首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human embryonic stem (hES) cells have a potential use for the repair and regeneration of injured tissues. However, teratoma formation can be a major obstacle for hES-mediated cell therapy. Therefore, tracking the fate and function of transplanted hES cells with noninvasive imaging could be valuable for a better understanding of the biology and physiology of teratoma formation. In this study, hES cells were stably transduced with a double fusion reporter gene consisting of firefly luciferase and enhanced green fluorescent protein. Following bioluminescence imaging and histology, we demonstrated that engraftment of hES cells was followed by dramatically increasing signaling and led to teratoma formation confirmed by histology. Studies of the angiogenic processes within teratomas revealed that their vasculatures were derived from both differentiated hES cells and host. Moreover, FACS analysis showed that teratoma cells derived from hES cells expressed high levels of CD56 and SSEA-4, and the subcultured SSEA-4(+) cells showed a similar cell surface marker expression pattern when compared to undifferentiated hES cells. We report here for the first time that SSEA-4(+) cells derived from teratoma exhibited multipotency, retained their differentiation ability in vivo as confirmed by their differentiation into representative three germ layers.  相似文献   

2.

Background

Human embryonic stem cells (hESCs) offer a virtually unlimited source of neural cells for structural repair in neurological disorders, such as stroke. Neural cells can be derived from hESCs either by direct enrichment, or by isolating specific growth factor-responsive and expandable populations of human neural stem cells (hNSCs). Studies have indicated that the direct enrichment method generates a heterogeneous population of cells that may contain residual undifferentiated stem cells that could lead to tumor formation in vivo.

Methods/Principal Findings

We isolated an expandable and homogenous population of hNSCs (named SD56) from hESCs using a defined media supplemented with epidermal growth factor (EGF), basic fibroblast growth factor (bFGF) and leukemia inhibitory growth factor (LIF). These hNSCs grew as an adherent monolayer culture. They were fully neuralized and uniformly expressed molecular features of NSCs, including nestin, vimentin and radial glial markers. These hNSCs did not express the pluripotency markers Oct4 or Nanog, nor did they express markers for the mesoderm or endoderm lineages. The self-renewal property of the hNSCs was characterized by a predominant symmetrical mode of cell division. The SD56 hNSCs differentiated into neurons, astrocytes and oligodendrocytes throughout multiple passages in vitro, as well as after transplantation. Together, these criteria confirm the definitive NSC identity of the SD56 cell line. Importantly, they exhibited no chromosome abnormalities and did not form tumors after implantation into rat ischemic brains and into naïve nude rat brains and flanks. Furthermore, hNSCs isolated under these conditions migrated toward the ischemia-injured adult brain parenchyma and improved the independent use of the stroke-impaired forelimb two months post-transplantation.

Conclusions/Significance

The SD56 human neural stem cells derived under the reported conditions are stable, do not form tumors in vivo and enable functional recovery after stroke. These properties indicate that this hNSC line may offer a renewable, homogenous source of neural cells that will be valuable for basic and translational research.  相似文献   

3.
Embryonic ectoderm is fated to become either neural or epidermal, depending on patterning processes that occur before and during gastrulation. It has been stated that epidermal commitment proceeds from a bone morphogenetic protein-4 (BMP-4)-dependent inhibition of dorsal ectoderm neuralization. We recently demonstrated that murine embryonic stem (ES) cells treated with BMP-4 undergo effective keratinocyte commitment and epidermogenesis. Focusing on the precise role of BMP-4 in the early choice between neural and epidermal commitment, we show here that BMP-4 treatment of ES cells leads to a dramatic apoptotic death of Sox-1+ neural precursors with concomitant epidermal engagement. In addition, neutralization of the Smad pathway prevents both the BMP-4 apoptotic process and the inhibition of neural differentiation. Our results suggest that, in mammals, BMP-4, as an active inducer of epidermal commitment, interferes with the survival of neural precursors through induction of their apoptotic cell death.  相似文献   

