. We have investigated aspects of the chemistry of tin-protoporphyrin in aqueous solution and of its interactions with heme-binding proteins other than heme oxygenase, specifically apomyoglobin and human serum albumin. In the pH region 7-10, Soret region absorption studies of unbound Sn-protoporphyrin demonstrate a pH-dependent monomer-dimer equilibrium (KD congruent to 10(6) M-1 at pH 7) with little higher aggregation. Dissociation of the dimer is relatively slow at neutral pH, permitting interaction of protein ligands with monomeric and dimeric species to be distinguished and providing insights into kinetic mechanisms of porphyrin binding by heme-binding proteins. In the present study, the kinetics of interaction of Sn-protoporphyrin with apomyoglobin are presented as novel evidence that this binding proceeds by an induced fit mechanism. Binding of Sn-protoporphyrin to both apomyoglobin and serum albumin is unexpectedly weak. Between pH 7 and 9, the apparent affinity of Sn-protoporphyrin for apomyoglobin is less than 1/200 that of heme and, at pH 9, is also significantly less than that of protoporphyrin. The apparent affinity of Sn-protoporphyrin for human serum albumin is less than 1/1000 that of heme and 1/30 to 1/100 that of protoporphyrin. Competition studies between heme and Sn-protoporphyrin and between bilirubin and Sn-protoporphyrin indicate that Sn-protoporphyrin distributes differently among porphyrin-binding sites on serum albumin than does heme and that it is also not an effective competitor with bilirubin for bilirubin-binding sites. These results argue that Sn-protoporphyrin should not significantly alter normal mechanisms for the binding and transport of heme or of preformed bilirubin by serum albumin. From a more general perspective, the results indicate potentially unusual binding site selectivity by tin chelates; possible origins of this selectivity are discussed.  相似文献   

6.
The secondary structures of two proteins were examined by circular dichroism spectroscopy after adsorption onto a series of organically modified silica glasses. The glasses were prepared by the sol-gel technique and were varied in hydrophobicity by incorporation of 5% methyl, propyl, trifluoropropyl, or n-hexyl silane. Both cytochrome c and apomyoglobin were found to lose secondary structure after adsorption onto the modified glasses. In the case of apomyoglobin, the α-helical content of the adsorbed protein ranged from 21% to 28%, well below the 62% helix found in solution. In contrast, these same glasses led to a striking increase in apomyoglobin structure when the protein was encapsulated within the pores during sol-gel processing: the helical content of apomyoglobin increased with increasing hydrophobicity from 18% in an unmodified glass to 67% in a 5% hexyl-modified glass. We propose that proteins preferentially adsorb onto unmodified regions of the silica surface, whereas encapsulated proteins are more susceptible to changes in surface hydration due to the proximity of the alkyl chain groups.  相似文献   

7.
The heme-pocket dynamics subsequent to carbon monoxide photolysis from human hemoglobin have been monitored as a function of glycerol-water solvent composition with time-resolved resonance Raman spectroscopy. Prompt (geminate) ligand recombination rates and the transient heme-pocket geometry established within 10 ns after photolysis appear to be largely independent of solvent composition. The rate of relaxation of the transient geometry to an equilibrium deoxy configuration is, however, quite sensitive to solvent composition. These observations suggest that the former processes result from local, internal motions of the protein, while the relaxation dynamics of the proximal heme pocket are predicated upon more global protein motions that are dependent upon solvent viscosity.  相似文献   

