首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies suggest that gastrin regulates parietal cell maturation. We asked whether it also regulates parietal cell life span and migration along the gland. Dividing cells were labeled with 5'-bromo-2'-deoxyuridine (BrdU), and parietal cells were identified by staining with Dolichos biflorus lectin. Cells positive for D. biflorus lectin and BrdU were reliably identified 10-30 days after BrdU injection in mice in which the gastrin gene had been deleted by homologous recombination (Gas-KO) and wild-type (C57BL/6) mice. The time course of labeling was similar in the two groups. The distribution of BrdU-labeled parietal cells in wild-type mice was consistent with migration to the base of the gland, but in Gas-KO mice, a higher proportion of BrdU-labeled cells was found more superficially 20 and 30 days after BrdU injection. Conversely, in transgenic mice overexpressing gastrin, BrdU-labeled parietal cells accounted for a higher proportion of the labeled pool in the base of the gland 10 days after BrdU injection. Gastrin, therefore, stimulates movement of parietal cells along the gland axis but does not influence their life span.  相似文献   

2.
We analyzed mitotic dendritic epidermal T-cells (DETC) in the epidermis of C3H/He (Thy-1.2+) mice, using double immunoenzymatic labeling. Ear skin was incubated with 100 microM bromodeoxyuridine (BrdU) for 5 hr and then either directly studied or cultured for an additional 12 hr in BrdU-free medium. After BrdU labeling, with or without additional culture, epidermal sheets were obtained by ethylenediaminetetraacetic acid separation. The epidermal specimens were immunostained by the peroxidase method to visualize nuclear BrdU and then by the biotin-streptavidin-alkaline phosphatase method for surface Thy-1.2 antigen. In specimens processed immediately after BrdU labeling, a mean 3.0% of all basal cells were labeled with BrdU and a mean 1.1% of the BrdU-labeled cells were also positive for Thy-1.2. Moreover, a mean 2.1% of the DETC had incorporated BrdU. BrdU-labeled DETC had a variety of appearances; they were dendritic and round in the BrdU-treated specimens, while oval and paired cells were also found in the specimens after additional culture. These morphological changes of BrdU-labeled DETC demonstrate that resident DETC can become mother cells undergoing mitosis through the retraction of their dendrites, and it appears that DETC divide at a relatively high rate, i.e., up to 10% of the DETC may enter the S-phase of the cell cycle every 24 hr.  相似文献   

3.
Functional PLA scaffolds are created with single component, core-sheath, or porous fiber morphology and doped with TCP nanoparticles to study the release profiles for use in bone tissue engineering applications. Pharmacokinetic analyses are performed for the three different nanofibrous structures after doping with TCP. Results indicate that single component and porous fiber scaffolds exhibit an initial-burst release profile whereas core-sheath fibers show a steady release. All scaffolds are then seeded with human adipose-derived stem cells (hASC), which remain viable and continue proliferation on all nanofibrous morphologies for up to 21 d. Osteogenic differentiation of hASC and cell-mediated calcium accretion are largest on porous fibers.  相似文献   

4.
Bromodeoxyuridine (BrdU) immunohistochemistry is the method of choice for labeling newly generated cells in the brain. Most BrdU studies utilize paraformaldehyde-fixed brain tissue because of its compatibility with both BrdU and other immunohistochemical methods. However, stronger fixation is required for electron microscopic studies, and unfixed tissue is needed for biochemical and molecular studies. Because there are no systematic studies comparing the effects of different fixatives on BrdU immunohistochemistry in brain tissue, we compared BrdU immunohistochemical methods in brain tissue fixed with 4% paraformaldehyde, a mixed glutaraldehyde-paraformaldehyde fixative for electron microscopy, and unfixed tissue from brains perfused only with buffer and flash frozen. After optimizing immunostaining protocols, qualitative assessments of light microscopic diaminobenzidine labeling and of double-label immunofluorescence with confocal microscopy demonstrated excellent BrdU labeling in each of the three groups. Quantitative stereological assessment of the number of BrdU-labeled cells in rat dentate gyrus showed no significant difference in the number of labeled cells detected with each perfusion protocol. Additionally, we developed a protocol to visualize BrdU-labeled cells in the electron microscope with adequate preservation of fine structure in both rat and monkey brain.  相似文献   