4.
Transplantation of allogeneic human embryonic stem cell-derived cardiac progenitors triggers an immune response. We assessed whether this response could be modulated by the concomitant use of adipose-derived stromal cells (ADSC). Peripheral blood mononuclear cells were collected from 40 patients with coronary artery disease (CAD) and nine healthy controls. Cardiac progenitors (CD15(+) Mesp1(+)) were generated as already reported from the I6 cell line treated with bone morphogenetic protein (BMP)-2. Adipose-derived stromal cells were obtained from abdominal dermolipectomies. We assessed the proliferative response of peripheral lymphocytes from patients and controls to cardiac progenitors cultured on a monolayer of ADSC, to allogeneic lymphocytes in mixed lymphocyte culture and to the T cell mitogen phytohemaglutin A in presence or absence of ADSC. Cardiac progenitors cultured on a monolayer of ADSC triggered a proliferation of lymphocytes from both patients and controls albeit lower than that induced by allogeneic lymphocytes. When cultured alone, ADSC did not induce any proliferation of allogeneic lymphocytes. When added to cultures of lymphocytes, ADSC significantly inhibited the alloantigen or mitogen-induced proliferative response. Compared to healthy controls, lymphocytes from patients presenting CAD expressed a decreased proliferative capacity, in particular to mitogen-induced stimulation. Adipose-derived stromal cells express an immunomodulatory effect that limits both alloantigen and mitogen-induced lymphocyte responses. Furthermore, lymphocytes from patients with CAD are low responders to conventional stimuli, possibly because of their age and disease-associated treatment regimens. We propose that, in combination, these factors may limit the in vivo immunogenicity of cardiac progenitors co-implanted with ADSC in patients with CAD.  相似文献   

5.
6.
7.

Background

Multiple sclerosis (MS) is an immune mediated demyelinating disease of the central nervous system (CNS). A potential new therapeutic approach for MS is cell transplantation which may promote remyelination and suppress the inflammatory process.

Methods

We transplanted human embryonic stem cells (hESC)-derived early multipotent neural precursors (NPs) into the brain ventricles of mice induced with experimental autoimmune encephalomyelitis (EAE), the animal model of MS. We studied the effect of the transplanted NPs on the functional and pathological manifestations of the disease.

Results

Transplanted hESC-derived NPs significantly reduced the clinical signs of EAE. Histological examination showed migration of the transplanted NPs to the host white matter, however, differentiation to mature oligodendrocytes and remyelination were negligible. Time course analysis of the evolution and progression of CNS inflammation and tissue injury showed an attenuation of the inflammatory process in transplanted animals, which was correlated with the reduction of both axonal damage and demyelination. Co-culture experiments showed that hESC-derived NPs inhibited the activation and proliferation of lymph node–derived T cells in response to nonspecific polyclonal stimuli.

Conclusions

The therapeutic effect of transplantation was not related to graft or host remyelination but was mediated by an immunosuppressive neuroprotective mechanism. The attenuation of EAE by hESC-derived NPs, demonstrated here, may serve as the first step towards further developments of hESC for cell therapy in MS.  相似文献   

8.
Objectives: To characterize basal differentiation tendencies of a human embryonic stem (hES) cell line, KCL‐002. Materials and methods: In vitro specification and differentiation of hES cells were carried out using embryoid body (EB) cultures and tests of pluripotency and in vivo differentiation were performed by teratoma assays in SCID mice. Real‐time PCR, immunohistochemistry, flow cytometry and histological analyses were used to identify expression of genes and proteins associated with the ectodermal, endodermal and mesodermal germ layers. Results: Undifferentiated KCL‐002 cells expressed characteristic markers of pluripotent stem cells such as Nanog, Sox‐2, Oct‐4 and TRA 1‐60. When differentiated in vitro as EB cultures, expression of pluripotency, endodermal and ectodermal markers decreased rapidly. In contrast, mesodermal and mesenchymal markers such as VEGFR‐2, α‐actin and vimentin increased during EB differentiation as shown by qPCR, immunostaining and flow cytometric analyses. Teratoma formation in SCID mice demonstrated the potential to form all germ layers in vivo with a greater proportion of the tumours containing mesenchymal derivatives. Conclusions: The data presented suggest that the KCL‐002 hES cell line is pluripotent and harbours a bias in basal differentiation tendencies towards mesodermal and mesenchymal lineage cells. Characterizing innate differentiation propensities of hES cell lines is important for understanding heterogeneity between different cell lines and for further studies aimed at deriving specific lineages from hES cells.  相似文献   

9.
Differentiation of human embryonic stem cells (hESCs) into hematopoietic lineages using various methods has been reported. However, the phenotype that precisely defines the hematopoietic progenitor compartment with clonogenic activities has yet to be determined. Here, we measured and characterized progenitor function of subfractions of cells prospectively isolated from human embryoid bodies (hEBs) during hematopoietic differentiation basing on surface markers CD45, CD34, CD43, and CD38. We report that hematopoietic progenitors predominantly resided in the CD45+ subset. CD43+ cells lacking CD45 expression were largely devoid of progenitor activity. However, progenitor activity and multipotentiality was more enriched in CD45+ cells co-expressing CD43. CD45+ subset co-expressing CD34 but lacking CD38 expression (CD45+CD34+CD38-) were further enriched for CFU capacity compared to the CD45+CD34+CD38+ subset. Our study demonstrates a role of CD43 in enriching hematopoietic progenitors derived from hEBs and reveals a hierarchical organization of hESC-derived hematopoietic progenitor compartments defined by phenotypic markers.  相似文献   

