共查询到20条相似文献,搜索用时 9 毫秒
1.
Miransari M 《Applied microbiology and biotechnology》2011,89(4):917-930
The soil environment is interesting and complicated. There are so many interactions taking place in the soil, which determine
the properties of soil as a medium for the growth and activities of plants and soil microorganisms. The soil fungi, arbuscular
mycorrhiza (AM), are in mutual and beneficial symbiosis with most of the terrestrial plants. AM fungi are continuously interactive
with a wide range of soil microorganisms including nonbacterial soil microorganisms, plant growth promoting rhizobacteria,
mycorrhiza helper bacteria and deleterious bacteria. Their interactions can have important implications in agriculture. There
are some interesting interactions between the AM fungi and soil bacteria including the binding of soil bacteria to the fungal
spore, the injection of molecules by bacteria into the fungal spore, the production of volatiles by bacteria and the degradation
of fungal cellular wall. Such mechanisms can affect the expression of genes in AM fungi and hence their performance and ecosystem
productivity. Hence, consideration of such interactive behavior is of significance. In this review, some of the most important
findings regarding the interactions between AM fungi and soil bacteria with some new insights for future research are presented. 相似文献
2.
Relationship between mycorrhizal fungi and functional traits in absorption roots: research progress and synthesis 下载免费PDF全文
《植物生态学报》2013,37(11):1035
吸收根(absorption root)一般是指根枝系统末端少数几级具有初生结构、负责物质吸收的根。吸收根功能性状被广泛用于评价和预测植物个体到生态系统水平上的一系列功能和过程。菌根真菌侵染是吸收根的一个关键性状, 它可以深刻影响吸收根的形态、结构, 以及功能性状之间的关系。该文针对与吸收功能密切相关的菌根真菌与根毛和根直径之间的关系进行了研究综述, 提出了真菌侵染、根毛和化学防御之间关系的一个假说; 探讨了温带和热带不同类型的吸收根如何通过菌根真菌影响根的功能性状, 从而适应不同的水热条件、养分状况和能量消耗; 提出一些需要关注的议题和研究方向, 以期为菌根真菌与吸收根功能性状之间关系的研究提供借鉴。 相似文献
3.
Relationship between genotype and soil environment during colonization of poplar roots by mycorrhizal and endophytic fungi 总被引:1,自引:0,他引:1
Leszek Karliński Maria Rudawska Barbara Kieliszewska-Rokicka Tomasz Leski 《Mycorrhiza》2010,20(5):315-324
Poplars are among the few tree genera that can develop both ectomycorrhizal (ECM) and arbuscular (AM) associations; however,
variable ratios of ECM/AM in dual mycorrhizal colonizations were observed in the roots of a variety of poplar species and
hybrids. The objective of our study was to analyze the effect of internal and external factors on growth and dual AM and ECM
colonization of poplar roots in three 12–15-year-old common gardens in Poland. We also analyzed the abundance of nonmycorrhizal
fungal endophytes in the poplar roots. The Populus clones comprised black poplars (Populus deltoides and P. deltoides × Populus nigra), balsam poplars (Populus maximowiczii × Populus trichocarpa), and a hybrid of black and balsam poplars (P. deltoides × P. trichocarpa). Of the three sites that we studied, one was located in the vicinity of a copper smelter, where soil was contaminated with
copper and lead. Poplar root tip abundance, mycorrhizal colonization, and soil fungi biomass were lower at this heavily polluted
site. The total mycorrhizal colonization and the ratio of ECM and AM colonization differed among the study sites and according
to soil depth. The influence of Populus genotype was significantly pronounced only within the individual study sites. The contribution of nonmycorrhizal fungal endophytes
differed among the poplar clones and was higher at the polluted site than at the sites free of pollution. Our results indicate
that poplar fine root abundance and AM and ECM symbiosis are influenced by environmental conditions. Further studies of different
site conditions are required to characterize the utility of poplars for purposes such as the phytoremediation of polluted
sites. 相似文献
4.
Summary We have investigated whether direct physical interactions occur between arbuscular mycorrhizal (AM) fungi and plant growth promoting rhizobacteria (PGPRs), some of which are used as biocontrol agents. Attachment of rhizobia and pseudomonads to the spores and fungal mycelium ofGigaspora margarita has been assessed in vitro and visualized by a combination of electron and confocal microscopy. The results showed that both rhizobia and pseudomonads adhere to spores and hyphae of AM fungi germinated under sterile conditions, although the degree of attachment depended upon the strain.Pseudomonas fluorescens strain WCS 365 andRhizobium leguminosarum strains B556 and 3841 were the most effective colonizers. Extracellular material of bacterial origin containing cellulose produced around the attached bacteria may mediate fungal/bacterial interactions. These results suggest that antagonistic and synergistic interactions between AM fungi and rhizosphere bacteria may be mediated by soluble factors or physical contact. They also support the view that AM fungi are a vehicle for the colonization of plant roots by soil rhizobacteria.Abbreviations AM
arbuscular mycorrhiza
- PGPR
plant growth promoting rhizobacteria
- CBH
cellobiohydrolase
- DAPG
2,4-(diacetyl-phloroglucinol
- TY
triptone-yeast
- LB
Lauria-Bertani
Dedicated to Prof. Dr. Dr. h.c. Eberhard Schnepf on the occasion of his retirement 相似文献
5.