5.
Rat myoblast nuclei were labeled with various concentrations of bromodeoxyuridine (BrdU), an analogue of thymidine, for 24 or 48 hr. Almost every myoblast was labeled with BrdU at concentrations between 10(-7) M and 10(-5) M. When the cells were labeled with 0.5 microM or more, the percentage of labeled cells remained over 90% and 80% at 2 and 5 days, respectively. However, when the cells were labeled with BrdU concentration lower than 10(-7) M the percentage of labeled nuclei decreased more rapidly with time. The BrdU-labeled cells were mixed with an unlabeled population to determine whether their capacity to fuse was reduced. At a BrdU concentration of 0.5 x 10(-6) M, labeled myoblasts fused to a similar extent as unlabeled myoblasts, and a high percentage of marked cells were still perceptively labeled after 5 days. In contrast, the fusion capacity of myoblasts incubated with more than 10(-6) M BrdU was inhibited after only few rounds of DNA synthesis. These myoblasts were eventually able to fuse, however, when the BrdU diminished in the DNA due to cell division. These results indicate that labeling with BrdU at a concentration of 0.5 x 10(-6) M and an incorporation time of 48 hr is optimal to obtain perceptible immunocytochemical staining without affecting myoblast fusion. Such BrdU immunolabeling could be used as a nuclear marker for hybridization studies.  相似文献   

6.
Stem cells appear to retain labeled DNA for extended periods because of their selective segregation of template DNA strands during mitosis. In this study, proliferating cells in the prepubertal bovine mammary gland were labeled using five daily injections of 5-bromo-2-deoxyuridine (BrdU). Five weeks later, BrdU-labeled mammary epithelial cells were still evident. The percentage of BrdU-labeled epithelial cells was greatest in the lower region of the mammary gland, near the gland cistern, and was decreased toward the periphery of the parenchymal region, where the ducts were invading the mammary fat pad. Increased numbers of BrdU-labeled epithelial cells in basal regions of the gland are likely a consequence of decreased proliferation rates and increased cell cycle arrest in this area. In peripheral regions of mammary parenchyma, the percentage of heavily labeled epithelial cells averaged 0.24%, a number that is consistent with estimates of the frequency of stem cells in the mouse mammary gland. Epithelial label-retaining cells seemingly represent a slowly proliferating population of cells, as 5.4% of heavily labeled cells were positive for the nuclear proliferation antigen Ki67. Because epithelial label-retaining cells contain estrogen receptor (ER)-negative and ER-positive cells, they apparently comprise a mixed population, which I suggest is composed of ER-negative stem cells and ER-positive progenitors. Continuing studies will address the usefulness of this technique to identify bovine mammary stem cells and to facilitate studies of stem cell biology.  相似文献   

7.
We developed a double-label method to directly measure the rate at which cells enter S-phase of the cell cycle. All cells in S-phase were first labeled with a short pulse of [3H]-thymidine. This was followed by a longer incubation in bromodeoxyuridine (BrdU), a thymidine analogue. Nuclei labeled with [3H]-thymidine were detected by autoradiography and those labeled with BrdU by immunocytochemistry. Cells labeled only with BrdU must have entered S-phase at some time after the end of the [3H]-thymidine pulse. Thus, the rate of entry of cells into S-phase could be determined. This method was shown to be more accurate and more sensitive than determining changes in the rate at which cells entered S-phase with a continuous labeling protocol. It was possible to detect changes in proliferative activity that occurred in less than 1 hr. We used this double-label technique to study changes in the cell cycle during the terminal differentiation of chicken embryo lens fiber cells. These studies revealed differences in the effects of several treatments known to stimulate fiber cell differentiation. They also demonstrated the presence in the embryonic eye of factors that stimulate and prevent lens cell proliferation and differentiation.  相似文献   

8.
In the mammalian brain, adult neurogenesis has been found to occur primarily in the subventricular zone (SVZ) and dentate gyrus of the hippocampus (DG) and to be influenced by both exogenous and endogenous factors. In the present study, we examined the effects of male exposure or social isolation on neurogenesis in adult female prairie voles (Microtus ochrogaster). Newly proliferated cells labeled by a cell proliferation marker, 5-bromo-2'-deoxyuridine (BrdU), were found in the SVZ and DG, as well as in other brain areas, such as the amygdala, hypothalamus, neocortex, and caudate/putamen. Two days of male exposure significantly increased the number of BrdU-labeled cells in the amygdala and hypothalamus in comparison to social isolation. Three weeks later, group differences in BrdU labeling generally persisted in the amygdala, whereas in the hypothalamus, the male-exposed animals had more BrdU-labeled cells than did the female-exposed animals. In the SVZ, 2 days of social isolation increased the number of BrdU-labeled cells compared to female exposure, but this difference was no longer present 3 weeks later. We have also found that the vast majority of the BrdU-labeled cells contained a neuronal marker, indicating neuronal phenotypes. Finally, group differences in the number of cells undergoing apoptosis were subtle and did not seem to account for the observed differences in BrdU labeling. Together, our data indicate that social environment affects neuron proliferation in a stimulus- and site-specific manner in adult female prairie voles.  相似文献   