10.
Objective: Human embryonic stem cells (hESCs) have raised great hopes for future clinical applications. Several groups have succeeded in differentiating hESCs into adipocytes, as determined by morphology, mRNA expression, and protein secretion. However, determination of lipolytic response, the most important characteristic of adipocytes, has not been performed. This work was intended to study adipogenic conversion of hESCs by functional assessment of differentiation. Research Methods and Procedures: Single undifferentiated colonies were allowed to transform into embryonic bodies. mRNA expression for a set of adipocyte‐specific genes and leptin/adiponectin secretion and lipolysis were assessed at different time‐points after differentiation. Results: In contrast to primary human adipocytes, hESC‐derived adipocytes showed a very small response to classical β‐adrenergic agonists, although they expressed the major genes in the lipolytic cascade. In contrast, there was a significant lipolytic response to atrial natriuretic peptide. Discussion: Although hESC‐derived adipocytes seem to be morphologically and expressionally similar to mature adipocytes, there are important functional differences that could depend on their early developmental origin. We conclude that, in contrast to mature adipocytes, hESC‐derived adipocytes display a differential response to atrial natriuretic peptide and catecholamines.  相似文献   

11.
Human embryonic stem (hES) cells provide a promising supply of specific cell types for transplantation therapy. We presented here the method to induce differentiation of purified neural precursors from hES cells. hES cells (Line PKU-1 and Line PKU-2) were cultured in suspension in bacteriological Petri dishes, which differentiated into cystic embryoid bodies (EBs). The EBs were then cultured in N2 medium containing bFGF in poly-L-lysine-coated tissue culture dishes for two weeks. The central, small cells with 2–3 short processes of the spreading outgrowth were isolated mechanically and replated. The resulting neurospheres were cultured in suspension for 10 days, then dissociated into single cell suspension with a Pasteur pipette and plated. Cells grew vigorously in an attached way and were passed every 4–5 days. Almost all the cells were proved nestin positive by immunostaining. Following withdrawal of bFGF, they differentiated into neurons expressing β-tubulin isotypeIII, GABA, serotonin and synaptophysin. Through induction of PDGF-AA, they differentiated into astrocytes expressing GFAP and oligodendrocytes expressing O4. The results showed that hES cells can differentiate into typical neural precursors expressing the specific marker nestin and capable of generating all three cell types of the central nervous system (CNS)in vitro.  相似文献   

12.
Neural precursors derived from human embryonic stem cells   总被引:2,自引:1,他引:1  
Before the successful isolation of human embryonic stem (hES) cells, many investigations had shown that mouse embryonic stem (mES) cells can be induced to differentiate into neural precursors which could be purified and differentiated to mature dopamine, motor, serotonin, GABA neurons, and oligodendrocytes and astrocytes in vitro[1―3]. mES cell-derived dopamine neurons have been shown capable of integrating into host brains after transplanting to the rodents of Park-inson’s disease model …  相似文献   

13.
14.
15.
To improve proarrhythmic predictability of preclinical models, we assessed whether human ventricular-like embryonic stem cell-derived cardiomyocytes (hESC-CMs) can be selected following a standardized protocol. Also, we quantified their arrhythmogenic response and compared this to a contemporary used rabbit Purkinje fiber (PF) model. Multiple transmembrane action potentials (AP) were recorded from 164 hESC-CM clusters (9 different batches), and 12 isolated PFs from New Zealand White rabbits. AP duration (APD), early afterdepolarizations (EADs), triangulation (T), and short-term variability of repolarization (STV) were determined on application of the IKr blocker E-4031 (0.03/0.1/0.3/1 μM). Isoproterenol (0.1 μM) was used to assess adrenergic response. To validate the phenotype, RNA isolated from atrial- and ventricular-like clusters (n = 8) was analyzed using low-density Taqman arrays. Based on initial experiments, slow beating rate (< 50 bpm) and long APD (> 200 ms) were used to select 31 ventricular-like clusters. E-4031 (1 μM) prolonged APD (31/31) and induced EADs only in clusters with APD90 > 300 ms (11/16). EADs were associated with increased T (1.6 ± 0.2 vs 2.0 ± 0.3?) and STV (2.7 ± 1.5 vs 6.9 ± 1.9?). Rabbit PF reacted in a similar way with regards to EADs (5/12), increased T (1.3 ± 0.1 vs 1.9 ± 0.4?), and STV (1.2 ± 0.9 vs 7.1 ± 5.6?). According to ROC values, hESC-CMs (STV 0.91) could predict EADs at least equivalent to PF (STV 0.69). Isoproterenol shortened APD and completely suppressed EADs. Gene expression analysis revealed that HCN1/2, KCNA5, and GJA5 were higher? in atrial/nodal-like cells, whereas KCNJ2 and SCN1B were higher? in ventricular-like cells (?P < 0.05). Selection of hESC-CM clusters with a ventricular-like phenotype can be standardized. The proarrhythmic results are qualitatively and quantitatively comparable between hESC-CMs and rabbit PF. Our results indicate that additional validation of this new safety pharmacology model is warranted.  相似文献   

