首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pH versus proteinase activity curve (casein or hemoglobin plus urea substrate) for homogenates of unfertilized Lytechinus eggs reveals two regions of maximum activity: one between pH 3.5 and 4.3, and another of far greater magnitude from pH 8.0 to 11.0. The two classes of proteinases can be separated on a sucrose density gradient. Both the acid and alkaline proteinases in homogenates prepared in isotonic monovalent salt solutions are remarkably stable at pH 7.4 and 0°C. Using synthetic peptide substrates, an enzyme with the specific esterase activity of chymotrypsin was demonstrated; this enzyme accounts for the major part of the proteinase activity at alkaline pH. In addition, an enzyme with specific esterase activity of trypsin was shown to be present, but of low activity. The proteinase activity at acid pH is largely due to an enzyme resembling cathepsin D. The data also suggest the presence of cathepsin B and cathepsin IV (or catheptic carboxypeptidase). When eggs are homogenized in isotonic NaCl plus KCl at pH 7.4, 0.02 M tris buffer at 0°C, all of the alkaline proteinase, and 85–90% of the acid proteinase activity is sedimented at 10,000 g. The presence of any proteinase activity in the supernatant phase represents an artifact of the preparative procedures used. The granules which possess the proteinase activity are contained entirely in the yolk fractions; and the acid proteinase is contained in a population of granules which sediment more readily than those which contain the alkaline proteinase. The acid proteinase resembles the lysosomal acid hydrolases in that it is readily released from the particulates; in contrast, the alkaline proteinase is bound relatively firmly. In contradistinction to reports in the literature, no changes in proteinase activity nor intracellular distribution could be detected following fertilization.  相似文献   

2.
A cysteine, cathepsin B-like proteinase activity has been found in Drosophila embryos. It appears associated with yolk granules and its activity during embryogenesis correlates well with the degradation of these organelles. In mature oocytes, the enzyme is found in an inactive form which may be activated by limited proteolysis by a serine proteinase also present in oocytes. In early embryos, when solubilized in vitro, the cathepsin B-like proteinase is found in a form of high molecular mass (approx 1000 kDa). This decreases with development down to about 39 kDa, likely the mass of the free proteinase. The heavy form apparently results from the tight association with a yolk protein complex. The proteinase has been found in vitro to degrade readily the yolk polypeptides. The proteinase activity increases during early embryogenesis in parallel with the decrease in molecular weight of the heavy form, and decreases to low values in late embryos. We have also found that ammonium chloride can inhibit in vivo the degradation of yolk and, in parallel, the developmental inactivation of the proteinase. The results altogether suggest that the cathepsin B-like proteinase is implicated in yolk degradation in Drosophila.  相似文献   

3.
Two types of acid proteases, cathepsin D and cathepsin E-like enzyme, from rat gastric mucosa and spleen were compared in their biochemical and immunochemical properties. The enzymes were partially purified by employing the same chromatographic procedures and they showed a single proteolytically active band in polyacrylamide gel electrophoresis. Two low molecular weight enzymes, cathepsins D, from both tissues showed the same molecular weight and the same sensitivities to various inhibitors, but slightly different electrophoretic mobilities. The rabbit antiserum raised against gastric mucosa cathepsin D precipitated both enzymes. On the other hand, high molecular weight enzymes, gastric mucosa cathepsin D-like acid proteinase and spleen cathepsin E-like acid proteinase, were similar to each other as judged by their chromatographic profiles, electrophoretic mobilities, and high stabilities in urea solution. Furthermore, the antiserum specific to gastric mucosa cathepsin D-like acid proteinase inhibited both enzyme activities in a similar manner. However, the antiserum specific to one type of enzyme did not react with the other type. These results indicate that: gastric mucosa cathepsin D is immunologically identical with spleen cathepsin D; gastric mucosa cathepsin D-like acid proteinase has biochemical and immunological properties quite similar to spleen cathepsin E-like enzyme; these two types of acid proteases are quite different proteins existing in the individual tissues.  相似文献   

