首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calmodulin Affinity for Brain Coated Vesicle Proteins   总被引:4,自引:2,他引:2  
A systematic characterization of the affinity of calmodulin for brain coated vesicles was undertaken. Binding of 125I-labeled calmodulin to coated vesicles was saturable and competed with unlabeled calmodulin, but not with troponin-C. Scatchard analysis revealed one high-affinity, low-capacity binding site, KD = 3.9 +/- 0.6 nM, Bmax = 16.3 +/- 2.4 pmol/mg, and one low-affinity, high-capacity binding site, KD = 102 +/- 15.0 nM, Bmax = 151 +/- 23.0 pmol/mg. Radioimmunoassay revealed that coated vesicles contain 1.05 microgram calmodulin/mg protein. Because this value remained constant even after removal of clathrin, the major coat protein, from the coated vesicle, it is apparent that calmodulin is associated with the vesicle per se rather than with its clathrin lattice. When a Triton X-100-treated extract of coated vesicles was passed through a Sepharose 4B-calmodulin affinity column, polypeptides with Mrs (molecular weights) of 100,000, 55,000, and 30,000 bound in a Ca2+-dependent manner. A 30,000 Mr protein doublet purified from coated vesicles was completely eluted by EGTA from the calmodulin affinity column, confirming that this protein doublet represents one of the coated vesicle calmodulin binding sites. Because calmodulin stimulated [Ca2+-Mg2+]-ATPase activity as well as Ca2+ uptake in coated vesicles, it is postulated that the 100,000 and 55,000 Mr calmodulin binding proteins represent the [Ca2+-Mg2+]-ATPase complex, the other coated vesicle calmodulin binding site.  相似文献   

2.
Clathrin-coated vesicles (CVs) were isolated from Saccharomyces cerevisiae by using procedures developed by Mueller and Branton [17]. Triskelions were purified from this material by extraction of CVs to release clathrin and by subsequent fractionation on Sepharose CL-4B. Triskelions were composed of approximately 180,000 Mr heavy chains and a single light-chain type of approximately 38,000 Mr and were able to undergo self-assembly into polyhedral cages. Trypsin digestion of such reassembled cages showed a peptide pattern very similar to that obtained for mammalian clathrin with two fragments of 125,000 and 110,000 Mr, which represent the major portion of the heavy-chain arm, and a polypeptide of approximately 43,000 Mr, which is the presumptive terminal domain. Eight monoclonal antibodies reacting with yeast clathrin heavy chains were produced. All eight bind to the major portion of the heavy-chain arm, and none bind to the terminal domain fragment. Peptide digestion experiments also indicated that at least three major regions on the arm are recognized by these antibodies. These will be useful in further structural and functional studies of clathrin from yeast.  相似文献   

3.
A method has been developed for binding calmodulin, radioiodinated by the lactoperoxidase method, to denaturing gels and has been used to attempt to identify the calmodulin-binding proteins of cerebral cortex postsynaptic densities (PSDs). Calmodulin primarily bound to the major 51,000 Mr protein in a saturatable manner; secondarily bound to the 60,000 Mr region, 140,000 Mr region, and 230,000 Mr protein; and bound in lesser amounts to a number of other proteins. The major 51,000 Mr calmodulin-binding protein is one of unknown identity. Binding of iodinated calmodulin to these proteins was blocked by EDTA, EGTA, chlorpromazine, and preincubation with unlabeled calmodulin. Calmodulin iodinated by the chloramine-T method, which inactivates calmodulin did not bind to the PSD but bound nonspecifically to histone. Calmodulin did not bind to proteins from a variety of sources for which calmodulin interactions have not been found. Except for three proteins, all of the proteins of synaptic membranes that bind calmodulin could be accounted for by proteins of the PSD which are a part of the synaptic membrane fraction. The major 51,000 M, protein and the corresponding iodinated calmodulin binding were greatly reduced in cerebellar PSDs and this difference between cerebral cortex and cerebellar PSDs is discussed in light of the possible function of calmodulin in synaptic excitatory responses.  相似文献   

