首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
3.
The process of cellular transformation has been amply studied in vitro using immortalized cell lines. Immortalized cells never have the normal diploid karyotype, nevertheless, they cannot grow over one another in cell culture (contact inhibition), do not form colonies in soft agar (anchorage-dependent growth) and do not form tumors when injected into immunodeficient rodents. All these characteristics can be obtained with additional chromosome changes. Multiple genetic rearrangements, including whole chromosome and gene copy number gains and losses, chromosome translocations, gene mutations are necessary for establishing the malignant cell phenotype. Most of the experiments detecting transforming ability of genes overexpressed and/or mutated in tumors (oncogenes) were performed using mouse embryonic fibroblasts (MEFs), NIH3T3 mouse fibroblast cell line, human embryonic kidney 293 cell line (HEK293), and human mammary epithelial cell lines (mainly HMECs and MC-F10A). These cell lines have abnormal karyotypes and are prone to progress to malignantly transformed cells. This review is aimed at understanding the mechanisms of cell immortalization by different "immortalizing agents", oncogene-induced cell transformation of immortalized cells and moderate response of the advanced tumors to anticancer therapy in the light of tumor "oncogene and chromosome addiction", intra-/intertumor heterogeneity, and chromosome instability.  相似文献   

4.
The process of cellular transformation has been amply studied in vitro using immortalized cell lines. Immortalized cells never have the normal diploid karyotype, nevertheless, they cannot grow over one another in cell culture (contact inhibition), do not form colonies in soft agar (anchorage-dependent growth) and do not form tumors when injected into immunodeficient rodents. All these characteristics can be obtained with additional chromosome changes. Multiple genetic rearrangements, including whole chromosome and gene copy number gains and losses, chromosome translocations, gene mutations are necessary for establishing the malignant cell phenotype. Most of the experiments detecting transforming ability of genes overexpressed and/or mutated in tumors (oncogenes) were performed using mouse embryonic fibroblasts (MEFs), NIH3T3 mouse fibroblast cell line, human embryonic kidney 293 cell line (HEK293), and human mammary epithelial cell lines (mainly HMECs and MCF10A). These cell lines have abnormal karyotypes and are prone to progress to malignantly transformed cells. This review is aimed at understanding the mechanisms of cell immortalization by different “immortalizing agents”, oncogene-induced cell transformation of immortalized cells and moderate response of the advanced tumors to anticancer therapy in the light of tumor “oncogene and chromosome addiction”, intra-/intertumor heterogeneity, and chromosome instability.  相似文献   

5.
Kaposi's sarcoma-associated herpesvirus (KSHV) is etiologically associated with Kaposi's sarcoma and several other malignancies. The lack of an efficient infection system has impeded the understanding of KSHV-related pathogenesis. A genetic approach was used to isolate infectious KSHV. Recombinant bacteria artificial chromosome (BAC) KSHV containing hygromycin resistance and green fluorescent protein (GFP) markers was generated by homologous recombination in KSHV-infected BCBL-1 cells. Recombinant KSHV genomes from cell clones that were resistant to hygromycin, expressed GFP, and produced infectious virions after induction with tetradecanoyl phorbol acetate (TPA) were rescued in Escherichia coli and reconstituted in 293 cells. Several 293 cell lines resulting from infection with recombinant virions induced from a full-length recombinant KSHV genome, named BAC36, were obtained. BAC36 virions established stable latent infection in 293 cells, harboring 1 to 2 copies of viral genome per cell and expressing viral latent proteins, with approximately 0.5% of cells undergoing spontaneous lytic replication, which is reminiscent of KSHV infection in Kaposi's sarcoma tumors. TPA treatment induced BAC36-infected 293 cell lines into productive lytic replication, expressing lytic proteins and producing virions that efficiently infected normal 293 cells with a approximately 50% primary infection rate. BAC36 virions were also infectious to HeLa and E6E7-immortalized human endothelial cells. Since BAC36 can be efficiently shuttled between bacteria and mammalian cells, it is useful for KSHV genetic analysis. The feasibility of the system was illustrated through the generation of a KSHV mutant with the vIRF gene deleted. This cellular model is useful for the investigation of KSHV infection and pathogenesis.  相似文献   

6.