4.
We previously reported the discovery and partial characterization of bovine atrial granule serine proteinase, a candidate processing enzyme of pro-atrial natriuretic factor, which is associated with atrial granule membranes. We now report the physicochemical properties of electrophoretically homogeneous enzyme purified by a series of chromatography steps from a subcellular fraction enriched for atrial granules. The enzyme tends to associate during purification to higher molecular weight species, but SDS-PAGE analysis reveals a single polypeptide chain of molecular weight 70,000. The enzyme is activated 2-3 fold by Ca+2 and 1.5-fold by Mg+2 and is nearly 100% inhibited by Zn+2 or Co+2. Thus, the enzyme can be considered a calcium activated, neutral pH, serine proteinase. Based on the hydrolysis of numerous synthetic peptide substrates, the recognition sequence for the enzyme within the pro-hormone has been mapped to A96PRSLRR102; cleavage occurs at the Arg98-Ser99 bond yielding bioactive atrial natriuretic peptide directly from the pro-hormone. The doublet of basic amino acids is part of the recognition sequence but is not the primary cleavage site. It is our hypothesis that the processing site sequence acts as a recognition element for the endoproteinase and resides at the surface of the pro-hormone and thus contributes to the molecular basis for limited proteolysis.  相似文献   

5.
A proteinase with elastolytic activity was isolated from granules of rabbit bloodstream leukocytes, and purified to apparent homogeneity by a multi-step procedure consisting of ammonium sulfate precipitation, batch fractionation on DEAE-Sephadex A-50, and finally by preparative isoelectric focusing (IEF) on Sephadex G-75 Superfine. The molecule weight of the enzyme, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), was 28,500. This enzyme shows an isoelectric point at pH 9.0. The proteinase is active against natural elastins as well as toward Suc-(Ala)3-NA, Methoxy-Suc-(Ala)2-Pro-Val-NA, and (to a lesser extent) against Suc-(Ala)2-Pro-Leu-NA and Boc-Ala-ONp. The inhibition profile of the isolated enzyme indicates that rabbit granulocyte elastase belongs to the group of serine proteinases. Inhibition by some natural proteinase inhibitors is also observed. Unlike other mammalian elastases, it is insensitive to elastatinal.  相似文献   

6.
It was the purpose of this study to define the chromogranin A-processing proteinases present in highly purified preparations of bovine chromaffin granules. The most active enzyme had a pH optimum of 5.0 and was inhibited by pepstatin. It could be identified immunologically as a cathepsin D-like enzyme and subcellular fractionation established its lysosomal origin. After removal of this enzyme the remaining activity at pH 5.0 was mainly due to a cathepsin B-like proteinase. The presence of this enzyme could also be attributed to lysosomal contamination. In the presence of calcium, a further proteolytic activity became apparent at pH 5.0. This enzyme which was inhibited by rho-chloromercuriphenylsulfonic acid was localized in chromaffin granules. A trypsin-like peptidase, most active at pH 8.2, was enriched in a membrane wash of chromaffin granules. Subcellular fractionation indicated that this enzyme is preferentially bound to the membranes of very dense particles probably representing a subpopulation of chromaffin granules. This study establishes that the most active chromogranin A-degrading proteinases present in highly purified chromaffin granules are attributable to lysosomal contamination. Two enzymes with low activity (a Ca2+ activated proteinase and a trypsin-like enzyme) are, apparently, true constituents of chromaffin granules.  相似文献   