4.
Acetylcholine receptor enriched membrane fragments were obtained from the electric organs of Torpedo marmorata. The purified membrane fragments contained several proteins in addition to the acetylcholine receptor subunits. One of these was shown to be actin by means of immune blotting with a monoclonal antibody. Brief treatment of the membranes with pH 11.0 buffer removed actin and the other non-receptor proteins including the receptor-associated 43 000 mol. wt. polypeptide. This polypeptide was shown to bind actin after transferring the proteins from one- and two-dimensional polyacrylamide gels to nitrocellulose paper and incubating the nitrocellulose blots with actin. Specifically bound actin was demonstrated using the monoclonal antibodies to actin. No calcium or calmodulin dependency of binding was observed. The findings suggest that the 43 000 mol. wt. polypeptide is a link between the membrane-bound acetylcholine receptor and the cytoskeleton.  相似文献   

5.
Calmodulin-stimulated protein kinase activity from rat pancreas   总被引:8,自引:1,他引:7       下载免费PDF全文
Previous work from our laboratory has demonstrated that neurohumoral stimulation of the exocrine pancreas is associated with the phosphorylation of the Mr 29,000 ribosomal protein S6. In a cell-free system using pancreatic postmicrosomal supernatant as the kinase donor, we found that the following co-factors stimulate the phosphorylation of the Mr 29,000 ribosomal protein: calcium with calmodulin, calcium with phosphatidyl serine, and cAMP. These findings suggest that the pancreas contains a calcium-calmodulin-dependent protein kinase (CaM-PK) that can phosphorylate the Mr 29,000 ribosomal protein. A CaM-PK activity was partially purified sequentially by ion exchange, gel filtration, and calmodulin-affinity chromatography. Phosphorylation of the Mr 29,000 ribosomal protein by the partially purified CaM-PK was dependent on the presence of both calcium and calmodulin and not on the other co- factors. The CaM-PK fraction contained a phosphoprotein of Mr 51,000 whose phosphorylation was also dependent on calcium and calmodulin. When 125I-calmodulin-binding proteins from the CaM-PK fraction were identified using electrophoretic transfers of SDS-polyacrylamide gels, a single Mr 51,000 protein was labeled. The preparation enriched in CaM- PK activity contained an Mr 51,000 protein that underwent phosphorylation in a calcium-calmodulin-dependent manner and an Mr 51,000 calmodulin-binding protein. It is therefore possible that the CaM-PK may comprise a calmodulin-binding phosphoprotein component of Mr 51,000.  相似文献   

6.
The functional domains of the in situ red cell membrane calcium pump were mapped by a double labeling technique. In inside-out vesicles (IOVs) the calcium pump was phosphorylated by [gamma-32P]ATP, the proteins blotted onto nitrocellulose and tagged by monoclonal antibodies raised against the purified pump protein. After proteolytic treatment of the IOVs by trypsin, chymotrypsin, or calpain-I, the fragmentation pattern of the enzyme was followed on the double-labeled immunoblots. The changes in the kinetics of the pump were examined by parallel measurements of the active calcium uptake in IOVs. By analysis of the results of tryptic digestion, it was possible to show that the antibodies recognized three different domains of the pump: 1) a Mr = 10,000-15,000 fragment (not seen directly) which includes the calmodulin-binding domain, 2) a nonphosphorylated Mr = 35,000 tryptic fragment, and 3) a phosphorylated fragment of Mr = 76,000-81,000. Chymotrypsin or calpain-I digestion of the membranes produced one major, Mr = 125,000 fragment, which had lost antibody-binding region 1. Production of this fragment coincided with the loss of calmodulin dependence and with a calmodulin-like activation of IOV calcium uptake (high Vmax, cooperativity in calcium activation). The Mr = 125,000 fragment was further activated by acidic lipids producing high Vmax and low K 1/2 (Ca2+) with no cooperativity. Based on these data a kinetic model and a functional map of the plasma membrane calcium pump is suggested.  相似文献   