Background

Nearly thirty years ago, it was first shown that malignant transformation with single oncogene necessarily requires the immortal state of the cell. From that time this thesis for the cells of human origin was not disproved. The basic point which we want to focus on by this short communication is the correct interpretation of the results obtained on the widely used human embryonic kidney 293 (HEK293) cells.

Results

Intensive literature analysis revealed an increasing number of recent studies discovering new oncogenes with non-overlapping functions. Since the 1970s, dozens of oncogenes have been identified in human cancer. Cultured cell lines are often used as model systems in these experiments. In some investigations the results obtained on such cells are interpreted by the authors as a malignant transformation of normal animal or even normal human cells (as for example with HEK293 cells). However, when a cell line gains the ability to undergo continuous cell division, the cells are not normal any more, they are immortalized cells. Nevertheless, the authors consider these cells as normal human ones, what is basically incorrect. Moreover, it was early demonstrated that the widely used human embryonic kidney 293 (HEK293) cells have a relationship to neurons.

Conclusions

Thus, the experiments with established cell lines reinforce the notion that immortality is an essential requirement for malignant transformation that cooperates with other oncogenic changes to program the neoplastic state and substances under such investigation should be interpreted as factors which do not malignantly transform normal cells alone, but possess the ability to enhance the tumorigenic potential of already immortalized cells.  相似文献   

7.
Potential role of microsomal prostaglandin E synthase-1 in tumorigenesis   总被引:8,自引:0,他引:8  
Microsomal prostaglandin E2 synthase-1 (mPGES-1) is a stimulus-inducible enzyme that functions downstream of cyclooxygenase (COX)-2 in the PGE2-biosynthetic pathway. Given the accumulating evidence that COX-2-derived PGE2 participates in the development of various tumors, including colorectal cancer, we herein examined the potential involvement of mPGES-1 in tumorigenesis. Immunohistochemical analyses demonstrated the expression of both COX-2 and mPGES-1 in human colon cancer tissues. HCA-7, a human colorectal adenocarcinoma cell line that displays COX-2- and PGE2-dependent proliferation, expressed both COX-2 and mPGES-1 constitutively. Treatment of HCA-7 cells with an mPGES-1 inhibitor or antisense oligonucleotide attenuated, whereas overexpression of mPGES-1 accelerated, PGE2 production and cell proliferation. Moreover, cotransfection of COX-2 and mPGES-1 into HEK293 cells resulted in cellular transformation manifested by colony formation in soft agar culture and tumor formation when implanted subcutaneously into nude mice. cDNA array analyses revealed that this mPGES-1-directed cellular transformation was accompanied by changes in the expression of a variety of genes related to proliferation, morphology, adhesion, and the cell cycle. These results collectively suggest that aberrant expression of mPGES-1 in combination with COX-2 can contribute to tumorigenesis.  相似文献   