9.
Porous microcarriers were fabricated from synthesized poly(γ-benzyl-L-glutamate) (PBLG) polymer to engineer adipose tissue with lobule-like structure via the injectable approach. The adipogenic differentiation of human adipose-derived stem cells (hASCs) seeded on porous PBLG microcarriers was determined by adipogenic gene expression and glycerol-3-phosphate dehydrogenase enzyme activity. In vitro adipogenic cultivation was performed for 7 days, and induced hASC/PBLG complex (Adi-ASC/PBLG group) was subcutaneously injected into nude mice. Injections of PBLG microcarriers alone (PBLG group) and non-induced hASC/PBLG complex (ASC/PBLG group) served as controls. Newly formed tissues were harvested after 4 and 8 weeks. Generation of subcutaneous adipose tissue with typical lobule-like structure separated by fibrous septa was observed upon injection of adipogenic-induced hASC/microsphere complex. Adipogenesis significantly increased in the Adi-ASC/PBLG group compared with the control groups. The angiogenesis in the engineered adipose tissue was comparable to that in normal tissue as determined by capillary density and luminal diameter. Cell tracking assay demonstrated that labeled hASCs remained detectable in the neo-generated tissues 8 weeks post-injection using green fluorescence protein-labeled hASCs. These results indicate that adipose tissue with typical lobule-like structure could be engineered using injectable porous PBLG microspheres loaded with adipogenic-induced hASCs.  相似文献   

10.
Understanding the process of adipogenesis is critical if suitable therapeutics for obesity and related metabolic diseases are to be found. The current study presents proof of feasibility of creating a 3-D spheroid model using human adipose-derived stem cells (hASCs) and their subsequent adipogenic differentiation. hASC spheroids were formed atop an elastin-like polypeptide-polyethyleneimine (ELP-PEI) surface and differentiated using an adipogenic cocktail. Spheroids were matured in the presence of dietary fatty acids (linoleic or oleic acid) and evaluated based on functional markers including intracellular protein, CD36 expression, triglyceride accumulation, and PPAR-γ gene expression. Spheroid size was found to increase as the hASCs matured in the adipocyte maintenance medium, though the fatty acid treatment generally resulted in smaller spheroids compared to control. A stable protein content over the 10-day maturation period indicated contact-inhibited proliferation as well as minimal loss of spheroids during culture. Spheroids treated with fatty acids showed greater amounts of intracellular triglyceride content and greater expression of the key adipogenic gene, PPAR-γ. We also demonstrated that 3-D spheroids outperformed 2-D monolayer cultures in adipogenesis. We then compared the adipogenesis of hASC spheroids to that in 3T3-L1 spheroids and found that the triglyceride accumulation was less profound in hASC spheroids than that in 3T3-L1 adipocytes, correlated with smaller average spheroids, suggesting a relatively slower differentiation process. Taken together, we have shown the feasibility of adipogenic differentiation of patient-derived hASC spheroids, which with further development, may help elucidate key features in the adipogenesis process.  相似文献   