7.
Exposure of sarcoplasmic reticulum to trypsin in the presence of 1 M sucrose results in degradation of the Mr = 102,000 ATPase enzyme to two fragments of Mr = 55,000 and 45,000 with subsequent appearance of fragments of Mr = 30,000 and 20,000. These fragments were purified by column chromatography in sodium dodecyl sulfate. Antibodies were raised against the ATPase and the Mr = 55,000, 45,000, and 20,000 fragments. There was no antigenic cross-reactivity between the Mr = 55,000 and 45,000 fragments, indicating that they were derived from a single linear cleavage of the larger enzyme. There was antigenic cross-reactivity between the Mr = 20,000 and 55,000 fragments, indicating an origin of the Mr = 20,000 fragment in the Mr = 55,000 fragment. None of the antibodies inhibited (Ca2+ + Mg2+)-dependent ATPase or Ca2+ transport. The Mr = 20,000 fragment and the Mr = 55,000 fragment were active in Ca2+ ionophore assays. The active site of ATP hydrolysis was labeled with [gamma-32P]ATP and the site of ATP binding was labeled with tritiated N-ethylmaleimide. In both cases radioactivity was found in the intact ATPase and in the Mr = 55,000 and 30,000 fragments, indicating that the Mr = 30,000 fragment was also derived from the Mr = 55,000 fragment. Amino acid composition data showed that the Mr = 45,000 fragment contained about 60% nonpolar and 40% polar amino acids, while the Mr = 55,000 fragment and the Mr = 20,0000 fragment contained about equal amounts of polar and nonpolar amino acids. Studies of the reaction of various antibodies at the external surface of sarcoplasmic reticulum vesicles showed that the ATPase was exposed, whereas calsequestrin and the high affinity Ca2+-binding protein were not. The use of antibodies against the various fragments indicated that the Mr = 55,000 fragment was in large part exposed, whereas the Mr = 20,000 and the 45,000 fragments were only poorly exposed. It is probable that the site of ATP hydrolysis in the Mr = 55,000 fragment is external, whereas the ionophore site is only partially exposed and the Mr = 45,000 fragment is largely buried within the membrane.  相似文献   

8.
The receptor for human interferon-gamma (IFN-gamma) was purified from foreskin fibroblasts. Triton X-100 extracts obtained from either intact cells or membrane preparations were passed through an immobilized interferon-gamma column. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of eluted fractions revealed a major band of Mr = 95,000 and minor bands of Mr = 80,000 and 60,000. Further purification was obtained by steric exclusion and by lectin chromatography. The purified receptor retained the ability to bind 125I-IFN-gamma with a Kd of 2.2 X 10(-10) M, a value close to that obtained with intact fibroblasts (5 X 10(-10) M). A complex of Mr = 105,000-125,000 was visualized by immunoprecipitation of 125I-IFN-gamma cross-linked to the purified receptor followed by SDS-PAGE and autoradiography. A similar complex was obtained when 125I-IFN-gamma was cross-linked to intact cells. Immunization of mice with the excised SDS-PAGE band of Mr = 95,000 elicited antibodies that blocked the antiviral activity of IFN-gamma and immunoprecipitated the cross-linked complex of 125I-IFN-gamma and its receptor.  相似文献   

9.
Mouse alpha-macroglobulin (M-AMG) is believed to be a functional homologue of human alpha 2-macroglobulin (h-alpha 2M). The subunit composition, the tryptic cleavage pattern before and after methylamine incorporation and the two-dimensional tryptic-peptide mapping, however, indicate that these two proteins are structurally distinct. M-AMG is composed of two major types of polypeptides (Mr 163,000 and 35,000) together with a minor polypeptide (Mr 185,000), whereas h-alpha 2M has only one type of polypeptide (Mr 185,000). After incorporation of methylamine, there is no change in the normal tryptic-cleavage pattern of M-AMG; however, tryptic cleavage of h-alpha 2M is severely retarded [Hudson & Koo (1982) Biochim. Biophys. Acta 704, 290-303]. The N-terminal sequence of the 163,000-Mr polypeptide of M-AMG shows sequence homology with the N-terminal sequence of h-alpha 2M. The amino acid compositions of M-AMG and its two major polypeptide chains are compared. Thermal fragmentation studies show that the 163,000-Mr polypeptide is broken down into 125,000-Mr and 29,000-Mr fragments. Trypsin-binding studies show that M-AMG can bind two molecules of trypsin/molecule. Inactivations of the trypsin-binding property of M-AMG and h-alpha 2M with methylamine show similar kinetics of inhibition at 4 degrees C. A structural model of M-AMG is proposed, based on accumulated data.  相似文献   