Molecular diversity of fungi from ericoid mycorrhizal roots 总被引:6,自引:0,他引:6
In order to investigate the diversity of fungal endophytes in ericoid mycorrhizal roots, about 150 mycelia were isolated from surface-sterilized roots of 10 plants of Calluna vulgaris. Each mycelium was reinoculated to C. vulgaris seedlings under axenic conditions, and the phenotype of the plant-fungus association assessed by light and electron microscopy. Many isolates that were able in vitro to produce typical ericoid mycorrhizae did not form reproductive structures under our culture conditions, whereas others could be identified as belonging to the species Oidiodendron maius. Morphological and molecular analysis of the fungal isolates showed that the root system of a single plant of C. vulgaris is a complex mosaic of several populations of mycorrhizal and non mycorrhizal fungi. PCR-RFLP techniques, used to investigate the mycorrhizal endophytes, revealed up to four groups of fungi with different PCR-RFLP patterns of the ITS ribosomal region from a single plant. Some of the mycorrhizal fungi sharing the same PCR-RFLP pattern showed high degree of genetic polymorphism when analysed with the more sensitive RAPD technique; this technique may prove a useful tool to trace the spread of individual mycorrhizal mycelia, as it has allowed us to identify isolates with identical RAPD fingerprints on different plants. 相似文献
6.
7.
采用传统染色与克隆测序的方法,研究了8年不同施肥(氮磷)梯度对垂穗披碱草根系中丛枝菌根(AM)侵染率和AM真菌群落的影响.结果表明: 随施肥浓度升高, 垂穗披碱草根系单位根长AM总侵染率从67.5%下降至7.3%,丛枝侵染率从5.2%降至0.1%.根系共检测出24个AM真菌分子种,但随着施肥浓度上升,AM真菌的平均物种丰富度从6种下降至2.6种.不同施肥处理对AM真菌群落结构有显著影响,土壤速效磷和根系氮含量与AM真菌群落呈极显著相关.氮磷有效性随施肥梯度逐渐上升,且与AM侵染率和AM真菌物种丰富度呈显著负相关.施高浓度氮磷肥对AM共生体有明显的抑制作用,导致AM真菌物种多样性丧失. 相似文献
8.
Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth 总被引:5,自引:0,他引:5
Arbuscular mycorrhizal (AM) fungi and bacteria can interact synergistically to stimulate plant growth through a range of mechanisms that include improved nutrient acquisition and inhibition of fungal plant pathogens. These interactions may be of crucial importance within sustainable, low-input agricultural cropping systems that rely on biological processes rather than agrochemicals to maintain soil fertility and plant health. Although there are many studies concerning interactions between AM fungi and bacteria, the underlying mechanisms behind these associations are in general not very well understood, and their functional properties still require further experimental confirmation. Future mycorrhizal research should therefore strive towards an improved understanding of the functional mechanisms behind such microbial interactions, so that optimized combinations of microorganisms can be applied as effective inoculants within sustainable crop production systems. In this context, the present article seeks to review and discuss the current knowledge concerning interactions between AM fungi and plant growth-promoting rhizobacteria, the physical interactions between AM fungi and bacteria, enhancement of phosphorus and nitrogen bioavailability through such interactions, and finally the associations between AM fungi and their bacterial endosymbionts. Overall, this review summarizes what is known to date within the present field, and attempts to identify promising lines of future research. 相似文献
9.
Summary The VA-infected wheat varieties showed an increase of total (Lozano var.) and reducing (Lozano and Pane vars.) sugars in their root extracts. However, no clear relationship between sugar concentration in the root and VA mycorrhizal infection level could be established.In addition, the VA mycorrhizal hosts sorghum, alfalfa, sunflower and maize, and non-host radish and cabbage plants were tested for sugar content in their root extracts after fifteen days of growth. Sugars present in the root extracts of these plants did not seem to be a decisive factor in plant susceptibility to VA infection. 相似文献
10.