11.
Studies on BrdU labeling of hematopoietic cells: stem cells and cell lines   总被引:4,自引:0,他引:4  
Studies using chronic in vivo BrdU exposure, isolating primitive stem cells, and determining BrdU labeling, indicate that stem cells cycle. BrdU is also incorporated into DNA during damage/repair. DNA, which has incorporated BrdU due to cycle transit is heavier than normal, while the density of DNA with damage/repair incorporation is intermediate. DNA density of purified lineage-rhodamine low (rho(low)) Hoechst low (Ho(low)) stem cells or FDC-P1 cell line cells-was assessed in vitro, after exposure to cytokines and BrdU (cycling model) or cytokines and BrdU with bleomycin to induce strand breaks and hydroxyurea to halt cycle progression (damage/repair model). We determined DNA density using cesium chloride (CsCl) gradients and either fluorometry or dot blot chemiluminesence. DNA from BrdU labeled cycling Lin-rho(lo)Ho(lo) or FDC-P1 cells was heavier than normal DNA, while damage repair DNA had an intermediate density. We then assessed BrdU labeling of Lin-rho(lo)Ho(lo) cells in vivo. We found that 70.9% of lin-rho(lo)Ho(lo) cells labeled at 5 weeks. DNA density of these cells was low, in the damage/repair range, but similar results were obtained with stem cells, which had proliferated in vivo. Dilution of BrdU in in vitro culture of proliferating FDC-P1 cells also resulted in damage/repair density. We conclude that in vitro BrdU labeling models can distinguish between proliferation and damage/repair, but that we cannot obtain high enough in vivo levels to address this issue. All together, while we cannot absolutely exclude damage/repair as contributing to stem cell BrdU labeling, the data indicate that primitive bone marrow stem cells are probably a cycling population.  相似文献   

12.
M Iwai  K Abe  H Kitagawa  T Hayashi 《Human cell》2001,14(1):27-38
Recent advancements in molecular biology are made to expect the appearance of the new treatment of stroke patients. One is the administration of neurotrophic factors, and another is the use of neural stem cell. In this report, we performed two experiments. First experiment is administration of glial cell line-derived neurotrophic factor (GDNF) using an adenovirus vector into ischemic rat brain. A replication-defective adenoviral vector containing GDNF gene (Ad-GDNF) was directly injected into the cerebral cortex at 1 day before 90 min of transient middle cerebral artery occlusion (MCAO) in rats. Infarct volume of the Ad-GDNF injected group at 24 h after the transient MCAO was significantly smaller than that of vehicle or Ad-LacZ treated group. These results suggest that the successful exogenous GDNF gene transfer ameliorates the ischemic brain injury after transient MCAO in association with the reduction of apoptotic signals. Second one is the neural stem cell activation after transient ischemia. We investigated a possible expression of highly polysialylated neural cell adhesion molecule (PSA-NCAM) in gerbil hippocampus after 5 min of transient global ischemia in association to the proliferation of neural stem cell labeled with bromodeoxyuridine (BrdU). The number of PSA-NCAM positive cells increased in dentate gyrus (DG) at 10 and 20 days, and that of BrdU-labeled cells increased in DG at 5 and 10 days after the reperfusion. Immunofluorescence for PSA-NCAM and BrdU showed that a few cells per section were double labeled in DG only at 10 days after the reperfusion. These results suggest different chronological change of PSA-NCAM positive and BrdU-labeled cells in DG after transient ischemia.  相似文献   

13.
Neural stem cells have been identified in multiple parts of the postnatal mammalian brain, as well as in the inner ear. No investigation of potential neural stem cells in the cochlear nucleus has yet been performed. The aim of this study was to investigate potential neural stem cells from the cochlear nucleus by neurosphere assay and in histological sections to prove their capacity for self-renewal and for differentiation into progenitor cells and cells of the neuronal lineage. For this purpose, cells of the cochlear nucleus of postnatal day 6 rats were isolated and cultured for generation of primary neurospheres. Spheres were dissociated and cells analyzed for capacity for mitosis and differentiation. Cell division was detected by cell-counting assay and BrdU incorporation. Differentiated neural progenitor cells showed distinct labeling for Nestin and for Atoh1. Positive staining of ß-III Tubulin, glial fibrillary acid protein (GFAP) and myelin basic protein (MBP) showed differentiation into neurons, astrocytes and oligodendrocytes. Furthermore, Nestin- and BrdU-labeled cells could also be detected in histological sections. In conclusion, the isolated cells from the cochlear nucleus presented all the features of neural stem cells: cell division, presence of progenitor cells and differentiation into different cells of the neuronal lineage. The existence of neural stem cells may add to the understanding of developmental features in the cochlear nucleus.  相似文献   

