首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
Since androgen receptor (AR) plays an important role in prostate cancer development and progression, androgen-ablation has been the frontline therapy for treatment of advanced prostate cancer even though it is rarely curative. A curative strategy should involve functional and structural elimination of AR from prostate cancer cells. We have previously reported that apoptosis induced by medicinal proteasome-inhibitory compound celastrol is associated with a decrease in AR protein levels. However celastrol-stimulated events contributing to this AR decrease have not been elucidated. Here, we report that a variety of chemotherapeutic agents, including proteasome inhibitors, a topoisomerase inhibitor, DNA-damaging agents and docetaxel that cause cell death, decrease AR levels in LNCaP prostate cancer cells. This decrease in AR protein levels was not due to the suppression of AR mRNA expression in these cells. We observed that a proteolytic activity residing in cytosol of prostate cancer cells is responsible for AR breakdown and that this proteolytic activity was stimulated upon induction of apoptosis. Interestingly, proteasome inhibitor celastrol- and chemotherapeutic drug VP-16-stimulated AR breakdown was attenuated by calpain inhibitors calpastatin and N-acetyl-L-leucyl-L-leucyl-L-methioninal. Furthermore, AR proteolytic activity pulled down by calmodulin-agarose beads from celastrol-treated PC-3 cells showed immunoreactivity to a calpain antibody. Taken together, these results demonstrate calpain involvement in proteasome inhibitor-induced AR breakdown, and suggest that AR degradation is intrinsic to the induction of apoptosis in prostate cancer cells.  相似文献   

3.
The therapeutic effects of abemaciclib (ABE), an inhibitor of cyclin- dependent kinases (CDK) 4/6, on the proliferation of two types of prostate cancer (PC) cells were revealed. In this study, in vitro cytotoxic and apoptotic effects of ABE on metastatic castration-resistant prostate cancer (mCRPC) androgen receptor (AR) negative PC-3 and AR mutant LNCaP PC cells were analyzed with WST-1, Annexin V, cell cycle, reactive oxygen species (ROS), mitochondrial membrane potential, RT-PCR, western blot, and apoptosis protein array. ABE considerably inhibited the growth of PC cells in a dose-dependent manner (p<0.01) and caused significant apoptotic cell death through the suppression of CDK4/6-Cyclin D complex, ROS generation and depolarization of mitochondria membrane potential. However, PC-3 cells were more sensitive to ABE than LNCaP cells. Furthermore, the expression levels of several pro-apoptotic and cell cycle regulatory proteins were upregulated by ABE in especially PC-3 cells with the downregulation of apoptotic inhibitor proteins. Our results suggest that ABE inhibits PC cell growth and promotes apoptosis and thus ABE treatment may be a promising treatment strategy in especially mCRPC. Further preclinical and clinical studies should be performed to clarify the clinical use of ABE for the treatment of PC.  相似文献   

4.
Androgen ablation therapy is the most common strategy for suppressing prostate cancer progression; however, tumor cells eventually escape androgen dependence and progress to an androgen-independent phase. The androgen receptor (AR) plays a pivotal role in this transition. To address this transition mystery in prostate cancer, we established an androgen-independent prostate cancer cell line (LNCaPdcc), by long-term screening of LNCaP cells in androgen-deprived conditions, to investigate changes of molecular mechanisms before and after androgen withdrawal. We found that LNCaPdcc cells displayed a neuroendocrine morphology, less aggressive growth, and lower expression levels of cell cycle-related factors, although the cell cycle distribution was similar to parental LNCaP cells. Notably, higher protein expression of AR, phospho-Ser(81)-AR, and PSA in LNCaPdcc cells were observed. The nuclear distribution and protein stability of AR increased in LNCaPdcc cells. In addition, cell proliferation results exhibited the biphasic nature of the androgen (R1881) effect in two cell lines. On the other hand, LNCaPdcc cells expressed higher levels of Her2, phospho-Tyr(1221/1222)-Her2, ErbB3, and ErbB4 proteins than parental LNCaP cells. These two cell lines exhibited distinct responses to Her2 activation (by heregulin treatment) on Her2 phosphorylation and Her2 inhibition (by AG825 or Herceptin treatments) on proliferation. In addition, the Her2 inhibitor more effectively caused AR degradation and diminished AR Ser(81) phosphorylation in LNCaPdcc cells. Taken together, our data demonstrate that Her2 plays an important role in the support of AR protein stability in the transition of androgen requirement in prostate cancer cells. We hope these findings will provide novel insight into the treatment of hormone-refractory prostate cancer.  相似文献   