10.
Calmodulin binding proteins have been found in submitochondrial fractions obtained from highly purified rat liver mitochondria. The matrix fraction contains two major calmodulin binding proteins: one, having Mr of 145,000, apparently is carbamoyl-phosphate synthetase. Another has a Mr of 58,000 and has not been associated with enzyme activities. A major calmodulin binding protein of unknown function and having Mr of 32,000 has been found in the Triton X-100 solubilizate of the inner membrane. Minor amounts of two calmodulin binding proteins having Mr of about 37,000 and 56,000 have been found in the outer membrane.  相似文献   

11.
Calmodulin-dependent protein kinase Type II autophosphorylation in synaptosomes is localized to the cytoskeleton (synaptic junction), while a potent dephosphorylating activity is present in the lipid bilayer. The dephosphorylating activity is operative in intact synaptosomes and in a reconstitution system comprised of the cytoskeletal and Triton X-100 - soluble fractions. Dephosphorylation is inhibited by EDTA and pyrophosphate, but not by EGTA or NaF. The present characterization of endogenous synaptosomal dephosphorylating activity completes the regulatory cycle operating on this enzyme in which phosphorylation of calmodulin-dependent protein kinase type II inhibits its response to Ca+2 and calmodulin.  相似文献   

12.
Functional domain structure of calcineurin A: mapping by limited proteolysis   总被引:15,自引:0,他引:15  
M J Hubbard  C B Klee 《Biochemistry》1989,28(4):1868-1874
Limited proteolysis of calcineurin, the Ca2+/calmodulin-stimulated protein phosphatase, with clostripain is sequential and defines four functional domains in calcineurin A (61 kDa). In the presence of calmodulin, an inhibitory domain located at the carboxyl terminus is rapidly degraded, yielding an Mr 57,000 fragment which retains the ability to bind calmodulin but whose p-nitrophenylphosphatase is fully active in the absence of Ca2+ and no longer stimulated by calmodulin. Subsequent cleavage(s), near the amino terminus, yield(s) an Mr 55,000 fragment which has lost more than 80% of the enzymatic activity. A third, slower, proteolytic cleavage in the carboxyl-terminal half of the protein converts the Mr 55,000 fragment to an Mr 42,000 polypeptide which contains the calcineurin B binding domain and an Mr 14,000 fragment which binds calmodulin in a Ca2+-dependent manner with high affinity. In the absence of calmodulin, clostripain rapidly severs both the calmodulin-binding and the inhibitory domains. The catalytic domain is preserved, and the activity of the proteolyzed 43-kDa enzyme is increased 10-fold in the absence of Ca2+ and 40-fold in its presence. The calcineurin B binding domain and calcineurin B appear unaffected by proteolysis both in the presence and in the absence of calmodulin. Thus, calcineurin A is organized into functionally distinct domains connected by proteolytically sensitive hinge regions. The catalytic, inhibitory, and calmodulin-binding domains are readily removed from the protease-resistant core, which contains the calcineurin B binding domain. Calmodulin stimulation of calcineurin is dependent on intact inhibitory and calmodulin-binding domains, but the degraded enzyme lacking these domains is still regulated by Ca2+.  相似文献   