8.
The heme d1 prosthetic group isolated from Pseudomonas cytochrome oxidase combines with apomyoglobin to form a stable, optically well-defined complex. Addition of ferric heme d1 quenches apomyoglobin tryptophan fluorescence suggesting association in a 1:1 molar ratio. Optical absorption maxima for heme d1.apomyoglobin are at 629 and 429 nm before, and 632 and 458 nm after dithionite reduction; they are distinct from those of heme d1 in aqueous solution but more similar to those unobscured by heme c in Pseudomonas cytochrome oxidase. Cyanide, carbon monoxide and imidazole alter the spectrum of heme d1.apomyoglobin demonstrating axial coordination to heme d1 by exogeneous ligands. The cyanide-induced optical difference spectra exhibit isosbestic points, and a Scatchard-like analysis yields a linear plot with an apparent dissociation constant of 4.2 X 10(-5) M. However, carbon monoxide induces two absorption spectra with Soret maxima at 454 or 467 nm, and this duplicity, along with a shoulder that correlates with the latter before binding, suggests multiple carbon monoxide and possibly heme d1 orientations within the globin. The 50-fold reduction in cyanide affinity over myoglobin is more consistent with altered heme pocket interactions than the intrinsic electronic differences between the two hemes. However, stability of the heme d1.apomyoglobin complex is verified further by the inability to separate heme d1 from globin during dialysis and column chromatography in excess cyanide or imidazole. This stability, together with a comparison between spectra of ligand-free and -bound derivatives of heme d1-apomyoglobin and heme d1 in solution, implies that the prosthetic group is coordinated in the heme pocket through a protein-donated, strong-field ligand. Furthermore, the visible spectrum of heme d1.apomyoglobin varies minimally with ligand exchange, in contrast to the Soret, which suggests that much spectral information concerning heme d1 coordination in the oxidase is lost by interference from heme c absorption bands. A comparison of the absorption spectra of heme d1.apomyoglobin and Pseudomonas cytochrome oxidase, together with a critical examination of the previous axial ligand assignments from magnetic resonance techniques in the latter, implies that it is premature to accept the assignment of bishistidine heme d1 coordination in oxidized, ligand-free oxidase and other iron-isobacteriochlorin-containing enzymes.  相似文献   

9.
The conformational propensities of unfolded states of apomyoglobin have been investigated by measurement of residual dipolar couplings between (15)N and (1)H in backbone amide groups. Weak alignment of apomyoglobin in acid and urea-unfolded states was induced with both stretched and compressed polyacrylamide gels. In 8 M urea solution at pH 2.3, conditions under which apomyoglobin contains no detectable secondary or tertiary structure, significant residual dipolar couplings of uniform sign were observed for all residues. At pH 2.3 in the absence of urea, a change in the magnitude and/or sign of the residual dipolar couplings occurs in local regions of the polypeptide where there is a high propensity for helical secondary structure. These results are interpreted on the basis of the statistical properties of the unfolded polypeptide chain, viewed as a polymer of statistical segments. For a folded protein, the magnitude and sign of the residual dipolar couplings depend on the orientation of each bond vector relative to the alignment tensor of the entire molecule, which reorients as a single entity. For unfolded proteins, there is no global alignment tensor; instead, residual dipolar couplings are attributed to alignment of the statistical segments or of transient elements of secondary structure. For apomyoglobin in 8 M urea, the backbone is highly extended, with phi and psi dihedral angles favoring the beta or P(II) regions. Each statistical segment has a highly anisotropic shape, with the N-H bond vectors approximately perpendicular to the long axis, and becomes weakly aligned in the anisotropic environment of the strained acrylamide gels. Local regions of enhanced flexibility or chain compaction are characterized by a decrease in the magnitude of the residual dipolar couplings. The formation of a small population of helical structure in the acid-denatured state of apomyoglobin leads to a change in sign of the residual dipolar couplings in local regions of the polypeptide; the population of helix estimated from the residual dipolar couplings is in excellent agreement with that determined from chemical shifts. The alignment model described here for apomyoglobin can also explain the pattern of residual dipolar couplings reported previously for denatured states of staphylococcal nuclease and other proteins. In conjunction with other NMR experiments, residual dipolar couplings can provide valuable insights into the dynamic conformational propensities of unfolded and partly folded states of proteins and thereby help to chart the upper reaches of the folding landscape.  相似文献   

10.
Folding of apomyoglobin is characterized by formation of a compact intermediate that contains substantial helicity. To determine whether this intermediate is obligatory or whether the protein can fold directly into the native state via an alternate parallel pathway, we have combined quench-flow hydrogen-exchange pulse labeling techniques with electrospray ionization mass spectrometry. The mass spectra of apomyoglobin obtained at various refolding times suggest that apomyoglobin indeed folds through a single pathway containing an obligatory intermediate with a significant hydrogen-bonded secondary structure content.  相似文献   