8.
Sphingosine kinase (SPHK) 1 is implicated in the regulation of cell proliferation and anti-apoptotic processes by catalyzing the formation of an important bioactive messenger, sphingosine 1-phosphate. Unlike the proliferative action of SPHK1, another isozyme, SPHK2, has been shown to possess anti-proliferative or pro-apoptotic action. Molecular mechanisms of SPHK2 action, however, are largely unknown. The present studies were undertaken to characterize the N-terminal-extended form of SPHK2 (SPHK2-L) by comparing it with the originally reported form, SPHK2-S. Real-time quantitative PCR analysis revealed that SPHK2-L mRNA is the major form in several human cell lines and tissues. From sequence analyses it was concluded that SPHK2-L is a species-specific isoform that is expressed in human but not in mouse. At the protein level it has been demonstrated by immunoprecipitation studies that SPHK2-L is the major isoform in human hepatoma HepG2 cells. SPHK2-L, when expressed in human embryonic kidney (HEK) 293 cells, did not show any inhibition of DNA synthesis in the presence of serum, whereas it showed marked inhibition in the absence of serum. Moreover, serum deprivation resulted in the translocation of SPHK2-L into the nuclei. In addition, serum deprivation induced SPHK2-L expression in HEK293 cells. Furthermore, suppression of SPHK2 by small interfering RNA treatment prevented serum deprivation- or drug-induced apoptosis in HEK293 cells. Taken together, these results indicate that a major form of SPHK2 splice variant, SPHK2-L, in human cells does not inhibit DNA synthesis under normal conditions and that SPHK2-L accumulation in the nucleus induced by serum deprivation may be involved in the cessation of cell proliferation or apoptosis depending on the cell type.  相似文献   

9.
Tumor metastasis is a multistep pathological process involved in the final phase of tumor development. During this process, epithelium-derived tumor cells undergo fibroblast-like transformation, referred to as epithelial-mesenchymal transition (EMT), which contributes to aggressive behavior of tumors. We identify periostin, a mesenchyme-specific gene product, as a contributor to EMT and metastatic potential. Stable expression of a periostin transgene in tumorigenic but non-metastatic 293T cells caused cells to undergo fibroblast-like transformation accompanied by increased expressions of vimentin, epidermal growth factor receptor (EGFR), and matrix metalloproteinase-9. The cells expressing ectopic periostin increased cell migration, invasion, and adhesion by 2-9-fold. Invasive characteristics required signaling through integrin alpha(v)beta5 and EGFR. In addition, periostin-engineered 293T cells formed metastases in immunodeficient mice following either cardiac inoculation or injection into mammary fat pad. These data demonstrate an active role for periostin in EMT and metastasis that requires cross-talk between integrin and EGFR signaling pathways.  相似文献   

10.
Despite heterologous expression of epitope-tagged GPCR is widely adopted for functional characterization, there is lacking of systematic analysis of the impact of expression host and epitope tag on GPCR expression. Angiotensin type II (AT2) receptor displays agonist-dependent and -independent activities, coupling to a spectrum of signaling molecules. However, consensus has not been reached on the subcellular distributions, signaling cascades and receptor-mediated actions. To examine the contributions of host cell and epitope tag on receptor expression and activity, epitope-tagged AT2 receptor variants were transiently or stably expressed in HEK293, CHO-K1 and PC12 cells. The epitope-tagged AT2 receptor variants were detected both on the cell membrane and in the perinuclear region. In transiently transfected HEK293 cells, Myc-AT2 existed predominantly as monomer. Additionally, a ladder of ubiquitinated AT2 receptor proteins was detected. By contrast, stably expressed epitope-tagged AT2 receptor variants existed as both monomer and high molecular weight complexes, and the latter was enriched in cell surface. Glycosylation promoted cell surface expression of Myc-AT2 but had no effect on AT2-GFP in HEK293 cells. In cells that stably expressed Myc-AT2, serum starvation induced apoptosis in CHO-K1 cells but not in HEK293 or PC12 cells. Instead, HEK293 and PC12 cells stably expressing Myc-AT2 exhibited partial cell cycle arrest with cells accumulating at G1 and S phases, respectively. Taken together, these results suggest that expression levels, subcellular distributions and ligand-independent constitutive activities of AT2 receptor were cell type-dependent while posttranslational processing of nascent AT2 receptor protein was modulated by epitope tag and mode of expression.  相似文献   