7.
A neutral proteinase secreted by rabbit synovial fibroblasts in parallel with specific collagenase was partially purified by ion-exchange chromatography. At pH 7.6 this proteinase degraded 35S-labelled bovine nasal proteoglycan and azo-casein. The enzymic activity was inhibited by EDTA, 1,10-phenanthroline and serum, whereas di-isopropyl phosphorofluoridate and soya-bean trypsin inhibitor had little effect. By gel filtration the apparent mol.wt. of the enzyme was 25000. The fibroblast neutral proteinase was compared with the proteoglycan-degrading neutral proteinases of rabbit polymorphonuclear-leucocyte granules. Two distinct activities were found in the granules: one was inhibited by soya-bean trypsin inhibitor and the other by EDTA. The proteoglycan-degrading proteinases of rabbit fibroblasts and polymorphonuclear leucocytes at acid pH also were examined. Both cathepsin D and a thiol-dependent proteinase contributed to the degradation of proteoglycan at pH 4.5.  相似文献   

8.
Proteinases capable of cleaving proenkephalin into smaller peptides have been identified in bovine adrenal chromaffin granules using [35S]methionine-labeled recombinant rat proenkephalin as a selective substrate in sodium dodecyl sulfate-polyacrylamide gel electrophoresis proteinase radiozymography. This technique was used for the screening of subcellular fractions, general characterization of pH optima, and the mechanistic characterization of proteinases with both reversible and irreversible inhibitors. Two enzymes with approximate molecular masses of 76 and 30 kDa were shown to be localized to the highest-density fractions of chromaffin granules by sucrose density gradient fractionation. Both were enriched in a 1 M NaCl wash of purified chromaffin granule membranes, were active at high pH, and were characterized as serine proteinases based on inhibition by soybean trypsin inhibitor. The 30-kDa enzyme was also inhibited by diisopropyl fluorophosphate, D-Phe-Pro-Arg-CH2Cl, and D-Val-Phe-Lys-CH2Cl and appeared to be the previously described adrenal trypsin-like enzyme. A third enzyme, of 66 kDa, was also associated with the 1 M NaCl wash of purified chromaffin granule membranes but was not localized exclusively to chromaffin granules in sucrose gradients. This proteinase was found to be Ca2+ activated and inhibited by EDTA but not diisopropyl fluorophosphate, soybean trypsin inhibitor, p-chloromercuriphenylsulfonic acid, 1,10-phenanthroline, or pepstatin.  相似文献   

9.
An alkaline proteinase, previously identified in rat liver and heart, has been purified from the soluble fraction of human erythrocytes. The proteinase has an apparent molecular weight of 600 000 and is composed of eight subunits with molecular weights ranging from 32 000 to 21 000. The proteinase degrades both protein and synthetic peptide substrates with a broad pH optimum of 7.5-11.0. Among the synthetic peptides tested, tripeptides with arginine at the P1 position (e.g. Z-Val-Leu-Arg-4-methoxy-2-napthylamine and Boc-Leu-Gly-Arg-4-methylcoumarin-7-amide) are particularly good substrates. The proteinase appears to be sulfhydryl-dependent and is inhibited completely by mersalyl acid and by hemin; inhibitors of serine and metallo-type proteinases have no effect on proteinase activity. Interestingly, a variety of other proteinase inhibitors such as leupeptin, chymostatin and N-ethylmaleimide failed to completely inhibit protein-hydrolyzing activities of the enzyme. These results indicate that these activities may be accounted for by at least two different catalytic sites. Proteinase activity is stable in the presence of 1 M urea, 0.5% Triton X-100 or 0.03% SDS and is not affected by ATP. Based on the high molecular weight and sulfhydryl-dependence, we have named this proteinase macropain.  相似文献   

