首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
This study describes the development of a new colorimetric assay to determine aromatic amino acid aminotransferase (ArAT) activity. The assay is based on the transamination of l-tryptophan in the presence of 2-oxoglutarate, which yields indole-3-pyruvate (IPyA). The amount of IPyA formed was quantified by reaction with the Salkowski reagent. Optimized assay conditions are presented for ArAT isozymes isolated from Pseudomonas putida. For comparative purposes, ArAT activity was also determined by high-performance liquid chromatography. ArAT activity staining in polyacrylamide gels with the Salkowski reagent is also presented.  相似文献   

2.
Metabolites of tryptophan were investigated using 2 systems: a bacterial (Peastem homogenates containing the epiphytic bacteria) and a plant system (pea stem sections under sterile conditions). The plant system produces: indolepyruvic acid (IPyA), indoleacetaldehyde (IAAld) indoleacetic acid (IAA), indoleethanol (tryptophol, IAAol), indolecarboxylie acid (ICA), indolecarboxaldehyde (ICAld). Bacteria produce additionally: indoleactic acid (ILA), tryptamine (TNH2) and the unknown Xb and Yb, but IAAld was not detected. A nonacidic inhibitor extract from pea stems decreases the gain of IAA, IPyA, ILA, Yb. It increases the gain of IAAld, IAAol, TNH2, Xb, and (only in the bacterial system) ICA and ICAld. Three sites of inhibitor action are suggested, namely the steps Try → IPyA, TNH2→ IAAld, IAAld → IAA.  相似文献   

3.
Indole-3-lactic acid (ILA) is a naturally occurring indole derivative, preferably detected in soil bacteria and fungi and only in low amounts in plants. T-DNA gene 5 of Agrobacterium tumefaciens was found to be involved in the synthesis of ILA in transformed plant tissues, but the physiologic relevance for ILA production in plants is unclear. The related molecular structure of ILA to the natural auxin indole-3-acetic acid (IAA) makes ILA a good candidate for an auxin analogue. We examined the possible auxin activity of ILA on elongation, proliferation, and differentiation in Pisum sativum L. Results presented in this paper indicate that there are no or only weak effects of ILA toward the activity of auxins when used in the physiologic concentration range. Furthermore, no antagonistic effects of ILA were found. Biochemical analysis using the equilibrium dialysis binding system resulted in no high affinity ILA binding to an enriched protein fraction containing auxin-binding protein (ABP44), whereas 1-naphthaleneacetic acid exhibited high affinity auxin binding.Abbreviations IAA indoleacetic acid - ILA indole-3-lactic acid - T-DNA transferred DNA - ABP auxin-binding protein - NAA naphthaleneacetic acid - MS Murashige and Skoog - MES 2-(N-morpholino)ethanesulfonic acid - BAP 6-benzylaminopurine  相似文献   

4.
Summary Among the indole compounds formed when tryptophan 2-14C is metabolized by Rhizobium, indole-3-lactic acid (ILA) is specially studied. In the course of experiments carried out in the culture medium of growing Rhizobium and in suspensions of washed bacterial cells the amount of ILA formed is compared with that of indole-3-acetic acid (IAA) occurring simulataneously. The formation of ILA and that of IAA directly depend on a transamination reaction. A large quantity of ILA is present in suspensions of washed bacterial cells.When ILA alone, as precursor, is incubated with Rhizobium, several products are identified: IAA, indole-3-acetaldehyde and tryptophol. Tryptophan is also detected in the aqueous fraction and is labelled when ILA 2-14C is used. The pathway of this metabolism are discussed and a general scheme is suggested.  相似文献   