11.
Myoglobin is an alpha-helical globular protein containing two highly conserved tryptophanyl residues at positions 7 and 14 in the N-terminal region. The double W/F replacement renders apomyoglobin highly susceptible to aggregation and amyloid-like fibril formation under physiological conditions. In this work we analyze the early stage of W7FW14F apomyoglobin aggregation following the time dependence of the process by far-UV CD, Fourier-transform infrared (FTIR) spectroscopy, and heme-binding properties. The results show that the aggregation of W7FW14F apomyoglobin starts from a native-like globin state able to bind the prosthetic group with spectroscopic properties similar to those observed for wild-type apoprotein. Nevertheless, it rapidly aggregates, forming amyloid fibrils. However, when the prosthetic group is added before the beginning of aggregation, amyloid fibrillization is inhibited, although the aggregation process is not prevented. Moreover, the apomyoglobin aggregates formed in these conditions are not cytotoxic differently from what is observed for all amyloidogenic proteins. These results open new insights into the relationship between the structure adopted by the protein into the aggregates and their ability to trigger the impairment of cell viability.  相似文献   

12.
1. Static titrations reveal an exact stoicheiometry between various haem derivatives and apoperoxidase prepared from one isoenzyme of the horseradish enzyme. 2. Carbon monoxide-protohaem reacts rapidly with apoperoxidase and the kinetics can be accounted for by a mechanism already applied to the reaction of carbon monoxide-haem derivatives with apomyoglobin and apohaemoglobin. 3. According to this mechanism a complex is formed first whose combination and dissociation velocity constants are 5x10(8)m(-1)sec.(-1) and 10(3)sec.(-1) at pH9.1 and 20 degrees . The complex is converted into carbon monoxide-haemoprotein in a first-order process with a rate constant of 235sec.(-1) for peroxidase and 364sec.(-1) for myoglobin at pH9.1 and 20 degrees . 4. The effects of pH and temperature were examined. The activation energy for the process of complex-isomerization is about 13kcal./mole. 5. The similarity in the kinetics of the reactions of carbon monoxide-haem with apoperoxidase and with apomyoglobin suggests structural similarities at the haem-binding sites of the two proteins.  相似文献   

13.
As has been recently shown, the toxicity of protein aggregates is determined by their structure. Therefore, special attention has been focused on the search for factors that specify the structural features of formed amyloid fibrils. The effect of amino acid substitutions in apomyoglobin on the structural characteristics of its amyloid aggregates has been analyzed. The morphology and secondary structure of amyloids of the wild-type protein and its mutant variants Val10Ala, Val10Phe, and Trp14Phe have been compared, and the regions involved in intermolecular interactions in fibrils have been determined using limited proteolysis and mass spectrometry. No considerable differences have been found in the morphology (shape, length, or diameter) or the content (percentage) of the cross-β structure of apomyoglobin amyloids and its mutant variants. Amyloid cores of wild-type apomyoglobin and variants with Val10Phe and Trp14Phe substitutions have been formed by different regions of the polypeptide chain. The case study of apomyoglobin demonstrates that the location of amyloidogenic regions in the polypeptide chain of wild-type protein and its mutant forms can differ. Thus, possible structural changes in amyloids resulting from amino acid substitutions should be taken into account when studying phenotype aggregation.  相似文献   

14.
1. The interaction of the haem-binding region of apomyoglobin with different ligands was examined by ultrafiltration, equilibrium dialysis and spectrophotometry, to study unspecific features of protein-ligand interactions such as they occur in, for example, serum albumin binding. 2. Apomyoglobin, in contrast with metmyoglobin, binds at pH 7, with a high affinity, one molecule of Bromophenol Blue, bilirubin and protoporphyrin IX, two molecules of n-dodecanoate and n-decyl sulphate and four molecules of n-dodecyl sulphate and n-tetradecyl sulphate. 3. The number of high-affinity sites and/or association constants for the alkyl sulphates are enhanced by an increase of hydrocarbon length, indicating hydrophobic interactions with the protein. 4. Measurements of the temperature-dependence of the association constants of the high-affinity sites imply that the binding processes are largely entropy-driven. 5. Binding studies in the presence of two ligands show that bilirubin plus Bromophenol Blue and dodecanoate plus Bromophenol Blue can be simultaneously bound by apomyoglobin, but with decreased affinities. By contrast, the apomyoglobin-protoporphyrin IX complex does not react with Bromophenol Blue. 6. Optical-rotatory-dispersion measurements show that the laevorotation of apomyoglobin is increased towards that of metmyglobin in the presence of haemin and protoporphyrin IX. Small changes in the optical-rotatory-dispersion spectrum of apomyoglobin are observed in the presence of the other ligands. 7. It is concluded that the binding sites on apomyoglobin probably do not pre-exist but appear to be moulded from predominantly non-polar amino acid residues by reaction with hydrophobic ligands. 8. Comparison with data in the literature indicates that apomyoglobin on a weight basis has a larger hydrophobic area avaialble for binding of ligands than has human serum albumin. On the other hand, the association constants of serum for the ligands used in this study are generally somewhat larger than those of apomyoglobin.  相似文献   