11.
Mutant human beta-actin genes were introduced into normal human (KD) fibroblasts and the derivative cell line HuT-12, which is immortalized but nontumorigenic, to test their ability to promote conversion to the tumorigenic state. Transfected substrains of HuT-12 fibroblasts that expressed abundant levels of mutant beta-actin (Gly-244----Asp-244) produced subcutaneous tumors in athymic mice after long latent periods (1.5 to 3 months). However, transfected substrains of KD fibroblasts retained their normal finite life span in culture and consequently were incapable of producing tumors. Substrains of HuT-12 cells transfected with the wild-type beta-actin gene and some transfected strains that expressed low or undetectable levels of mutant beta-actin did not produce tumors. Cell lines derived from transfectant cell tumors always exhibited elevated synthesis of the mutant beta-actin, ranging from 145 to 476% of the level expressed by the transfected cells that were inoculated to form the tumor. In general, primary transfectant cells that expressed the highest levels of mutant beta-actin were more tumorigenic than strains that expressed lower levels. The tumor-derived strains were stable in tumorigenicity and produced tumors with shortened latent periods of only 2 to 4 weeks. These findings imply that the primary transfectant strains develop subpopulations of cells that are selected to form tumors because of their elevated rate of exogenous mutant beta-actin synthesis. Actin synthesis and accumulation of gamma-actin mRNA from the endogenous beta- and gamma-actin genes were diminished in tumor-derived strains, apparently to compensate for elevated mutant beta-actin synthesis and maintain the normal cellular concentration of actin. Synthesis of the transformation-sensitive tropomyosin isoforms was decreased along with mutant beta-actin expression. Such modulations in tropomyosin synthesis are characteristically seen in transformation of avian, rodent, and human fibroblasts. Our results suggest that this mutant beta-actin contributes to the neoplastic phenotype of immortalized human fibroblasts by imposing a cytoarchitectural defect and inducing abnormal expression of cytoskeletal tropomyosins.  相似文献   

12.
GnRH and its receptor are expressed in human reproductive tract cancers, and direct antiproliferative effects of GnRH analogs have been demonstrated in cancer cell lines. The intracellular signaling responsible for this effect differs from that mediating pituitary gonadotropin secretion. The GnRH structure-activity relationship is different for the two effects. Here we report a structure-activity relationship study of GnRH agonist antiproliferative action in model cell systems of rat and human GnRH receptors stably expressed in HEK293 cells. GnRH II was more potent than GnRH I in inhibiting cell growth in the cell lines. In contrast, GnRH I was more potent than GnRH II in stimulating inositol phosphate production, the signaling pathway in gonadotropes. The different residues in GnRH II (His(5), Trp(7), Tyr(8)) were introduced singly or in pairs into GnRH I. Tyr(5) replacement by His(5) produced the highest increase in the antiproliferative potency of GnRH I. Tyr(8) substitution of Arg(8) produced the most selective analog, with very poor inositol phosphate generation but high antiproliferative potency. In nude mice bearing tumors of the HEK293 cell line, GnRH II and an antagonist administration was ineffective in inhibiting tumor growth, but D-amino acid stabilized analogs (D-Lys(6) and D-Arg(6)) ablated tumor growth. Docking of GnRH I and GnRH II to the human GnRH receptor molecular model revealed that Arg(8) of GnRH I makes contact with Asp(302), whereas Tyr(8) of GnRH II appears to make different contacts, suggesting these residues stabilize different receptor conformations mediating differential intracellular signaling and effects on gonadotropin and cell growth. These findings provide the basis for the development of selective GnRH analog cancer therapeutics that directly target tumor cells or inhibit pituitary gonadotropins or do both.  相似文献   

13.
T-cadherin (T-cad) is a Ca(2+)-dependent cell adhesion glycoprotein bound to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. T-cad expressed on vascular smooth muscle cells (SMC) binds lipoproteins on blot. To analyze the molecular basis for the interaction of T-cad with lipoproteins we expressed recombinant human T-cad in HEK293 cells. Whereas membrane-bound T-cad from SMC and T-cad transfected HEK293 cells bind lipoproteins, T-cadherin proteins cleaved from the cell surface by phosphatidylinositol-specific phospholipase C (PI-PLC) do not. The lipoprotein-binding function is also lacking both for a recombinant human T-cad expressed in HEK293 cells without the GPI signal sequence, and for a human T-cad form expressed in Escherichia coli that contains the signal sequence for GPI attachment but is not modified with a GPI. We conclude that the GPI moiety of T-cadherin is necessary and sufficient to mediate lipoprotein binding.  相似文献   