5.
Summary Although indole-3-acetic acid (IAA) is a well-known plant hormone, the main IAA biosynthetic pathway from l-tryptophan (Trp) via indole-3-pyruvic acid (IPyA) has yet to be elucidated. Previous studies have suggested that IAA is produced by Enterobacter cloacae isolated from the rhizosphere of cucumbers and its biosynthetic pathway may possibly be the same as that in plants. To elucidate this pathway, the IAA biosynthetic gene was isolated from a genomic library of E. cloacae by assaying for the ability to convert Trp to IAA. DNA sequence analysis showed that this gene codes for only one enzyme and its predicted protein sequence has extensive homology with pyruvate decarboxylase in yeast and Zymomonas mobilis. Cell-free extracts prepared from Escherichia coli harboring this gene could convert IPyA to indole-3-acetaldehyde (IAAld). These results clearly show that this pathway is mediated only by indolepyruvate decarboxylase, which catalyzes the conversion of IPyA to IAAld.  相似文献   

6.
Indole compounds secreted byFrankia sp. HFPArI3 in defined culture medium were identified with gas chromatography-mass spectrometry (GC-MS). WhenFrankia was grown in the presence of13C(ring-labelled)-L-tryptophan,13C-labelled indole-3-acetic acid (IAA), indole-3-ethanol (IEtOH), indole-3-lactic acid (ILA), and indole-3-methanol (IMeOH) were identified.High performance liquid chromatography (HPLC) and GC-MS with selected ion monitoring were used to quantify levels of IAA and IEtOH inFrankia culture medium. IEtOH was present in greater abundance than IAA in every experiment. When no exogenous trp was supplied, no or only low levels of indole compounds were detected.Seedling roots ofAlnus rubra incubated in axenic conditions in the presence of indole-3-ethanol formed more lateral roots than untreated plants, indicating that IEtOH is utilized by the host plant, with physiological effects that modify patterns of root primordium initiation.  相似文献   

7.
Brassinosteroid, an analogue of brassinolide, (BR) (2α, 3α, 22β, 23β-tetrahydroxy-24β-methyl-B-homo-7-oxa-5α-cholestan-6-one), was tested in conjunction with indole-3-acetic acid (IAA), naphthaleneacetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), indole-3-butyric acid (IBA), indole-3-propionic acid (IPA), indole-3-pyruvic acid (IPyA), indole-3-aldehyde (IAld), indole-3-carbinol (ICB) or tryptophan (TRP) for its effects on ethylene production by etiolated mung bean (Vigna radiata (L.) Rwilcz cv. Berken) hypocotyl segements. The enhancement of ethylene production due to BR was greatest in conjunction with 1 μM IBA, 2,4-D, IAA, or NAA (these increases were 2580, 2070, 890, and 300%, respectively). When increasing concentrations of IBA, 2,4-D, IAA, or NAA were used, there was a decrease in the percentage stimulation by BR. Both IPyA and IPA had different optimal concentrations than the other auxins tested. Their BR-enhanced maximum percentage stimulations (1430 and 1580%) were greatest with 5 μM IPya and 10 μM IPA, respectively. There was a marked reduction in the percentage stimulation by BR with either 100 μM IPyA or IPA. The inactive indoles (IAld, ICB, or TRP) did not synergize with BR at any of the concentrations tested. Four hours following treatment those segments in contact with 1 μM BR with or without the addition of 10 μM IAA began to show a stimulation in ethylene production above the control and this stimulation became greater over the following 20 h. It was necessary for BR to be in continual contact with the tissue to have a stimulatory effect on auxin-induced ethylene production. When segments excised from greater distances below the hypocotyl hook, were treated with either IAA alone or in combination with BR, there was a decrease in ethylene production with increasing distance. There was no effect of hypocotyl length on BR stimulation of auxin-induced ethylene production; however, there was a definite decrease in ethylene production when IAA was applied alone.  相似文献   