10.
A trypsin-like proteinase was localized within a single subcellular compartment of unfertilized Strongylocentrotus purpuratus eggs, the cortical granules. Homogenates of eggs were fractionated by rate-zonal centrifugation. Enzymatic markers were used to determine the distribution of mitochondria (cytochrome oxidase), yolk platelets (acid nitrophenyl phosphatase), and cortical granules (β-1, 3-glucanase) in the sucrose density gradient. A bimodal distribution pattern was obtained for aryl esterase activity (substrate: β-naphthyl acetate), with one peak in the microsomal and the other in the cortical granule fractions. The cortical granule enzyme was characterized as a trypsin-like proteinase, since it also hydrolyzed another typical tryptic substrate α-N-benzoyl-l-arginine ethyl ester and was completely inactivated by soybean trypsin inhibitor (SBTI). The aryl esterase activity in the microsomal fractions was not inhibited by SBTI, while 50% of the total aryl esterase activity in the original egg homogenate was inactivated by SBTI. The identity of the enzyme(s) responsible for the aryl esterase activity associated with the microsomal particles is unknown at present.The cortical granule proteinase functions in the elevation of the fertilization membrane and establishment of the block to polyspermy at fertilization. Arbacia punctulata eggs inseminated in the presence of trypsin inhibitors, SBTI or tosyl lysine chloromethyl ketone (TLCK), failed to elevate normal fertilization membranes and became heavily polyspermic.On the basis of these results and observations made by other investigators with a wide variety of biological systems, it is proposed that trypsin-like proteinases function in the discharge of secretory granules from all types of cells.  相似文献   

11.
The localization of cathepsin D-like acid proteinase in the rat stomach and other tissues was studied, and its biochemical properties were compared with those of rat gastric cathepsin D (EC 3.4.23.5). Cathepsin D-like acid proteinase existed overwhelmingly in the mucosal layer and was hardly detected in the gastric juice. Its subcellular distribution profile was very similar to that of acid phosphatase, but not to that of pepsinogen. This proteinase-like enzyme activity was also found in rat splenic extract. These results strongly suggest that the proteinase is a lysosomal enzyme. In addition, cathepsin D-like acid proteinase demonstrated an in vitro transition of molecular species during storage at -30 degrees C. Although this molecular change was distinctive in ion-exchange column chromatography and susceptibility to some enzyme inhibitors, it was not accompanied by a significant decrease in molecular weight. To compare cathepsin D-like acid proteinase with ordinary cathepsin D, gastric cathepsin D was newly purified to apparent homogeneity in polyacrylamide gel electrophoresis. Its biochemical properties demonstrate that this is a true cathepsin D in rat gastric mucosa. Moreover, this cathepsin D activity was not abolished by treatment with antiserum specific to cathepsin D-like acid proteinase or pepsinogen. From these results, we can conclude that the proteinase is a lysosomal acid proteinase different from newly purified gastric cathepsin D.  相似文献   

12.
We have reinvestigated the recent proposal that the multicatalytic proteinase, together with other components of reticulocyte lysate, may become incorporated into a very large, "26 S" proteinase complex via an ATP-dependent process. Different from these published results, we consistently isolate the multicatalytic proteinase as a 650,000 Da "20 S" multisubunit proteinase. Analysis on nondenaturing polyacrylamide gels of reticulocyte fractions containing the putative complexed form of the multicatalytic proteinase reveal that activity against succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin is associated with two groups of protein of different molecular mass. One migrates like multicatalytic proteinase purified to homogeneity, displays, on sodium dodecyl sulfate gels, a set of protein species in the range of 23,000-32,000 Da, characteristic of the multicatalytic proteinase, and is recognized by a monospecific antibody to the enzyme. In contrast, the activity associated with the higher molecular mass (26 S) proteinase complex lacks the typical multicatalytic proteinase subunits and is devoid of antigenic material, when tested with the antibody. These results confirm and extend our recent findings in mouse liver by showing that the multicatalytic proteinase is not a constituent of a 26 S proteinase complex.  相似文献   