在农业生态系统中,土壤微生物是土壤-作物系统养分循环的重要驱动力,其中丛枝菌根真菌(Arbuscularmycorrhizalfungi,AMF)能够促进作物对养分的吸收,适应逆境胁迫。【目的】进一步揭示AMF和根际细菌群落的跨界网络互作,挖掘与作物氮磷利用显著相关的关键微生物类群,揭示关键类群的生态网络特征。【方法】利用Illumina测序技术对3种典型农田旱地土壤(黑土、潮土和红壤)中AMF和根际细菌群落结构进行分析;构建互作网络并利用偏冗余分析、相关性分析探究了与氮磷利用相关的潜在关键类群。【结果】3种土壤中AMF与根际细菌均以正相互作用为主。不同土壤中AMF与根际细菌互作关系差异明显,在红壤中跨界互作最为密切,其中球囊霉属真菌(Glomus)与根际细菌中的放线菌(Actinobacteria)和变形菌(Proteobacteria)之间的交互作用最多。而在黑土中主要体现为根际细菌的界内互作。与氮磷利用率显著相关的关键微生物类群主要属于球囊霉属真菌、放线菌和α变形菌。【结论】典型旱地土壤中AMF与根际细菌的正相互关系对作物氮磷利用有潜在促进作用,关键类群在有机质和养分贫乏的红壤中可能起到更重要的作用。 相似文献
11.
Garcia-Garrido JM Tribak M Rejon-Palomares A Ocampo JA Garcia-Romera I 《Journal of experimental botany》2000,51(349):1443-1448
The production of hydrolytic enzymes from external mycelia associated with roots and colonized soybean roots (Glycine max L.) inoculated with different arbuscular-mycorrhizal (AM) fungi of the genus GLOMUS:, and the possible relationship between these activities and the capacity of the AM fungi to colonize plant roots was studied. There were differences in root colonization and plant growth between the GLOMUS: strains, and also between two isolates of G. mosseae. Hydrolytic activities in the root and external mycelia associated with roots differed in the AM fungi tested. Correlations were only found between the endoxyloglucanase activity of the external mycelia associated with roots of the AM fungi tested and the percentage root colonization or plant growth. However, hydrolytic activities of roots colonized by the different endophytes correlated with those of external mycelia. The hydrolytic activities were not qualitatively different because the endoxyloglucanase from AM colonized roots and the external mycelia did not show a high degree of polymorphism in the different species of fungus tested. The possible role of the hydrolytic activity of external hyphae of AM fungi was discussed as a factor affecting fungal ability to colonize the root and influence plant growth. 相似文献
12.
We investigated whether arbuscular mycorrhizal fungal (AMF) communities in plant roots are random subsets of the local taxon pool or whether they reflect the action of certain community assembly rules. We studied AMF small subunit rRNA gene sequence groups in the roots of plant individuals belonging to 11 temperate forest understorey species. Empirical data were compared with null models assuming random association. Distinct fungal species pools were present in young and old successional forest. In both forest types, the richness of plant-AMF associations was lower than expected by chance, indicating a degree of partner selectivity. AMF communities were generally not characteristic of individual plant species, but those associated with ecological groups of plant species - habitat generalists and forest specialists - were nonrandom subsets of the available pool of fungal taxa and differed significantly from each other. Moreover, these AMF communities were the least distinctive in spring, but developed later in the season. Comparison with a global database showed that generalist plants tend to associate with generalist AMF. Thus, the habitat range of the host and a possible interaction with season played a role in the assembly of AMF communities in individual plant root systems. 相似文献
13.
14.
The inoculation of mycorrhizal maize plants with three isolates of microaerophilic diazotrophic bacteria obtained from the
mycelium of arbuscular mycorrhizal fungi associated with three grasses (Arrhenatherum elatius - bacterial isolate ARR, Agropyrum
repens - isolate AGR and Poa annua - isolate POA) caused no increase in nitrogen content in plant biomass. The inoculation
with bacterial isolate ARR resulted in the decreased plant growth. Bacterial isolate AGR decreased the percentage of the root
length colonized by arbuscular mycorrhizal fungus Glomus fistulosum. The inoculation with both mycorrhizal fungus and isolate
POA increased significantly the concentration of phosphorus in plant shoots compared to uninoculated control.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
15.
Summary The vesicular-arbuscular mycorrhizal (VAM) fungus,Glomus versiforme increased significantly the growth ofAsparagus officinalis under controlled conditions using Turface as the growth medium. The growth responses, including increases in root fresh weight, numbers of shoots, shoot dry weight, and shoot height follow a pattern similar to other mycorrhizal systems. Indigenous VAM fungi appeared to have negative effects on average shoot fresh and dry weight, number of shoots per pot and average shoot height on one year oldA. officinalis seedlings obtained from the field and grown under controlled conditions. These results may be due either to the high levels of soluble phosphate present in the soil or the ineffectiveness of the particular indigenous fungi as mycorrhizal fungi in asparagus. Indigenous mycorrhizal fungi overwinter in asparagus root crown as vesicles and as external and internal hyphae. Soil obtained from the same fields as the one year old crowns was a good source of mycorrhizal inoculum for sterile seedlings. 相似文献
16.