8.
The effect of morphactin (methyl-2-chloro-9-hydroxyfluorene-9-carboxylate) on the content of several plant growth substances in bean roots was determined. Beans (Phaseolus vulgaris L. cv. Spartan) were soaked in aqueous solutions of morphactin, 1 x 10-4, 1 x 10-5, and 1 x 10-6M and grown in moist vermiculite. As controls were used beans grown in water-moistened vermiculite either intact or having the root tips removed (decapped). The roots, morphactin-treated, controls, and the decapped ones were analyzed for indol-3-yl acetic acid (IAA), indol-3-yl acrylic acid (IAcA), indol-3-yl pyruvic acid (IPyA), indol-3-yl lactic acid (1LA), abscisic acid (ABA), gibberellins GA1, GA3, GA4, and GA9 using gas-liquid chromatographic methods. Morphactin, while affecting the geotropical responses, changed also the growth substance content of roots. IAA, ABA, GA1, and GA9 contents decreased, IPyA, IAeA, GA3, and GA4 contents were not affected and ILA content increased slightly with increasing dosages of morphactin. Growth substance pattern of decapped roots resembled that of the roots treated with the highest dose, 1 x 10-4M, of morphactin.  相似文献   

9.
Indole-3-acetaldehyde (IAAId) was detected in the culture supernatantof Bradyrhizobium elkanii. Deuteriumlabelled L-tryptophan (Trp)was incorporated into IAAId and indole-3-acetic acid (IAA),suggesting that B. elkanii produces IAA via IAAId from Trp.In B. elkanii cell suspension, indole-3-pyruvic acid (IPyA)was converted to IAAId, and exogenously added IAAId was rapidlyconverted to IAA. Furthermore, the activity of indolepyruvatedecarboxylase (IPDC), which catalyzes the decarboxylation ofIPyA to produce IAAId and is a key enzyme for IPyA pathway,was detected in B. elkanii cell-free extract. The IPDC activitydepended on Mg2+ and thiamine pyrophosphate, cofactors of decarboxylation.This mounting evidence strongly suggests that IAA synthesisoccurs via IPyA pathway (Trp IPyA p IAAId IAA) in B. elkanii. (Received December 11, 1995; Accepted March 4, 1996)  相似文献   

10.
11.
Phytohormone indole-3-acetic acid (IAA) plays a vital role in regulating plant growth and development. Tryptophan-dependent IAA biosynthesis participates in IAA homeostasis by producing IAA via two sequential reactions, which involve a conversion of tryptophan to indole-3-pyruvic acid (IPyA) by tryptophan aminotransferase (TAA1) followed by the irreversible formation of IAA in the second reaction. Pad-1 from Solanaceae plants regulates IAA levels by catalyzing a reverse reaction of the first step of IAA biosynthesis. Pad-1 is a pyridoxal phosphate (PLP)-dependent aminotransferase, with IPyA as the amino acceptor and l-glutamine as the amino donor. Currently, the structural and functional basis for the substrate specificity of Pad-1 remains poorly understood. In this study, we carried out structural and kinetic analyses of Pad-1 from Solanum melongena. Pad-1 is a homodimeric enzyme, with coenzyme PLP present between a central large α/β domain and a protruding small domain. The active site of Pad-1 includes a vacancy near the phosphate group (P-side) and the 3′-O (O-side) of PLP. These features are distinct from those of TAA1, which is homologous in an overall structure with Pad-1 but includes only the P-side region in the active site. Kinetic analysis suggests that P-side residues constitute a binding pocket for l-glutamine, and O-side residues of Phe124 and Ile350 are involved in the binding of IPyA. These studies illuminate distinct differences in the active site between Pad-1 and TAA1, and provide structural and functional insights into the substrate specificity of Pad-1.  相似文献   

12.
Traditionally, schemes depicting auxin biosynthesis in plants have been notoriously complex. They have involved up to four possible pathways by which the amino acid tryptophan might be converted to the main active auxin, indole-3-acetic acid (IAA), while another pathway was suggested to bypass tryptophan altogether. It was also postulated that different plants use different pathways, further adding to the complexity. In 2011, however, it was suggested that one of the four tryptophan-dependent pathways, via indole-3-pyruvic acid (IPyA), is the main pathway in Arabidopsis thaliana,1 although concurrent operation of one or more other pathways has not been excluded. We recently showed that, for seeds of Pisum sativum (pea), it is possible to go one step further.2 Our new evidence indicates that the IPyA pathway is the only tryptophan-dependent IAA synthesis pathway operating in pea seeds. We also demonstrated that the main auxin in developing pea seeds, 4-chloroindole-3-acetic acid (4-Cl-IAA), which accumulates to levels far exceeding those of IAA, is synthesized via a chlorinated version of the IPyA pathway.  相似文献   