13.
Incubation of a crude yeast extract containing phosphofructokinase with proteinase A, proteinase B or carboxypeptidase Y gave the following results: Proteinase B and carboxypeptidase Y did not change the activity of phosphofructokinase during incubation. On the other hand, incubation with proteinase A resulted in a 40-100% activation; continued incubation, however, led to an inactivation of the enzyme. Addition of allosteric effectors did not change the activation or inactivation process. The activated phosphofructokinase was not changed with respect to pH optimum and ATP inhibition. Molecular weight determination of phosphofructokinase in crude extracts in the presence of inhibitors of proteinase A indicated a molecular weight of 700000. Without inhibitors of proteinase A, the molecular weight was determined to be 600 000, while after 40-100% activation by proteinase A, a molecular weight of 500 000 was obtained. The activity profile of proteinase A in density gradients indicated that this enzyme is bound to variety of cellular proteins.  相似文献   

14.
Atrial granule serine proteinase is considered the leading candidate endoproteolytic processing enzyme of pro-atrial natriuretic factor. Its cleavage specificity is directed toward a monobasic amino acid processing site, and as such, the atrial enzyme is distinguished from the family of prohormone convertases which act at dibasic amino acid processing sites. To delineate the molecular mechanisms which distinguish monobasic from dibasic amino acid-directed processing enzymes, pure atrial enzyme is needed for sequence determination leading to molecular cloning, and for preparation of antisera. An affinity chromatography purification scheme seemed a logical modification of our established procedures to yield suitable amounts of enzyme for further studies. Surprisingly, pseudo-peptide bond inhibitors of the atrial enzyme [Damodaran and Harris (1995),J. Protein Chem., this issue] formed ineffective affinity ligands, even though these compounds contain essential residues on either side of what would be the scissile bond in a peptide substrate. On the other hand, tripeptide aldehydes (based on the substrate recognition sequence of the atrial enzyme) linked to Sepharose formed effective affinity matrices, permitting purification of the enzyme in a single step from a subcellular fraction enriched for atrial granules and lysosomes. Hence, the enzyme was purified 2000-fold in 90% overall yield, and subjected to N-terminal sequence analysis through 26 residues. The sequence determined, XXPEAAGLPG[R, L]GNPVP[F, G]R[Q, I]XY[G, E]XR(N, A]V, indicates that the atrial enzyme is unique, showing little sequence homology to other proteins in the database.Abbreviations AGSP atrial granule serine proteinase - ANF atrial natriuretic factor - BSA bovine serum albumin - Bz benzoyl - EACA 6()-aminocaproic acid - HEPES N-2-hydroxyethylpiperazine-N'-propanesulfonic acid - HPLC high-performance liquid chromatography - PEG polyethylene glycol-3350 - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Single-letter abbreviations are used to denote amino acids  相似文献   

15.
The extracellular proteinase produced by a depressed strain of Serratia marcescens ATCC 25419 was purified and characterized. This produces more than 10-times the amount of extracellular proteinase produced by other strains of Serratia tested. The purified enzyme was prepared from the culture supernatant by (NH4)2SO4 fractionation and DEAE-cellulose chromatography. The purified enzyme has an so20,w of 3.95 and is a monomer of molecular weight 51,900. The proteinase has a broad pH optimum in the alkaline range with a maximum at pH 9.5. The enzyme will utilize a number of proteins as substrate. The products of digestion are primarily in the size range of tripeptides to hexapeptides. Peptides containing a sensitive bond and a minimum size of size amino acids are hydrolyzed. The proteinase is inhibited by chelating agents but unaffected by sulfhydryl or serine reagents and is devoid of esterase activity.  相似文献   

16.
  • 1.1. Two proteinases have been identified in yolk granules of Nereis diversicolor mature oocytes, an aminopeptidase and an acid cysteine proteinase.
  • 2.2. The aminopeptidase was identified as a metallo-enzyme having a molecular weight of about 260 kDa.
  • 3.3. Except that the acid cysteine proteinase is a high molecular weight protein (200 kDa) and has a very low pH optimum (3.0), the enzyme possesses properties resembling those of mammalian cathepsin L.
  • 4.4. The cathepsin L-like proteinase was found to be liable to the in vitro proteolysis of the yolk granule proteins and is therefore suggested to be involved in yolk protein processing.
  相似文献   