14.
Endoplasmic reticulum (ER) stress occurs during early embryonic development. The aim of this study is to determine whether ER stress occurs during human embryonic stem cell differentiation induced by retinoic acid (RA). H9 human embryonic stem cells were subjected to RA treatment for up to 29days to induce differentiation. HEK293 cells were treated with RA as a control. The results demonstrate that several ER stress-responsive genes are differentially regulated in H9 and HEK293 cells in response to 5days of RA treatment. GRP78/Bip was upregulated in H9 cells but downregulated in HEK293 cells. eIF2α was downregulated in H9 cells but not in HEK293 cells. Phosphorylation of eIF2α was downregulated in H9 cells but upregulated in HEK293 cells. XBP-1 was downregulated immediately after RA treatment in H9 cells, but its downregulation was much slower in HEK293 cells. Additionally, two ER-resident E3 ubiquitin ligases, gp78 and Hrd1, were both upregulated in H9 cells following 5 days of exposure to RA. Moreover, the protein Bcl2 was undetectable in H9 cells and H9-derived cells but was expressed in HEK293 cells, and it expression in the two types of cells was unaltered by RA treatment. In H9 cells treated with RA for 29 days, GRP78/Bip, XBP-1 and Bcl2 were all upregulated. These results suggest that ER stress is involved in H9 cell differentiation induced by RA.  相似文献   

15.
Cancer models are vital to cancer biology research, and multiple cancer models are currently available that utilize either murine or human cells, each with particular strengths and weaknesses. The ability to transform primary human cells into tumors through the expression of specific transgenes offers many advantages as a cancer model, including genetic malleability and the ability to transform specific cell types. Until recently, the conversion of primary human cells into tumors through transgene expression required the use of viral genetic elements, which unfortunately adds uncertainty regarding which cancer pathways are affected and how they are affected. In recent years multiple reports have described the transformation of primary human cells into tumors using only mammalian transgenes. This review focuses on these five cancer models, comparing the different cell types which were transformed into tumors and which transgenes were expressed, as well as the cancer pathways affected in the disparate models. These genetically-engineered human cancer models offer a valuable tool to complement existing cancer models and further cancer research.  相似文献   

16.
The human immunodeficiency virus type 1 (HIV-1) protease (PR) plays an essential role in processing viral polyproteins into mature proteins. As a result, it is a major target for the development of drugs against AIDS. However, due to the rapid emergence of drug-resistant HIV, the development of novel HIV PR inhibitors is urgently needed. We recently established a new cell line E-PR293 which can be used as a safe, convenient and highly efficient assay system to screen HIV-1 PR inhibitors. In the cells, the HIV-1 PR is expressed in a chimeric protein with the green fluorescence protein (GFP). This assay measures the PR activity as a function of either the fluorescence of GFP or the cytotoxic activity of HIV-1 PR which is expressed in the cell. E-PR293 cells were maintained in the presence of doxycycline, which suppresses the expression of HIV-1 PR. The removal of doxycycline induces the expression of HIV-1 PR, which is used to screen HIV-1 PR inhibitors. In E-PR293 cells, the 50% inhibitory concentration of the cytotoxic effects by nelfinavir and saquinavir were as low as nanomolar levels, almost equal to those found in the HIV-infection assay.  相似文献   