15.
An analysis of the reconstitution of biliverdins with extended conformations and horse heart apomyoglobin was carried out. Biliverdins with the 5Z-syn, 10Z-syn, 15Z-anti and 5Z-anti, 10Z-syn, 15Z-anti conformations, as well as biliverdins with the Z,Z,Z, all-syn conformation recombined with apomyoglobin. In every case the P enantiomers were bound in excess to the M enantiomers, with exception of the 5-syn, 10-syn, 15-anti biliverdin where the M enantiomer bound preferentially to the protein. Biliverdins with an anti conformation at the C-10 meso bridge did not recombine with the protein. It was concluded that the presence of a syn conformation at the C-10 methine conferred to the biliverdin the necessary helicity to fit into the apomyoglobin heme pocket. This regioselectivity is of importance in view of the well known analogy between the ligand domains of myoglobin and the C-phycocyanins.  相似文献   

16.
We have used molecular dynamics simulation methods to study the structure and fluctuations of "native" apomyoglobin in aqueous solution for a period of greater than 0.5 nanosecond. This work was motivated by the recent attempts of Hughson et al. to characterize the structure and motion of both this molecule and the less compact, acid stabilized I stage, using methods of pulsed H/2H exchange. The study of these systems provides new insights into protein folding intermediates and our simulation has yielded a detailed model for structure and fluctuations in apomyoglobin which complements the experimental studies. We find that local (short-time) fluctuations agree well with fluctuations observed for the holoprotein in aqueous solution, as well as results from the crystallographic B-factors. In addition, the structural features we observe for native apomyoglobin are very similar to the holoprotein, in basic agreement with the findings of Hughson et al. By examining larger-scale motions, developing only over timescales in excess of a 100 picoseconds, we are able to identify conformationally "labile" and "non-labile" regions within native apomyoglobin. These regions correspond extremely well to those identified in the nuclear magnetic resonance experiments as unstable and stable "folding subdomains" in the I state of apomyoglobin. Overall we find that helices A, B, E, G and H show the least amount of motion and helices C, D and F move substantially over the timescales examined. The major motions, and the primary difference between the holo and apo structures as we have observed them, are due to the shifting motion of helices C, D and F into the vacant heme cavity. We also find that motions at the interface of helical segments can be large, with one important exception being the chain segment connecting helices G and H. This segment of chain interacts with the conformationally "non-labile" helix A to form a relatively rigid subdomain composed of helices A, G and H. We believe that these findings provide direct support for the suggestion of Hughson et al. that helices A, G and H constitute a compact subdomain that remains in a native-like conformation as the protein begins to unfold in environments of decreasing pH.  相似文献   

17.
N,N'-Propylene-bis-(N-salicylidene)copper(II) (Cu(Salprn)) explicitly stabilizes apomyoglobin. The optical spectrum of this copper(II) Schiff-base complex of apomyoglobin arises from the electronic excitations of pi *-O-Salprn-->dx2-y2 and N-Salprn-->dx2-y2. Shifts of these transitions with respect to those of the parent complex may be a consequence of hydrophobic solvatochromism or binding of an additional ligand. ESR parameters imply no change in the identity of the first coordination sphere around the copper, while hydrophobic solvatochromism cannot be excluded. Combination of copper(II) Schiff-base complex with apomyoglobin does not inhibit the ability of apomyoglobin to extract hemin from the main component of Glycera dibranchiata hemoglobin. Hemin replaces the copper complex, and the value of the apparent first-order rate constant varies with time. The mechanism involves dissociative and associative interchange pathways. Values of rate constants for transfer of hemin to copper(II) Schiff-base apomyoglobin complex, as well as the change of concentration with time are evaluated.  相似文献   