13.
Plasma membranes were purified from purely cholinergic nerve endings (synaptosomes) isolated from the electric organ of Torpedo marmorata. Synaptosomes were lysed, membranes recovered and further separated by density gradient centrifugation. A fraction was obtained enriched in 5'-nucleotidase, Na+, K+-activated ATPase and acetylcholine esterase. Morphological examination showed abundant membrane fragments of the size range of synaptosomes and few of vesicle size. The fraction has a characteristic protein composition upon gel electrophoresis. Five reproducible major bands with apparent Mr of 100000, 75000, 52000, 42000 and 35000--33000 are found. A gel-electrophoretic comparison with proteins from synaptic vesicles from the same source (major bands Mr 160000, 147000, 34000 and 25000) was made. Comigration of major bands was detected in one-dimensional gel electrophoresis with the 42000-Mr, 35000--33000-Mr and 34000-Mr components. Upon two-dimensional gel electrophoresis the 42000-Mr component comigrates with a similar component in vesicles, recently characterized as actin; the other components are different. The presence of tubulin-like polypeptides is unlikely. Beside actin, all major vesicle proteins are often detected in small amounts in the plasma membrane preparation. It cannot be decided if they result from fused or contaminating vesicle membranes, but since they are essentially absent in some preparations, it seems that the plasma membrane does not contain vesicle proteins.  相似文献   

14.
Rabbit synovial fibroblasts induced to undergo a specific switch in gene expression by agents that alter cell morphology secreted the neutral proteinase precursor procollagenase (apparent Mr of 53,000 and 57,000). A major Mr = 51,000 polypeptide that was always induced coordinately with procollagenase has now been identified as the proenzyme form of a metal-dependent proteinase active at neutral pH. We have named this proteinase stromelysin. Prostromelysin and procollagenase were the most prominent [35S]methionine-labeled secreted proteins of the induced fibroblasts. By the use of casein degradation as an assay for enzyme activity, stromelysin was isolated with high yield from the conditioned culture medium of 12-O-tetradecanoylphorbol 13-acetate-treated fibroblasts and migrated as an active form of Mr = 21,000 that was immunologically identical to the proteoglycan-degrading proteinase purified from rabbit bone. Immunoglobulin G from antiserum raised to purified rabbit bone proteoglycanase immunoprecipitated the Mr = 51,000 proenzyme form from conditioned medium of induced rabbit cells and also immunoprecipitated an Mr = 55,000 polypeptide from induced human fibroblasts. When rabbit prostromelysin was activated by trypsin or 4-aminophenylmercuric acetate, the proenzyme was converted to an active form of Mr = 41,000. During the course of the purification, prostromelysin was converted to an additional activatable form of Mr = 35,000 and additional active forms of Mr = 21,000-25,000, which had related peptide maps distinct from collagenase. All of these forms were immunologically cross-reactive. Purified stromelysin degraded casein, cartilage proteoglycans, fibronectin, alpha 1-proteinase inhibitor, and immunoglobulin G2a and had limited activity on laminin, elastin, type IV collagen, and gelatin, but did not degrade type I collagen. Stromelysin was inhibited by EDTA, 1,10-phenanthroline, and the specific glycoprotein tissue inhibitor of metalloproteinases isolated from human amniotic fluid and was therefore classified as a metalloproteinase.  相似文献   

15.
Triton X-100 extracts of purified rat brain synaptosomes exhibited marked phosphorylation of an endogenous Mr 87,000 polypeptide following chromatography on DEAE-cellulose. The protein kinase catalyzing this reaction was insensitive to cyclic AMP, Ca2+, calmodulin, and phorbol esters. However, phosphatidylinositol 4-phosphate (PIP) proved to be a potent inhibitor of the Mr 87,000 polypeptide phosphorylation at submicromolar concentrations, whereas phosphatidylinositol, phosphatidylserine, and phosphatidylglycerol were less potent inhibitors. Unsaturated fatty acids could also mimic the effects of PIP at levels above 4 micrograms/ml. The inhibitory effect of PIP largely reflected a profound increase in the apparent Km for Mg2+ such that increasing Mg2+ levels could partially offset the action of PIP. The PIP-sensitive protein kinase was enriched in hypotonic lysates of synaptosomes from which it was partially purified by DEAE-cellulose, hydroxylapatite, and gel permeation chromatography. This purification separated the enzyme from its Mr 87,000 substrate; however, the presence of this polypeptide in heat-inactivated alkali extracts of rat brain provided an exogenous source of substrate which could be used to assay enzyme activity. The relevance of these data to a possible role for PIP and Mg2+ in cellular signaling is discussed.  相似文献   