17.
Hepatitis C virus (HCV) infects liver cells and its replication in other cells is incompletely defined. Human hepatoma Huh-7 cells harboring subgenomic HCV replicons were used in somatic cell fusion experiments with human embryonic kidney 293 cells as a means of examining the permissiveness of 293 cells for HCV subgenomic RNA replication. 293 cells were generally not permissive for replication of Huh-7 cell-adapted replicons. However, upon coculturing of the two cell lines, we selected rare replicon-containing cells, termed 293Rep cells, that resembled parental 293 cells. Direct metabolic labeling of cells with (33)P in the presence of actinomycin D and Northern blotting to detect the negative strand of the replicon demonstrated functional RNA replicons in 293Rep cells. Furthermore, Western blots revealed that 293Rep cells expressed the HCV nonstructural proteins as well as markers of the na?ve 293 cells but not Huh-7 cells. Propidium iodide staining and fluorescence-activated cell sorting analysis of 293Rep cells revealed that clone 293Rep17 closely resembled na?ve 293 cells. Transfection of total RNA from 293Rep17 into na?ve 293 cells produced replicon-containing 293 cell lines with characteristics distinct from those of Huh-7-derived replicon cell lines. Relative to Huh-7 replicons, the 293 cell replicons were less sensitive to inhibition by alpha interferon and substantially more sensitive to inhibition by poly(I)-poly(C) double-stranded RNA. This study established HCV subgenomic replicons in nonhepatic 293 cells and demonstrated their utility in expanding the study of cellular HCV RNA replication.  相似文献   

18.
Small cell lung cancer (SCLC) accounts for nearly 15% of human lung cancers and is one of the most aggressive solid tumors. The SCLC cells are thought to derive from self-renewing pulmonary neuroendocrine cells by oncogenic transformation. However, whether the SCLC cells possess stemness and plasticity for differentiation as normal stem cells has not been well understood thus far. In this study, we investigated the expressions of multilineage stem cell markers in the cancer cells of SCLC cell line (NCI-H446) and analyzed their clonogenicity, tumorigenicity, and plasticity for inducing differentiation. It has been found that most cancer cells of the cell line expressed multilineage stem cell markers under the routine culture conditions and generated single-cell clones in anchorage-dependent or -independent conditions. These cancer cells could form subcutaneous xenograft tumors and orthotopic lung xenograft tumors in BALB/C-nude mice. Most cells in xenograft tumors expressed stem cell markers and proliferation cell nuclear antigen Ki67, suggesting that these cancer cells remained stemness and highly proliferative ability in vivo. Intriguingly, the cancer cells could be induced to differentiate into neurons, adipocytes, and osteocytes, respectively, in vitro. During the processes of cellular phenotype-conversions, autophagy and apoptosis were two main metabolic events. There is cross-talking between autophagy and apoptosis in the differentiated cancer cells. In addition, the effects of the inhibitor and agonist for Sirtuin1/2 on the inducing osteogenic differentiation indicated that Sirtuin1/2 had an important role in this process. Taken together, these results indicate that most cancer cells of NCI-H446 cell line possess stemness and plasticity for multilineage differentiation. These findings have potentially some translational applications in treatments of SCLC with inducing differentiation therapy.  相似文献   

19.
A novel human cytochrome P450, CYP2W1, was cloned and expressed heterologously. No or very low CYP2W1 mRNA levels were detected in fetal and adult human tissues, expression was however seen in 54% of human tumor samples investigated (n=37), in particular colon and adrenal tumors. Western blotting also revealed high expression of CYP2W1 in some human colon tumors. In rat tissues, CYP2W1 mRNA was expressed preferentially in fetal but also in adult colon. The CYP2W1 gene was shown to encompass one functional CpG island in the exon 1-intron 1 region which was methylated in cell lines lacking CYP2W1 expression, but unmethylated in cells expressing CYP2W1. Re-expression of CYP2W1 was seen following demethylation by 5-Aza-2'-deoxycytidine. Transfection of HEK293 cells with CYP2W1 caused the formation of a properly folded enzyme, which was catalytically active with arachidonic acid as a substrate. It is concluded that CYP2W1 represents a tumor-specific P450 isoform with potential importance as a drug target in cancer therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号