17.
Extracellular proteases secreted by the filamentous fungus Trichoderma harzianum have been identified. A proteinase active towards Z-Ala-Ala-Leu-pNa--the substrate of subtilisin-like proteases--dominated in the culture medium. This proteinase is synthesized de novo in response to addition of a protein substrate to the medium. Changing the carbohydrate in the culture medium changed the quantitative and qualitative spectrum of secreted enzymes. The most active extracellular proteinase of Trichoderma harzianum was purified 322-foldfrom the culture medium and obtained with a yield of 7.2%. The molecular mass of this proteinase is 73 kD and its pI is 5.35. The isolated enzyme has two distinct activity maxima, at pH 7.5 and 10.0, and is stable in the pH range 6.0-11.0. The temperature optimum for enzyme activity is 40 degrees C at pH 8. 0. The proteinase is stable up to 45-50 degrees C (depending on the substrate used). Calcium ions stabilized the enzyme at 55-60 degrees C. According to data on the study of functional groups of the active center and substrate specificity, the enzyme isolated from the culture medium of Trichoderma harzianum is a subtilisin-like serine proteinase.  相似文献   

18.
A proteinase which can activate human, dog and rat plasminogen to plasmin has been isolated from the urine of female rats, using affinity chromatography on benzamidine-coupled Sepharose. Inhibition by diisopropylfluorophosphate, tosyl-L-lysine chloromethylketone and benzamidine classified the enzyme as trypsin-like. The proteinase has weak activity on alpha-casein and hemoglobin, but will not lyse fibrin clots. It readily cleaves arginyl amides, including synthetic substrates specific for human glandular kallikrein and other serine proteinases. A chromogenic substrate for human urokinase (pyro Glu-Gly-Arg-pNA) is a poor substrate for the rat proteinase. Characteristics of the enzyme, such as its molecular weight (25 900), kinetic parameters and inhibition by aprotinin, indicate that this proteinase is esterase A, described by several investigators. Esterase A is shown not to be a true urinary plasminogen activator but rather is a unique arginine-specific proteinase. Urokinase-like and kallikrein-like activity are part of a broader proteolytic activity displayed by this enzyme.  相似文献   

19.
Human cathepsin G is a serine proteinase with chymotrypsin-like specificity found in both polymorphonuclear leukocytes (neutrophils) and the U937 leukemic cell line. Utilizing RNA from the latter, we have constructed a cDNA library in lambda gt11 and isolated a clone which apparently codes for the complete amino acid sequence of this enzyme. Analysis of the sequence reveals homology with rat mast cell proteinase II (47%) but a greater degree of identity (56%) with a product of activated mouse cytotoxic T lymphocytes. The close relationship between the three proteins indicates similarities in substrate specificity and in biosynthesis which we predict involves removal of a two amino acid activation peptide during or just before packaging into their respective storage granules.  相似文献   

20.
Micrococcus sp. INIA 528, a micro-organism isolated from raw ewe's milk Manchego cheese, produced an extracellular proteinase. This enzyme was purified to homogeneity from culture supernatant fluid in two chromatographic steps, with a 29-fold increase of specific activity and a 28% recovery of proteinase activity. The homogeneous protein was characterized biochemically. The molecular weight of the enzyme was determined to be 19.4 kDa by mass spectrometry. The purified enzyme was inhibited by E-64, PMSF and iodoacetamide and activated by cysteine, glutathione, dithiothreitol and β-mercaptoethanol. These results suggest that the enzyme is a cysteine proteinase. Optimal conditions for activity on azocasein were 34°C and a pH of 7.0. The proteinase preferentially degraded β-casein, while after a longer incubation period αs1-casein was also extensively hydrolysed. The proteinase had a K m value of 6.12 g 1−1 for casein and 2.20 g 1−1 for azocasein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号