采用盆栽方法研究了增氮条件下丛枝菌根真菌(AMF)对无芒稗(Echinochloa crusgallivar.mitis L.)和陆稻(Oryza sativa L.)相互作用的调节.结果表明:在单种条件下,无芒稗的菌根侵染率增加,陆稻的菌根侵染率降低;无AMF和接种AMF处理陆稻的生物量分别提高13.48%和42.35%,总磷吸收分别提高2.55%和4.07%,总氮吸收分别提高62.09%和30.35%;无芒稗的生物量分别提高15.65%和20.24%,总磷吸收分别提高4.06%和3.88%,总氮吸收分别提高30.35%和15.10%.在混种条件下,无芒稗的菌根侵染率增加,而陆稻无显著变化;无AMF和接种AMF的无芒稗与陆稻的生物量比值降低,总氮吸收比值无显著变化,无AMF处理的总磷吸收比值增加,而接种AMF处理降低.表明增氮条件下AMF提高了无芒稗对陆稻的竞争. 相似文献
17.
Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing 总被引:1,自引:0,他引:1
Dumbrell AJ Ashton PD Aziz N Feng G Nelson M Dytham C Fitter AH Helgason T 《The New phytologist》2011,190(3):794-804
? Understanding the dynamics of rhizosphere microbial communities is essential for predicting future ecosystem function, yet most research focuses on either spatial or temporal processes, ignoring combined spatio-temporal effects. ? Using pyrosequencing, we examined the spatio-temporal dynamics of a functionally important community of rhizosphere microbes, the arbuscular mycorrhizal (AM) fungi. We sampled AM fungi from plant roots growing in a temperate grassland in a spatially explicit manner throughout a year. ? Ordination analysis of the AM fungal assemblages revealed significant temporal changes in composition and structure. Alpha and beta diversity tended to be negatively correlated with the climate variables temperature and sunshine hours. Higher alpha diversity during colder periods probably reflects more even competitive interactions among AM fungal species under limited carbon availability, a conclusion supported by analysis of beta diversity which highlights how resource limitation may change localized spatial dynamics. ? Results reveal distinct AM fungal assemblages in winter and summer at this grassland site. A seasonally changing supply of host-plant carbon, reflecting changes in temperature and sunshine hours, may be the driving force in regulating the temporal dynamics of AM fungal communities. Climate change effects on seasonal temperatures may therefore substantially alter future AM fungal community dynamics and ecosystem functioning. 相似文献
18.
Naoya Takeda Yoshihiro Handa Syusaku Tsuzuki Mikiko Kojima Hitoshi Sakakibara Masayoshi Kawaguchi 《Plant signaling & behavior》2015,10(6)
Arbuscular mycorrhiza (AM) is established by the entry of AM fungi into the host plant roots and the formation of symbiotic structures called arbuscules. The host plant supplies photosynthetic products to the AM fungi, which in return provide phosphate and other minerals to the host through the arbuscules. Both partners gain great advantages from this symbiotic interaction, and both regulate AM development. Our recent work revealed that gibberellic acids (GAs) are required for AM development in the legume Lotus japonicus. GA signaling interact with symbiosis signaling pathways, directing AM fungal colonization in host roots. Expression analysis showed that genes for GA biosynthesis and metabolism were induced in host roots around AM fungal hyphae, suggesting that the GA signaling changes with both location and time during AM development. The fluctuating GA concentrations sometimes positively and sometimes negatively affect the expression of AM-induced genes that regulate AM fungal infection and colonization. 相似文献
19.
20.
Root-soil cores were collected from forage grasses growing in a subtropical region of Texas and tested for acetylene reduction activity. The population density of nitrogen-fixing bacteria was measured, using various media and incubation conditions. Bacteria were confirmed as nitrogen fixing, using the acetylene reduction assay, and were classified according to standard biochemical and cultural methods. The majority of the nitrogen-fixing bacteria isolated from roots were Enterobacter cloacae or Klebsiella pneumoniae. Root-associated, nitrogen-fixing bacteria were isolated from 21 of 24 root-soil cores. The population densities of nitrogen-fixing bacteria ranged from approximately 10 to 3 x 10 per g of root. Population density on roots was significantly correlated with the rate of acetylene reduction but the relationship was not linear. 相似文献