14.
We investigated nucleotide-labeling patterns during ongoing hair cell regeneration in the avian vestibular epithelium and during drug-induced regeneration in the avian auditory epithelium. For utricle experiments, post-hatch chicks received an injection of bromodeoxyuridine (BrdU) and were allowed to survive from 2 hours to 110 days after the injection. Utricles were fixed and immunoreacted to detect BrdU. The number of BrdU-labeled nuclei in the hair cell and support cell layers of the utricular sensory epithelium changes significantly between 2 hours and 110 days post-BrdU. At 2 hours, most labeled cells are isolated, while by 5–10 days, the majority of labeled cells are organized in pairs that are most frequently composed of a hair cell and a support cell. Pairs of labeled cells are seen as late as 110 days. Clusters of more than 3 labeled cells are uncommon at all time-points. The total number of labeled cells increases approximately 1.5-fold between 5 and 60 days post-BrdU. This increase is due primarily to a rise in the number of labeled support cells, and it is likely that it represents additional rounds of division by a subset of cells that were labeled at the time of the BrdU injection. There is a significant decrease in labeled nuclei in the hair cell layer between 60 and 110 days post-BrdU, suggesting that hair cells die during this period. To investigate support cell recycling in the drug-damaged auditory epithelium, we examined nucleotide double labeling after separate injections of BrdU and tritiated thymidine. A small number of support cells that incorporate BrdU administered at 3 days post-gentamicin treatment also label with tritiated thymidine administered between 17 and 38 hours later. We conclude that a small population of support cells recycles during regeneration in both the normal utricle and the drug-damaged basilar papilla.  相似文献   

15.
The bed nucleus of the stria terminalis (BNST) and centromedial amygdala share many neuroanatomical and neurochemical characteristics, suggesting similarities in their development. Here we compare the neurogenesis of a group of cells for which already several common characteristics have been documented, that is, the sexually dimorphic arginine vasopressin-immunoreactive (AVP-ir) cells of the BNST and amygdala. To determine when these cells are born, pregnant rats received intraperitoneal injections of the thymidine analogue bromo-2-deoxy-5-uridine (BrdU) on one of nine embryonic days, E10 to E18; E1 being the day that a copulatory plug was found. At 3 months of age, the offsprings of these females were killed and their brains stained immunocytochemically for BrdU and AVP. Most AVP-ir cells were labeled with BrdU by injections on E12 and E13. Although BrdU labeling of AVP-ir cells did not differ between the BNST and amygdala, it differed between males and females. From E12 to E13, the percentage of BrdU-labeled AVP-ir cells decreased more in males than in females. AVP-ir cells appeared to be born earlier than most other cells in the same area, the majority of which were labeled with BrdU by injections on E14, E15, and E16. The similarities in the birthdates of AVP-ir cells in the BNST and amygdala may help to explain why these cells take on so many similar characteristics. The sex difference in birthdates of AVP-ir cells may help to explain which cellular processes underlie the sexual differentiation of these cells. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
17.
Most techniques used to assay the growth of microbes in natural communities provide no information on the relationship between microbial productivity and community structure. To identify actively growing bacteria, we adapted a technique from immunocytochemistry to detect and selectively isolate DNA from bacteria incorporating bromodeoxyuridine (BrdU), a thymidine analog. In addition, we developed an immunocytochemical protocol to visualize BrdU-labeled microbial cells. Cultured bacteria and natural populations of aquatic bacterioplankton were pulse-labeled with exogenously supplied BrdU. Incorporation of BrdU into microbial DNA was demonstrated in DNA dot blots probed with anti-BrdU monoclonal antibodies and either peroxidase- or Texas red-conjugated secondary antibodies. BrdU-containing DNA was physically separated from unlabeled DNA by using antibody-coated paramagnetic beads, and the identities of bacteria contributing to both purified, BrdU-containing fractions and unfractionated, starting-material DNAs were determined by length heterogeneity PCR (LH-PCR) analysis. BrdU-containing DNA purified from a mixture of DNAs from labeled and unlabeled cultures showed >90-fold enrichment for the labeled bacterial taxon. The LH-PCR profile for BrdU-containing DNA from a labeled, natural microbial community differed from the profile for the community as a whole, demonstrating that BrdU was incorporated by a taxonomic subset of the community. Immunocytochemical detection of cells with BrdU-labeled DNA was accomplished by in situ probing with anti-BrdU monoclonal antibodies and Texas red-labeled secondary antibodies. Using this suite of techniques, microbial cells incorporating BrdU into their newly synthesized DNA can be quantified and the identities of these actively growing cells can be compared to the composition of the microbial community as a whole. Since not all strains tested could incorporate BrdU, these methods may be most useful when used to gain an understanding of the activities of specific species in the context of their microbial community.  相似文献   