5.
Retigeric acid B (RB), a naturally occurring pentacyclic triterpenic acid, has been noted for its antifungal properties in vitro. Here, we observed that RB inhibited prostate cancer cell proliferation and induced cell death in a dose-dependent manner, but exerted very little inhibitory effect on noncancerous prostate epithelial cell viability. Treatment of androgen-independent PC-3 cells with RB caused a moderate increase in p21Cip1, and enforced the cell cycle arrest in the S phase. A block of S phase was accompanied with decreases in cyclin B, and increases in cyclin E and cyclin A proteins and phosphorylated retinoblastoma protein (pRb), whereas the expression of cdk2 remained almost unchanged in PC-3 cells exposed to RB. Moreover, RB significantly inhibited DNA synthesis with a dose-dependent reduction in the incorporation of BrdU into DNA, and enhanced apoptosis of PC-3 cells with induction of a higher ratio of Bax/Bcl-2 proteins, and activation of caspase-3 which, in turn, promoted the cleavage of poly (ADP-ribose) polymerase (PARP). However, pretreatment with the pan-caspase inhibitor z-VAD-fmk only partially alleviated RB-triggered apoptosis in PC-3 cells, suggesting the involvement of both caspase-dependent and caspase-independent pathways. Additionally, treatment of androgen-sensitive LNCaP cells with RB led to a reduction in the expression of androgen receptor (AR), and subsequently decreased the transactivity of AR. These observations help to support the search for promising candidates to treat prostate cancer.  相似文献   

6.
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK, TNFSF12) is a member of the tumor necrosis factor superfamily. TWEAK activates the Fn14 receptor, and may regulate cell death, survival and proliferation in tumor cells. However, there is little information on the function and regulation of this system in prostate cancer. Fn14 expression and TWEAK actions were studied in two human prostate cancer cell lines, the androgen-independent PC-3 cell line and androgen-sensitive LNCaP cells. Additionally, the expression of Fn14 was analyzed in human biopsies of prostate cancer. Fn14 expression is increased in histological sections of human prostate adenocarcinoma. Both prostate cancer cell lines express constitutively Fn14, but, the androgen-independent cell line PC-3 showed higher levels of Fn14 that the LNCaP cells. Fn14 expression was up-regulated in PC-3 human prostate cancer cells in presence of inflammatory cytokines (TNFα/IFNγ) as well as in presence of bovine fetal serum. TWEAK induced apoptotic cell death in PC-3 cells, but not in LNCaP cells. Moreover, in PC-3 cells, co-stimulation with TNFα/IFNγ/TWEAK induced a higher rate of apoptosis. However, TWEAK or TWEAK/TNFα/IFNγ did not induce apoptosis in presence of bovine fetal serum. TWEAK induced cell death through activation of the Fn14 receptor. Apoptosis was associated with activation of caspase-3, release of mitochondrial cytochrome C and an increased Bax/BclxL ratio. TWEAK/Fn14 pathway activation promotes apoptosis in androgen-independent PC-3 cells under certain culture conditions. Further characterization of the therapeutic target potential of TWEAK/Fn14 for human prostate cancer is warranted.  相似文献   

7.
Upon binding to androgen, the androgen receptor (AR) can translocate into the nucleus and bind to androgen response element(s) to modulate its target genes. Here we have shown that MG132, a 26 S proteasome inhibitor, suppressed AR transactivation in an androgen-dependent manner in prostate cancer LNCaP and PC-3 cells. In contrast, MG132 showed no suppressive effect on glucocorticoid receptor transactivation. Additionally, transfection of PSMA7, a proteasome subunit, enhanced AR transactivation in a dose-dependent manner. The suppression of AR transactivation by MG132 may then result in the suppression of prostate-specific antigen, a well known marker used to monitor the progress of prostate cancer. Further mechanistic studies indicated that MG132 may suppress AR transactivation via inhibition of AR nuclear translocation and/or inhibition of interactions between AR and its coregulators, such as ARA70 or TIF2. Together, our data suggest that the proteasome system plays important roles in the regulation of AR activity in prostate cancer cells and may provide a unique target site for the development of therapeutic drugs to block androgen/AR-mediated prostate tumor growth.  相似文献   