18.
Sperm whale apomyoglobin structure has been studied thermodynamically at different temperatures and pH of solution by scanning microcalorimetry, viscosimetry, NMR and CD spectrometry techniques. It has been shown that at pH close to neutral, apomyoglobin has a compact highly cooperative structure with a well defined hydrophobic core. The stability of this structure is maximal at 30 degrees C and decreases both with an increase and decrease of temperature. Correspondingly, the compact three-dimensional structure of apomyoglobin is disrupted both upon heating and cooling of the solution. In acidic solutions this process is reversible and represents a cooperative transition between two macroscopic states--the ordered and disordered ones which can be regarded as the native and denatured states of molecule. The compactness and ellipticity of the denatured state depend significantly on pH: upon a decrease of pH in the region of ionization of carboxylic groups these parameters approach the values characteristic of a random coil. A comparison of the maximal stability of the cooperative structure of apomyoglobin which is 12 kJ.mol-1 at 30 degrees C and pH close to neutral ones with the maximal stability of metmyoglobin which is 49 kJ.mol-1 shows that the contribution of heme in the stabilization of the native myoglobin structure reaches 37 kJ.mol-1.  相似文献   

19.
Kinetic and equilibrium studies of apomyoglobin folding pathways and intermediates have provided important insights into the mechanism of protein folding. To investigate the role of intrinsic helical propensities in the apomyoglobin folding process, a mutant has been prepared in which Asn132 and Glu136 have been substituted with glycine to destabilize the H helix. The structure and dynamics of the equilibrium molten globule state formed at pH 4.1 have been examined using NMR spectroscopy. Deviations of backbone (13)C(alpha) and (13)CO chemical shifts from random coil values reveal high populations of helical structure in the A and G helix regions and in part of the B helix. However, the H helix is significantly destabilized compared to the wild-type molten globule. Heteronuclear [(1)H]-(15)N NOEs show that, although the polypeptide backbone in the H helix region is more flexible than in the wild-type protein, its motions are restricted by transient hydrophobic interactions with the molten globule core. Quench flow hydrogen exchange measurements reveal stable helical structure in the A and G helices and part of the B helix in the burst phase kinetic intermediate and confirm that the H helix is largely unstructured. Stabilization of structure in the H helix occurs during the slow folding phases, in synchrony with the C and E helices and the CD region. The kinetic and equilibrium molten globule intermediates formed by N132G/E136G are similar in structure. Although both the wild-type apomyoglobin and the mutant fold via compact helical intermediates, the structures of the intermediates and consequently the detailed folding pathways differ. Apomyoglobin is therefore capable of compensating for mutations by using alternative folding pathways within a common basic framework. Tertiary hydrophobic interactions appear to play an important role in the formation and stabilization of secondary structure in the H helix of the N132G/E136G mutant. These studies provide important insights into the interplay between secondary and tertiary structure formation in protein folding.  相似文献   

20.
It is frequently observed in pharmaceutical practice that entrapped substances are lost rapidly when liposomes are used as carriers to introduce substances into cells. The reason for the loss is the interaction of serum components with liposomes. To elucidate the mechanism of this phenomenon the partition of mesoporphyrin (MP) was systematically studied in model systems composed of various lipids and human serum albumin (HSA). As surface charge is an important factor in the interaction, neutral (1, 2-dimyristoyl-sn-glycero-3-phosphatidylcoline, DMPC) and negatively charged (1,2-dimyristoyl-sn-glycero-3-phosphatidylcoline/1, 2-dimyristoyl-sn-glycero-3-phosphatidylglycerol, DMPC/DMPG = 19/1 w/w) lipids were compared. The liposome/apomyoglobin system was the negative control. The size distribution of sonicated samples was carefully analyzed by dynamic light scattering. Constants of association of MP to the proteins and to the liposomes were determined: K(p,1) = (2.5 +/- 0.7) x 10(7) M(-1), K(p,2) = (1.0 +/- 0.7) x 10(8) M(-1), K(L,1) = (1.3 +/- 0.3) x 10(5) M(-1), and K(L,2) = (3.2 +/- 0.6) x 10(4) M(-1) for HSA, apomyoglobin, DMPC, and DMPC/DMPG liposomes, respectively. These data were used to evaluate the partition experiments. The transfer of MP from the liposomes to the proteins was followed by fluorescence spectroscopy. In the case of apomyoglobin, the experimental points could be interpreted by ruling out the protein-liposome interaction. In the case of HSA, the efflux of MP from the liposomes was strongly inhibited above a critical HSA concentration range for negatively charged vesicles. This effect was interpreted as the result of HSA coat formation on the liposome surface. This direct interaction is significant for small liposomes. The interpretation is fully supported by differential scanning calorimetry experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号