18.
5-Bromo-2'-deoxyuridin (BrdU) is frequently used in anaylsis of neural stem cell biology, in particular to label and to fate-map dividing cells. However, up to now, only a few studies have addressed the question as to whether BrdU labeling per se affects the cells to be investigated. Here, we focused on the potential impact of BrdU on neurosphere cultures derived from the adult rat brain and on proliferation of progenitors in vivo. In vitro, neurospheres were pulsed for 48?h with BrdU, and cell proliferation, cell cycle, differentiation, survival and adhesion properties were subsequently analyzed. BrdU inhibited the expansion of neural progenitors as assessed by MTS assay and increased the fraction of cells in the G0/G1-phase of the cell cycle. Moreover, BrdU increased cell death and dose-dependently induced adherence of NPCs. Cell adherence was accompanied by a reduced amount of active matrix-metalloproteinase-2 (MMP-2). Furthermore, BrdU repressed neuronal and oligodendroglial differentiation, whereas astroglial fate was not affected. In contrast to the in vitro situation, BrdU apparently did not influence endogenous proliferation of NPCs or neurogenesis in concentrations that are typically used for labeling of neural progenitors in vivo. Our results reveal so far uncharacterized effects of BrdU on adult NPCs. We conclude that, because of its ubiquitous use in stem cell biology, any potential effect of BrdU of NPCs has to be scrutinized prior to interpretation of data.  相似文献   

19.
Initial studies to establish an in vitro system allowing survival and multiplication of porcine spermatogonia are described. Purified spermatogonia from 3-week-old pigs were cultured for 9 days alone or in the presence of Sertoli cells in either control medium or in medium supplemented with 5%, fetal calf serum (FCS). Under either condition the number and the viability of the cells decreased with time. but both parameters were positively influenced by the presence of FCS. However, very few, if any, spermatogonia were able to take up BrdU under either condition. In another series of experiments, small fragments of seminiferous tubules from 3-week-old pigs were cultured in the presence of FCS, or seeded on an extracellular matrix. Under these conditions the number of cells decreased between day 0 and day 2 or day 5, then it remained roughly constant until the end of the culture. The number of spermatogonia decreased 2.5 fold during the two-week culture period. Spermatogonia were able to incorporate BrdU until the end of the experiment. The number of BrdU-labeled spermatogonia was higher when tubule-segments were seeded on an extracellular matrix. Then, the effects of the association of FCS and extracellular matrix were tested. The number of spermatogonia, during the whole culture period, was higher in serum-containing cultures than in serum-free cultures. As for the number of spermatogonia able to incorporate BrdU at -different days, is decreased 3 fold between day 2 and 14 irrespective of the culture conditions. By contrast, the number of spermatogonia, labeled with BrdU between day 1 and 2, measured on days 5 to 14 of culture, was higher in serum-containing cultures. Finally, the number of spermatogonia labeled between day 1 and 2 was higher from day 5 onward than the number of spermatogonia able to take up BrdU between days 4 and 13. Taken together, these results indicate that intercellular communication and extracellular matrix are important for spermatogonia multiplication and that FCS promotes the survival of spermatogonia under in vitro conditions.  相似文献   

20.
Identifying external factors that can be used to control neural stem cells division and their differentiation to neurons, astrocytes and oligodendrocytes is of high scientific and clinical interest. Here we show that the Nogo-66 receptor interacting protein LINGO-1 is a potent regulator of neural stem cell maturation to neurons. LINGO-1 is expressed by cortical neural stem cells from E14 mouse embryos and inhibition of LINGO-1 during the first days of neural stem cell differentiation results in decreased neuronal maturation. Compared to neurons in control cultures, which after 6 days of differentiation have long extending neurites, neurons in cultures treated with anti-LINGO-1 antibodies retain an immature, round phenotype with only very short processes. Furthermore, neutralization of LINGO-1 results in a threefold increase in βIII tubulin-positive cells compared to untreated control cultures. By using BrdU incorporation assays we show that the immature neurons in LINGO-1 neutralized cultures are dividing neuroblasts. In contrast to control cultures, in which no cells were double positive for βIII tubulin and BrdU, 36% of the neurons in cultures treated with anti-LINGO-1 antibodies were proliferating after three days of differentiation. TUNEL assays revealed that the amount of cells going through apoptosis during the early phase of differentiation was significantly decreased in cultures treated with anti-LINGO-1 antibodies compared to untreated control cultures. Taken together, our results demonstrate a novel role for LINGO-1 in neural stem cell differentiation to neurons and suggest a possibility to use LINGO-1 inhibitors to compensate for neuronal cell loss in the injured brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号