8.
Pristimerin is a natural product derived from the Celastraceae and Hippocrateaceae families that were used as folk medicines for anti inflammation in ancient times. Although it has been shown that pristimerin induces apoptosis in breast cancer cells, the involved mechanism of action is unknown. The purpose of the current study is to investigate the primary target of pristimerin in human cancer cells, using prostate cancer cells as a working model. Nucleophilic susceptibility and in silico docking studies show that C6 of pristimerin is highly susceptible towards a nucleophilic attack by the hydroxyl group of N-terminal threonine of the proteasomal chymotrypsin subunit. Consistently, pristimerin potently inhibits the chymotrypsin-like activity of a purified rabbit 20S proteasome (IC50 2.2 micromol/L) and human prostate cancer 26S proteasome (IC50 3.0 micromol/L). The accumulation of ubiquitinated proteins and three proteasome target proteins, Bax, p27 and I kappa B-alpha, in androgen receptor (AR)-negative PC-3 prostate cancer cells supports the conclusion that proteasome inhibition by pristimerin is physiologically functional. This observed proteasome inhibition subsequently led to the induction of apoptotic cell death in a dose- and kinetic-dependent manner. Furthermore, in AR-positive, androgen-dependent LNCaP and AR-positive, androgen-independent C4-2B prostate cancer cells, proteasome inhibition by pristimerin results in suppression of AR protein prior to apoptosis. Our data demonstrate, for the first time, that the proteasome is a primary target of pristimerin in prostate cancer cells and inhibition of the proteasomal chymotrypsin-like activity by pristimerin is responsible for its cancer cell death-inducing property.  相似文献   

9.
Purvalanol and roscovitine are cyclin dependent kinase (CDK) inhibitors that induce cell cycle arrest and apoptosis in various cancer cells. We further hypothesized that co-treatment of CDK inhibitors with rapamycin, an mTOR inhibitor, would be an effective combinatory strategy for the inhibition of prostate cancer regard to androgen receptor (AR) status due to inhibition of proliferative pathway, PI3K/AKT/mTOR, and induction of cell death mechanisms. Androgen responsive (AR+), PTEN?/? LNCaP and androgen independent (AR?), PTEN+/? DU145 prostate cancer cells were exposed to purvalanol (20 µM) and roscovitine (30 µM) with or without rapamycin for 24 h. Cell viability assay, immunoblotting, flow cytometry and fluorescence microscopy was used to define the effect of CDK inhibitors with or without rapamycin on proliferative pathway and cell death mechanisms in LNCaP and DU145 prostate cancer cells. Co-treatment of rapamycin modulated CDK inhibitors-induced cytotoxicity and apoptosis that CDK inhibitors were more potent to induce cell death in AR (+) LNCaP cells than AR (?) DU145 cells. CDK inhibitors in the presence or absence of rapamycin induced cell death via modulating upstream PI3K/AKT/mTOR signaling pathway in LNCaP cells, exclusively only treatment of purvalanol have strong potential to inhibit both upstream and downstream targets of mTOR in LNCaP and DU145 cells. However, co-treatment of rapamycin with CDK inhibitors protects DU145 cells from apoptosis via induction of autophagy mechanism. We confirmed that purvalanol and roscovitine were strong apoptotic and autophagy inducers that based on regulation of PI3K/AKT/mTOR signaling pathway. Co-treatment of rapamycin with purvalanol and roscovitine exerted different effects on cell survival and death mechanisms in LNCaP and DU145 cell due to their AR receptor status. Our studies show that co-treatment of rapamycin with CDK inhibitors inhibit prostate cancer cell viability more effectively than either agent alone, in part, by targeting the mTOR signaling cascade in AR (+) LNCaP cells. In this point, mTOR is a fine-tuning player in purvalanol and roscovitine-induced apoptosis and autophagy via regulation of PI3K/AKT and the downstream targets, which related with cell proliferation.  相似文献   