13.
Auxins are a group of phytohormones that regulate several aspects of plant growth and development. Indole-3-acetic acid (IAA) is the predominant form of auxin in plants and several IAA biosynthetic pathways have been previously proposed but remain genetically uncharacterized. One of the proposed pathways is the indole-3-pyruvic acid (IPyA) pathway, which is inferred to regulate key developmental processes such as apical hook formation and shade avoidance. Recent molecular evidence suggests the existence of the pathway in higher plants but remains unverified due to the elusive nature of IPyA in vitro. Extending on these recent advances, this research was aimed at investigating aspects of IPyA-dependent auxin biology in Pisum sativum (pea) using reverse genetics, expression profiling, and analytical techniques. As a result the genes PsTAR2, PsTAR 5g Mt 80, and PsTAR 5g Mt 90, which are inferred to encode key enzymes in the IPyA pathway, were cloned. On expression analysis PsTAR2 was found to be slightly heightened in response to IPyA-inducing conditions (shade) while IAA levels remained unaltered contrary to previous reports. Moreover, the inferred homologs PsTAR 5g Mt 80 and PsTAR 5g Mt 90 appeared down-regulated in the same conditions suggesting functional divergence in the gene family. Thus, PsTAR2 was thought to be solely responsible for regulating IPyA-dependent auxin synthesis. Consequently, using a reverse genetic approach, called TILLING, the PsTAR2 gene was mutated in order to study the down-stream effects of IPyA deficiency. The procedure is currently underway and in the process of isolating two novel pstar2 (IPyA) mutant lines consisting of a missense mutation (pstar2 4280) and a highly desired knockout mutation (pstar2 918). On completion the novel mutants are anticipated to be indispensable to future IPyA-auxin investigations in higher plants. In light of the unstable nature of IPyA, a protocol has been formulated using UPLC for fractioning followed by MS/MS analysis. This technique appears to be very promising as a robust IPyA detection protocol in plant extracts.  相似文献   

14.
Quantum chemical methods AM1 and PM3 and chromatographic methods were used to qualitatively characterize pathways of bacterial production of indole-3-acetic acid (IAA). The standard free energy changes (delta G(o)'sum) for the synthesis of tryptophan (Trp) from chorismic acid via anthranilic acid and indole were calculated, as were those for several possible pathways for the synthesis of IAA from Trp, namely via indole-3-acetamide (IAM), indole-3-pyruvic acid (IPyA), and indole-3-acetonitrile (IAN). The delta G(o)'sum for Trp synthesis from chorismic acid was -402 (-434) kJ.mol-1 (values in parentheses were calculated by PM3). The delta G(o)'sum for IAA synthesis from Trp were -565 (-548) kJ.mol-1 for the IAN pathway, -481 (-506) kJ.mol-1 for the IAM pathway, and -289 (-306) kJ.mol-1 for the IPyA pathway. By HPLC analysis, the possibility was assessed that indole, anthranilic acid, and Trp might be utilized as precursors for IAA synthesis by Azospirillum brasilense strain Sp 245. The results indicate that there is a high motive force for Trp synthesis from chorismic acid and for IAA synthesis from Trp, and make it unlikely that anthranilic acid and indole act as the precursors to IAA in a Trp-independent pathway.  相似文献   