16.
17.
We describe successful long-term stimulation of human embryonic stem cell-derived cardiomyocyte clusters on thin-film microelectrode structures in vitro. Interdigitated electrode structures were constructed using plain titanium on glass as the electrode material. Titanium rapidly oxidizes in atmospheric conditions to produce an insulating TiO(χ) layer with high relative permittivity. Capacitive coupling to the incubation medium and to the cells adherent to the electrodes was still efficient, and the dielectric layer prevented electrolysis, allowing a wider window of possible stimulation amplitudes to be used, relative to conducting surfaces. A common hypothesis suggests that to achieve proper differentiation of electroactive cells from the stem cells electrical stimuli are also needed. Spontaneously beating cardiomyocyte clusters were seeded on the glass-electrode surfaces, and we successfully altered and resynchronized a clearly different beat interval. The new pace was reliably maintained for extended periods of several tens of minutes.  相似文献   

18.
Human embryonic stem cells (hESCs) can be coaxed to differentiate into specific cell types, including cardiomyocyte-like cells. These cells express cardiac-specific markers and display functional similarities to their adult counterparts. Based on these properties, hESC-derived cardiomyocytes have the potential to be extremely useful in various in vitro applications and to provide the opportunity for cardiac cell replacement therapies. However, before this can become a reality, the molecular and functional characteristics of these cells need to be investigated in more detail. In the present study we differentiate hESCs into cardiomyocyte-like cells via embryoid bodies (EBs). The fraction of spontaneously beating clusters obtained from the EBs averaged approximately 30% of the total number of EBs used. These cell clusters were isolated, dissociated into single-cell suspensions, and frozen for long-term storage. The cryopreserved cells could be successfully thawed and subcultured. Using electron microscopy, we observed Z discs and tight junctions in the hESC-derived cardiomyocytes, and by immunohistochemical analysis we detected expression of cardiac-specific markers (cTnI and cMHC). Notably, using BrdU labeling we also could demonstrate that some of the hESC-derived cardiomyocytes retain a proliferative capacity. Furthermore, pharmacological stimulation of the cells resulted in responses indicative of functional adrenergic and muscarinic receptor coupling systems. Taken together, these results lend support to the notion that hESCs can be used as a source for the procurement of cardiomyocytes for in vitro and in vivo applications.  相似文献   

19.
An improved cryopreservation method for a mouse embryonic stem cell line   总被引:1,自引:1,他引:1  
Embryonic stem (ES) cell lines including the C57BL/6 genetic background are central to projects such as the Knock-Out Mouse Project, North American Conditional Mouse Mutagenesis Program, and European Conditional Mouse Mutagenesis Program, which seek to create thousands of mutant mouse strains using ES cells for the production of human disease models in biomedical research. Crucial to the success of these programs is the ability to efficiently cryopreserve these mutant cell lines for storage and transport. Although the ability to successfully cryopreserve mouse ES cells is often assumed to be adequate, the percent post-thaw recovery of viable cells varies greatly among genetic backgrounds and individual cell lines within a genetic background. Therefore, there is a need to improve the efficiency and reduce the variability of current mouse ES cell cryopreservation methods. To address this need, we employed the principles of fundamental cryobiology to improve the cryopreservation protocol of a C57BL/6 mouse ES cell line by characterizing the membrane permeability characteristics and osmotic tolerance limits. These values were used to predict optimal cooling rates, warming rates, and type of cryoprotectant, which were then verified experimentally. The resulting protocol, generated through this hypothesis-driven approach, resulted in a 2-fold increase in percent post-thaw recovery of membrane-intact ES cells as compared to the standard freezing protocol, as measured by propidium iodide exclusion. Additionally, our fundamental cryobiological approach to improving cryopreservation protocols provides a model system by which additional cryopreservation protocols may be improved in future research for both mouse and human ES cell lines.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号