10.
11.
Androgen (AR) and glucocorticoid (GR) receptor signaling play opposing roles in prostate tumorigenesis: in prostate, AR acts as an oncogene, and GR is a tumor suppressor. Recently, we found that non-steroidal phyto-chemical compound A (CpdA) is AR/GR modulator acting as anti-inflammatory anti-androgen. CpdA inhibits AR and prevents GR transactivation while enhancing GR transrepression. GR and AR are controlled by proteasomal degradation. We found that prolonged exposure of LNCaP, LNCaP-GR, DU145 and PC3 prostate carcinoma (PCa) cells to proteasome inhibitor Bortezomib (BZ) caused AR degradation and GR accumulation. BZ enhanced CpdA ability to inhibit AR and to augment GR transrepression. We also found that CpdA+BZ differentially regulated GR/AR to cooperatively suppress PCa cell growth and survival and to induce endoplasmic reticulum stress (ERS). Importantly, CpdA+BZ differentially regulated GR-responsive genes. CpdA+BZ blocked activation of glucocorticoid-responsive pro-survival genes, including SGK1, but activated BZ-induced ERS-related genes BIP/HSPA5 and CHOP/GADD153. Using ChIP, we showed that SGK1, BIP/HSPA5 and CHOP regulation was due to effects of CpdA and CpdA+BZ on GR loading on their promoters. We also found that AR and GR are abundant in advanced PCa from patients treated by androgen ablation and/or chemotherapy: 56% of carcinomas from treated patients expressed both receptors, and the other 27% expressed either GR or AR. Overall, our data validate the concept of dual AR/GR targeting in prostate cancer (PC) and suggest that BZ combination with dual-target steroid receptor modulator CpdA has high potential for PC therapy.Key words: prostate cancer, proteasome inhibitor, non-steroidal modulator, apoptosis, ER stress  相似文献   

12.
TNF-related apoptosis-inducing ligand (TRAIL) can induce apoptosis in many types of cancer cells. TRAIL is considered a therapeutic target, therefore, it was of interest to examine molecular mechanisms that may modulate sensitivity to TRAIL signaling in prostate cancer cells. LNCaP cells were found to be relatively resistant to TRAIL induced cell death while PC3 cells were sensitive. PI3-kinase (PI3 K) inhibitors were able to render LNCaP cells sensitive to TRAIL but conferred resistance to PC3 cells. PI3 K inhibitors were associated with an increase in p21waf1, cip1 expression in PC3 cells where as p21 decreases in LNCaP cells suggesting that p21 may impart TRAIL resistance. Since androgen receptor (AR) signaling can be modulated by AKT, and p21 is an AR responsive gene, the impact of PI3 K inhibition on TRAIL sensitivity was evaluated in AR transfected PC3 cells (PC3AR). The expression of AR was significantly downregulated by PI3 K inhibition in LNCaP cells, which have an intact AR signaling axis. PC3AR cells expressed higher levels of p21 protein and were relatively resistant to TRAIL compared to control cells. Finally, using adenoviral p21 gene transfer we directly demonstrated that p21 can confer resistance to TRAIL-induced cell death. These results suggest that TRAIL resistance is not regulated simply by a PI3 K/AKT survival pathway associated with inactivating PTEN mutations but may also be modulated by downstream AR responsive targets such as p21. These findings may have significant clinical implications for the utility of TRAIL in the management of prostate cancer.  相似文献   

13.
NKX3.1, a prostate-specific homeobox gene, plays an important role in prostate cancer and usually functions as tumor suppressor gene. Previously we have demonstrated that forced expression of NKX3.1 reduced cell growth and invasion in prostate cancer cell line PC-3. Presently, we investigated the effect of NKX3.1 on the sensitivity of the prostate cancer cells to apoptosis inducer tumor necrosis factor-α (TNF-α) and cycloheximide (CHX). PC-3 cells were transfected with NKX3.1 expression plasmid (pcDNA3.1-NKX3.1) and LNCaP cells were transfected with siRNA expression plasmid (pRNAT-RNAi1) targeting NKX3.1. The cell morphology and apoptotic rate were analyzed by Hoechst 33342 staining and Flow Cytometry in absence or presence of TNF-α and CHX. The activity of caspase-3 was determined using DEVD-pNA as substrate. Simultaneously, the effect of NKX3.1 on caspase-3 expression was detected using RT-PCR and Western blot. The results showed that ectopic expression of NKX3.1 promoted TNF-α/CHX-induced apoptosis in PC-3 cells, whereas knockdown of NKX3.1 protected LNCaP cells from apoptosis induced by TNF-α/CHX. The pro-apoptosis activity of NKX3.1 might partially contribute to its elevation of caspase-3 expression and activity. Manipulating NKX3.1 expression should be a promising therapeutic strategy for treating both androgen-dependent and androgen-independent prostate cancer.  相似文献   