15.
Abstract The catabolism of indole-3-acetic acid was investigated in chloroplast preparations and a crude enzyme fraction derived from chloroplasts of Pisum sativum seedlings. Data obtained with both systems indicate that indole-3-acetic acid undergoes decarboxylative oxidation in pea chloroplast preparations. An enhanced rate of decarboxylation of [1′-1C]indole-3-acetic acid was obtained when chloroplast preparations were incubated in the light rather than in darkness. Results from control experiments discounted the possibility of this being due to light-induced breakdown of indole-3-acetic acid. High performance liquid chromatography analysis of [2′-14C]indole-3-acetic acid-fed incubates showed that indole-3-methanol was the major catabolite in both the chloroplast and the crude enzyme preparations. The identification of this reaction product was confirmed by gas chromatography-mass spectrometry when [2H5]indole-3-methanol was detected in a purified extract derived from the incubation of an enzyme preparation with 32H5]indole-3-acetic acid.  相似文献   

16.
Indole‐3–acetic acid (IAA), an auxin plant hormone, is biosynthesized from tryptophan. The indole‐3–pyruvic acid (IPyA) pathway, involving the tryptophan aminotransferase TAA1 and YUCCA (YUC) enzymes, was recently found to be a major IAA biosynthetic pathway in Arabidopsis. TAA1 catalyzes the conversion of tryptophan to IPyA, and YUC produces IAA from IPyA. Using a chemical biology approach with maize coleoptiles, we identified 5–(4–chlorophenyl)‐4H‐1,2,4–triazole‐3–thiol (yucasin) as a potent inhibitor of IAA biosynthesis in YUC‐expressing coleoptile tips. Enzymatic analysis of recombinant AtYUC1‐His suggested that yucasin strongly inhibited YUC1‐His activity against the substrate IPyA in a competitive manner. Phenotypic analysis of Arabidopsis YUC1 over‐expression lines (35S::YUC1) demonstrated that yucasin acts in IAA biosynthesis catalyzed by YUC. In addition, 35S::YUC1 seedlings showed resistance to yucasin in terms of root growth. A loss‐of‐function mutant of TAA1, sav3–2, was hypersensitive to yucasin in terms of root growth and hypocotyl elongation of etiolated seedlings. Yucasin combined with the TAA1 inhibitor l –kynurenine acted additively in Arabidopsis seedlings, producing a phenotype similar to yucasin‐treated sav3–2 seedlings, indicating the importance of IAA biosynthesis via the IPyA pathway in root growth and leaf vascular development. The present study showed that yucasin is a potent inhibitor of YUC enzymes that offers an effective tool for analyzing the contribution of IAA biosynthesis via the IPyA pathway to plant development and physiological processes.  相似文献   

17.
Summary 3-Indoleacetic acid (IAA) and 3-indolelactic acid (ILA) have been identified as tryptophan (Trp) catabolites in Azotobacter vinelandii cultures. IAA production depends linearly on initial Trp concentration within the range 0–0.05% Trp, decreases in the presence of 10 mM 2-oxoglutarate and is always smaller than ILA production. Tryptophan aminotransferase activity, found in the cultures, could explain the first step of Trp transformation into IAA. In order to rationalize the formation of ILA, the presence of the enzyme indolelactate dehydrogenase in A. vinelandii is suggested.  相似文献   