16.
Antibody to the carboxyl-terminal of hexose transporter protein GLUT-1 was used to localize this carrier in normal rat kidney (NRK) cells during D-glucose (Glc) deprivation. Glc-deprivation of NRK cells induces increased hexose transport, inhibits the glycosylation of GLUT-1, and increases the content of both native, 55,000 apparent mol wt (Mr) and aglyco, 38,000 Mr GLUT-1 polypeptides. The distribution of GLUT-1 protein in subcellular fractions isolated from Glc-fed NRK cells shows that the 55,000 Mr polypeptide is most abundant in intracellular membrane fractions. Glc-fed cells that have been tunicamycin treated contain principally the 38,000 Mr GLUT-1 polypeptide, which is found predominantly in intracellular membrane fractions. In Glc-deprived cells the 55,000 Mr GLUT-1 polypeptide localizes predominantly in the Golgi and plasma membrane fractions, whereas the more abundant 38,000 Mr GLUT-1 polypeptide is distributed throughout all membrane fractions. In Glc-deprived but fructose-fed cells only the 55,000 Mr GLUT-1 polypeptide is detected, and it is found predominantly in the plasma membrane and Golgi fractions. The localization of GLUT-1 protein was directly and specifically visualized in NRK cells by immunofluorescence microscopy. Glc-fed cells show little labeling of cell borders and a small punctate juxtanuclear pattern suggestive of localization to the Golgi and, perhaps, endoplasmic reticulum. Glc-fed cells that have been tunicamycin treated show large punctate intracellular accumulations suggestive of localization to distended Golgi and perhaps endoplasmic reticulum. Glc-deprived cells exhibited intense labeling of cell borders as well as intracellular accumulations. Glc-deprived but fructose-fed cells show fewer intracellular accumulations, and the labeling is, in general, limited to the cell borders. Our results suggest that Glc deprivation induces the selective accumulation of GLUT-1 in the plasma membrane of NRK cells.  相似文献   

17.
The binding of calcium to human plasma fibronectin has been measured by equilibrium dialysis at 25° in 0.1 M NaCl 50mM Tris HCL, pH 7.4. Curve fitting of the binding data indicates that fibronectin has two strong calcium binding sites per chain (Mr 220,000), KD = 1.3 mM and approximately 12 weak sites, KD = 2.3 mM. No significant displacement of bound calcium by magnesium was observed at magnesium concentrations up to 1 mM. Calcium binding to a pair of tryptic fragments of fibronectin (Mr ? 160,000 and 180,000) that bind to gelatin has also been investigated. These fragments have a single class of calcium binding sites, with 2.2 sites per chain, KD = 1.1 mM. Negligible calcium binding to tryptic fragments derived from other regions of the fibronectin molecule was observed.  相似文献   

18.
Myosin light chain kinase (MLCK) has been purified from the myometrium of pregnant sheep. The Mr of the enzyme was determined from SDS-polyacrylamide gels to be 160,000. It requires Ca2+ and calmodulin for activation, and phosphorylates the 20,000-Da light chains of myosin at a rapid rate. The specific activity for the myosin light chains from turkey gizzards and rabbit uterine muscle are 7.7 and 5.4 mumol/min/mg, respectively. The Km for the former substrate is 40 microM and the Vmax of the reaction is 19 mumol/min/mg. Polyclonal antibodies raised against the enzyme cross-reacted with pregnant sheep myometrium (psm), turkey gizzard (tg), and chicken gizzard MLCK. Affinity purification of the antibodies on tg-MLCK Sepharose resulted in the preparation of two fractions of antibodies with different reactivity toward these proteins. Fraction A antibodies which did not bind to the affinity column cross-reacted only with psm-MLCK while Fraction B antibodies which bound to the column cross-reacted with all three proteins. Western blots of extracts of turkey gizzards, human myometrium, and various tissues from sheep showed cross-reactivity of both fractions of antibodies with a 160,000-Da protein in the extracts of sheep smooth muscles. Only Fraction B antibodies cross-reacted with a protein (130,000 Da) in turkey gizzards and human myometrium extracts. Prolonged tryptic digestion of psm-MLCK produced large fragments Mr approximately 60,000 which appears to be similar to that formed from tg-MLCK, and some smaller peptides. Fraction A antibodies cross-reacted with the small peptides while Fraction B antibodies cross-reacted with the large fragments but not vice versa. Further analysis of the tryptic peptides suggests that the epitopes of Fraction A antibodies are localized in a peptide which appears to be in the NH2-terminal region of the molecule.  相似文献   