14.
AimTo evaluate the radiopotentiation of enzalutamide in human prostate cancer cells.BackgroundWhile radiotherapy is the first line of treatment for prostate cancer, androgen blockade therapies are demonstrating significant survival benefit as monotherapies. As androgen blockade can cause cell death by apoptosis, it is likely that androgen blockade will potentiate the cytotoxic activities of radiotherapy.Materials and methodsHere, we tested the potential synergistic effects of these two treatments over two human metastatic prostate cancer cells by real-time cell analysis (RTCA), androgen-sensitive LNCaP cells (Lymph Node Carcinoma of the Prostate) and androgen-independent PC-3. Both cell lines were highly resistant to high doses of radiotherapy.ResultsA pre-treatment of LNCaP cells with IC50 concentrations of enzalutamide significantly sensitized them to radiotherapy through enhanced apoptosis. In contrast, enzalutamide resistant PC-3 cells were not sensitized to radiotherapy by androgen blockade.ConclusionsThese results provide evidence that the enzalutamide/radiotherapy combination could maximize therapeutic responses in patients with enzalutamide-sensitive prostate cancer.  相似文献   

15.
Suppression of invasive phenotype is essential in developing new therapeutic tools to treat prostate cancer (PC). Evidence indicates that androgen-dependent (AD) prostate cancer cells are characterized by a lower malignant phenotype. We have demonstrated that transfection with an androgen receptor (AR) expression vector of the androgen-independent (AI) prostate cancer cell line PC3 decreases invasion of these cells through modulation of alpha6beta4 integrin expression, indicating a genotropic effect of androgens in inhibiting invasion ability of AD PC cells. Later on, we have shown that also a non-genotropic mechanism is involved in such an effect. By using immunoconfocal fluorescent microscopy, we demonstrated that AR in PC3-AR cells co-localizes with the EGFR receptors (EGFR) in PC3-AR cells. Co-immunoprecipitation studies both in PC3-AR cells and in the AD cell line LNCaP that physiologically express both receptors, confirm the occurrence of an interaction between of the two proteins. In PC3-AR cells, we demonstrated a disruption of EGFR signalling properties (reduced EGF-induced EGFR autotransphosphorylation, reduced EGF-stimulated PI3K activity as well as EGFR-PI3K interaction) contributing to the lower invasive phenotype of these cells. In another study, we investigated the effects of a new Vitamin D analogue, BXL628, on invasion in response to KGF in the androgen-independent PC cell line DU145. We found that the compound was able to reduce proliferation and invasion of the cells in response to the growth factor. In addition, we found that KGF-induced autotransphosphorylation of KGF receptor (KGFR) and PI3K activation were suppressed after short-term (5min) pre-treatment with the analogue before addition of KGF. Collectively, these studies demonstrate that a non-genotropic effect due to a direct interaction of the androgen receptor with EGFR and to a rapid effect of a Vitamin D agonist on KGFR may disrupt signalling of GF leading to decreased tumorigenicity and a less malignant phenotype of PC cells in vitro.  相似文献   

16.
Progression of prostate cancer is facilitated by growth factors that activate critical signaling cascades thereby promote prostate cancer cell growth, survival, and migration. To investigate the effect of quercetin on insulin-like growth factor signaling and apoptosis in androgen independent prostate cancer cells (PC-3), IGF-IR, PI-3K, p-Akt, Akt, cyclin D1, Bad, cytochrome c, PARP, caspases-9 and 10 protein levels were assessed by western blot analysis. Mitochondrial membrane potency was detected by rhodamine-123 staining. Quercetin induced caspase-3 activity assay was performed for activation of apoptosis. Further, RT-PCR was also performed for Bad, IGF-I, II, IR, and IGFBP-3 mRNA expression. Quercetin significantly increases the proapoptotic mRNA levels of Bad, IGFBP-3 and protein levels of Bad, cytochrome C, cleaved caspase-9, caspase-10, cleaved PARP and caspase-3 activity in PC-3 cells. IGF-IRβ, PI3K, p-Akt, and cyclin D1 protein expression and mRNA levels of IGF-I, II and IGF-IR were decreased significantly. Further, treatment with PI3K inhibitor (LY294002) and quercetin showed decreased p-Akt levels. Apoptosis is confirmed by loss of mitochondrial membrane potential in quercetin treated PC-3 cells. This study suggests that quercetin decreases the survival of androgen independent prostate cancer cells by modulating the expression of insulin-like growth factors (IGF) system components, signaling molecules and induces apoptosis, which could be very useful for the androgen independent prostate cancer treatment.  相似文献   