18.
Nitrilase (E.C. 3.5.5.1) cloned from Arabidopsis thaliana converts indole-3-acetonitrile to the plant growth hormone, indole-3-acetic acid in vitro. To probe the capacity of this enzyme under physiological conditions in vivo, the cDNA PM255, encoding nitrilase II, was stably integrated into the genome of Nicotiana tabacum by direct protoplast transformation under the control of the CaMV-35S promotor. The regenerated plants appeared phenotypically normal. Nitrilase II was expressed, based on the occurrence of its mRNA and polypeptide. The enzyme was catalytically active, when extracted from leaf tissue of transgenic plants (specific activity: 25 fkat mg?1 protein with indole3-acetonitrile as substrate). This level of activity was lower than that found in A. thaliana, and this was deemed essential for the in vivo analysis. Leaf tissue from the transgenic plants converted 1-[13C]-indole-3-acetonitrile to 1-[13C]-indole-3-acetic acid in vivo as determined by HPLC/ GC-MS analysis. Untransformed tobacco was unable to catalyze this reaction. When transgenic seeds were grown on medium in the absence of indole-3-acetonitrile, germination and seedling growth appeared normal. In the presence of micromolar levels of exogenous indole-3-acetonitrile, a strong auxin-overproducing phenotype developed resulting in increased lateral root formation (at 10 µM indole-3-acetonitrile) or stunted shoot growth, excessive lateral root initiation, inhibition of root out-growth and callus formation at the root/shoot interface (at 100 µM indole-3-acetonitrile). Collectively, these data prove the ability of nitrilase II to convert low micromolar levels of indole-3-acetonitrile to indole-3-acetic acid in vivo, even when expressed at subphysiological levels thereby conferring a high-auxin phenotype upon transgenic plants. Thus, the A. thaliana nitrilase activity, which exceeds that of the transgenic plants, would be sufficient to meet the requirements for auxin biosynthesis in vivo.  相似文献   

19.
Auxin is essential for plant growth and development, this makes it difficult to study the biological function of auxin using auxin‐deficient mutants. Chemical genetics have the potential to overcome this difficulty by temporally reducing the auxin function using inhibitors. Recently, the indole‐3‐pyruvate (IPyA) pathway was suggested to be a major biosynthesis pathway in Arabidopsis thaliana L. for indole‐3‐acetic acid (IAA), the most common member of the auxin family. In this pathway, YUCCA, a flavin‐containing monooxygenase (YUC), catalyzes the last step of conversion from IPyA to IAA. In this study, we screened effective inhibitors, 4‐biphenylboronic acid (BBo) and 4‐phenoxyphenylboronic acid (PPBo), which target YUC. These compounds inhibited the activity of recombinant YUC in vitro, reduced endogenous IAA content, and inhibited primary root elongation and lateral root formation in wild‐type Arabidopsis seedlings. Co‐treatment with IAA reduced the inhibitory effects. Kinetic studies of BBo and PPBo showed that they are competitive inhibitors of the substrate IPyA. Inhibition constants (Ki) of BBo and PPBo were 67 and 56 nm , respectively. In addition, PPBo did not interfere with the auxin response of auxin‐marker genes when it was co‐treated with IAA, suggesting that PPBo is not an inhibitor of auxin sensing or signaling. We propose that these compounds are a class of auxin biosynthesis inhibitors that target YUC. These small molecules are powerful tools for the chemical genetic analysis of auxin function.  相似文献   

20.
For the first time for methylotrophic bacteria an enzyme of phytohormone indole-3-acetic acid (IAA) biosynthesis, indole-3-pyruvate decarboxylase (EC 4.1.1.74), has been found. An open reading frame (ORF) was identified in the genome of facultative methylotroph Methylobacterium extorquens AM1 using BLAST. This ORF encodes thiamine diphosphate-dependent 2-keto acid decarboxylase and has similarity with indole-3-pyruvate decarboxylases, which are key enzymes of IAA biosynthesis. The ORF of the gene, named ipdC, was cloned into overexpression vector pET-22b(+). Recombinant enzyme IpdC was purified from Escherichia coli BL21(DE3) and characterized. The enzyme showed the highest k cat value for benzoylformate, albeit the indolepyruvate was decarboxylated with the highest catalytic efficiency (k cat/K m). The molecular mass of the holoenzyme determined using gel-permeation chromatography corresponds to a 245-kDa homotetramer. An ipdC-knockout mutant of M. extorquens grown in the presence of tryptophan had decreased IAA level (46% of wild type strain). Complementation of the mutation resulted in 6.3-fold increase of IAA concentration in the culture medium compared to that of the mutant strain. Thus involvement of IpdC in IAA biosynthesis in M. extorquens was shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号