19.
Phosphorylation of brain synaptic and coated vesicle proteins was stimulated by Ca2+ and calmodulin. As determined by 5-15% sodium dodecylsulfate (SDS) polyacrylamide gel electrophoresis (PAGE), molecular weights (Mr) of the major phosphorylated proteins were 55,000 and 53,000 in synaptic vesicles and 175,000 and 55,000 in coated vesicles. In synaptic vesicles, phosphorylation was inhibited by affinity-purified antibodies raised against a 30,000 Mr protein doublet endogenous to synaptic and coated vesicles. When this doublet, along with clathrin, was extracted from coated vesicles, phosphorylation did not take place, implying that the protein doublet may be closely associated with Ca2+/calmodulin-dependent protein kinase. Affinity-purified antibodies, raised against clathrin used as a control antibody, failed to inhibit Ca2+/calmodulin-dependent phosphorylation in either synaptic or coated vesicles. Immunoelectron cytochemistry revealed that this protein doublet was present in axon terminal synaptic and coated vesicles. Synaptic vesicles also displayed cAMP-dependent kinase activity; coated vesicles did not. The molecular weights of phosphorylated synaptic vesicle proteins in the presence of Mg2+ and cAMP were: 175,000, 100,000, 80,000, 57,000, 55,000, 53,000, 40,000, and 30,000. Based on the different phosphorylation patterns observed in synaptic and coated vesicles, we propose that brain vesicle protein kinase activities may be involved in the regulation of exocytosis and in retrieval of synaptic membrane in presynaptic axon terminals.  相似文献   

20.
Treatment of the electric organ of Torpedo marmorata with Triton X-100 in the presence of 2 mM MgCl2 generated a cytoskeletal fraction in which a 54 kDa polypeptide is a major constituent. This 54 kDa polypeptide accounted for about 8% of the cellular protein when total electric organ tissue was analyzed by two-dimensional gel electrophoresis. Immunoblotting experiments showed that this protein reacts with monoclonal antibodies to desmin, the major intermediate filament protein of avian and mammalian muscle tissue. Negative stain analysis revealed that filaments of about 10 nm diameter are the major structural elements of the electric organ cytoskeleton. In the presence of Ca2+ there was a rapid degradation of the desmin-like protein and intermediate filaments due to a Ca2+-activated protease. Some of the resulting fragments retained antigenic activity against the desmin antibodies. Immunoblotting of membrane fractions enriched in acetylcholine receptor revealed desmin in addition to some actin. A further cytoskeletal component was identified from biochemical and immunological properties as a homologue of the mammalian neurofilament L-polypeptide. Thus Torpedo expresses proteins homologous to the mammalian desmin and neurofilament L-protein which can be detected using immunological approaches. Immunofluorescence microscopy was used to map the location of various cytoskeletal proteins of the cholinergic synapse on paraffin sections and on en face preparations of membranes. Desmin staining was restricted to electrocytes and in en face preparations was seen associated with both the ventral receptor-containing membrane and with the non-innervated dorsal membrane. Antibodies to neurofilament L-protein stained only the axons and not the electrocytes. Staining for fodrin, a non-erythrocyte spectrin, resulted in submembraneous decoration of both the axons and the electrocytes. Axonal staining for neurofilaments and microtubules did not extend into the ends of the nerve terminal arborizations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号