17.
Prostate cancer is the most frequently diagnosed non-cutaneous tumor of men in Western countries. While surgery is often successful for organ-confined prostate cancer, androgen ablation therapy is the primary treatment for metastatic prostate cancer. However, this therapy is associated with several undesired side-effects, including increased risk of cardiovascular diseases. Shortening the period of androgen ablation therapy may benefit prostate cancer patients. Intermittent Androgen Deprivation therapy improves quality of life, reduces toxicity and medical costs, and delays disease progression in some patients. Cell culture and xenograft studies using androgen receptor (AR)-positive castration-resistant human prostate cancers cells (LNCaP, ARCaP, and PC-3 cells over-expressing AR) suggest that androgens may suppress the growth of AR-rich prostate cancer cells. Androgens cause growth inhibition and G1 cell cycle arrest in these cells by regulating c-Myc, Skp2, and p27Kip via AR. Higher dosages of testosterone cause greater growth inhibition of relapsed tumors. Manipulating androgen/AR signaling may therefore be a potential therapy for AR-positive advanced prostate cancer.  相似文献   

18.
19.
Androgen and androgen receptor (AR) are involved in growth of normal prostate and development of prostatic diseases including prostate cancer. Androgen deprivation therapy is used for treating advanced prostate cancer. This therapeutic approach focuses on suppressing the accumulation of potent androgens, testosterone and 5alpha-dihydrotestosterone (5alpha-DHT), or inactivating the AR. Unfortunately, the majority of patients with prostate cancer eventually advance to androgen-independent states and no longer respond to the therapy. In addition to the potent androgens, 5alpha-androstane-3alpha,17beta-diol (3alpha-diol), reduced from 5alpha-DHT through 3alpha-hydroxysteroid dehydrogenases (3alpha-HSDs), activated signaling may represent a novel pathway responsible for the progression to androgen-independent prostate cancer. Androgen sensitive human prostate cancer LNCaP cells were used to compare 5alpha-DHT and 3alpha-diol activated androgenic effects. In contrast to 5alpha-DHT, 3alpha-diol regulated unique patterns of beta-catenin and Akt expression as well as Akt phosphorylation in parental and in AR-silenced LNCaP cells. More significantly, 3alpha-diol, but not 5alpha-DHT, supported AR-silenced LNCaP cells and AR negative prostate cancer PC-3 cell proliferation. 3alpha-diol-activated androgenic effects in prostate cells cannot be attributed to the accumulation of 5alpha-DHT, since 5alpha-DHT formation was not detected following 3alpha-diol administration. Potential accumulation of 3alpha-diol, as a result of elevated 3alpha-HSD expression in cancerous prostate, may continue to support prostate cancer growth in the presence of androgen deprivation. Future therapeutic strategies for treating advanced prostate cancer might need to target reductive 3alpha-HSD to block intraprostatic 3alpha-diol accumulation.  相似文献   

20.
The majority of prostate cancer (PCa) patient receiving androgen ablation therapy eventually develop castration-resistant prostate cancer (CRPC). We previously reported that androgen treatment suppresses Skp2 and c-Myc through androgen receptor (AR) and induced G1 cell cycle arrest in androgen-independent LNCaP 104-R2 cells, a late stage CRPC cell line model. However, the mechanism of androgenic regulation of Skp2 in CRPC cells was not fully understood. In this study, we investigated the androgenic regulation of Skp2 in two AR-positive CRPC cell line models, the LNCaP 104-R1 and PC-3AR Cells. The former one is an early stage androgen-independent LNCaP cells, while the later one is PC-3 cells re-expressing either wild type AR or mutant LNCaP AR. Proliferation of LNCaP 104-R1 and PC-3AR cells is not dependent on but is suppressed by androgen. We observed in this study that androgen treatment reduced protein expression of Cdk2, Cdk7, Cyclin A, cyclin H, Skp2, c-Myc, and E2F-1; lessened phosphorylation of Thr14, Tyr15, and Thr160 on Cdk2; decreased activity of Cdk2; induced protein level of p27Kip1; and caused G1 cell cycle arrest in LNCaP 104-R1 cells and PC-3AR cells. Overexpression of Skp2 protein in LNCaP 104-R1 or PC-3AR cells partially blocked accumulation of p27Kip1 and increased Cdk2 activity under androgen treatment, which partially blocked the androgenic suppressive effects on proliferation and cell cycle. Analyzing on-line gene array data of 214 normal and PCa samples indicated that gene expression of Skp2, Cdk2, and cyclin A positively correlates to each other, while Cdk7 negatively correlates to these genes. These observations suggested that androgen suppresses the proliferation of CRPC cells partially through inhibition of Cyclin A, Cdk2, and Skp2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号