首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Nonalcoholic fatty liver disease (NAFLD) is associated with hepatic steatosis, inflammation and liver fibrosis and has become one of the leading causes of hepatocellular carcinoma and liver failure. However, the underlying molecular mechanism of hepatic steatosis and the progression to nonalcoholic steatohepatitis (NASH) are not fully understood. Herein, we discovered that AMPKα2 catalytic subunit showed reduced expression in the liver following high fat diet (HFD) feeding to mice. Importantly, knockout of AMPKα2 in mice aggravated NAFLD, hepatic steatosis, inflammation and fibrosis. On the other hand, hepatocyte-targeted overexpression of AMPKα2 prevented or reversed NAFLD indications. In vivo mechanistic studies revealed that increased phosphorylation of IKKα/β and NF-κB in HFD-fed AMPKα2−/− mice compared to WT mice, and treatment of these mouse cohorts with an inhibitor of NF-κB signaling for 4 weeks, effectively attenuated the progression of steatohepatitis and metabolic disorder features. In summary, AMPKα2 provides a protective role in the process of hepatic steatosis to NASH progression through suppression of liver NF-κB signaling.  相似文献   

2.
3.
Nonalcoholic fatty liver disease (NAFLD), which is the most prevalent hepatic disorder worldwide, affecting 25% of the general population, describes a spectrum of progressive liver conditions ranging from relatively benign liver steatosis and advancing to nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. Hallmark features of NASH are fatty hepatocytes and inflammatory cell infiltrates in association with increased activation of hepatic nuclear factor kappa-B (NFκB) that exacerbates liver injury. Because no pharmacological treatments exist for NAFLD, emphasis has been placed on dietary approaches to manage NASH risk. Anti-inflammatory bioactivities of catechin-rich green tea extract (GTE) have been well-studied, especially in preclinical models that have detailed its effects on inflammatory responses downstream of NFκB activation. This review will therefore discuss the experimental evidence that has advanced an understanding of the mechanisms by which GTE, either directly through its catechins or potentially indirectly through microbiota-derived metabolites, limits NFκB activation and NASH-associated liver injury. Specifically, it will describe the hepatic-level benefits of GTE that attenuate intracellular redox distress and pro-inflammatory signaling from extracellular receptors that otherwise activate NFκB. In addition, it will discuss the anti-inflammatory activities of GTE on gut barrier function as well as prebiotic and antimicrobial effects on gut microbial ecology that help to limit the translocation of gut-derived endotoxins (e.g. lipopolysaccharides) to the liver where they otherwise upregulate NFκB activation by Toll-like receptor-4 signaling. This summary is therefore expected to advance research translation of the hepatic- and intestinal-level benefits of GTE and its catechins to help manage NAFLD-associated morbidity.  相似文献   

4.
5.
6.
7.
Non-alcoholic fatty liver disease (NAFLD) is prevalent in patients with sleep apnea syndrome (SAS). Intermittent hypoxia (IH) and a high-fat diet (HFD) reproduce SAS and NAFLD, respectively, in rodents. In this study, rats were fed either an HFD or a standard diet (SD) for 2 weeks, and breathed either IH air or normoxic air for 4 days (early phase) or 6 weeks (late phase), with the same diets maintained during the exposure. HFD increased hepatic lipid accumulation, as detected by oil-red staining and triglyceride content. However, IH exposure reversed the hepatic steatosis at the late phase in these HFD-rats. IH exposure also increased hepatic expression of HO-1 and iron-binding protein ferritin-1 at the late phase, in association with increase in serum iron, bilirubin, and hepatic levels of lipid peroxides, such as 4-hydroxy-2-nonenal (HNE). IH exposure increased serum levels of hemoglobin (Hb) at the early phase and immunofluorescence of Hb and HO-1 in CD68-positive Kupffer cells (KCs) at the late phase. These findings support that IH induces erythrocytosis, erythro-phagocytosis, and generation of Hb in the KCs. The Hb promotes HO-1 expression in KCs, thereby produces iron, bilirubin, and carbon monoxide (CO). The iron would be either sequestrated by ferritin-1, transferred to the bone marrow for erythropoiesis, or would produce hydroxyradicals and HNE in the liver of rats fed an HFD. HNE might also contribute to the upregulation of HO-1, transferrin-1, and IκB, thereby limiting hepatic steatosis and inflammation via inhibition of nuclear factor κB (NFκB) activation.  相似文献   

8.
非酒精性脂肪性肝病(Non-alcoholic fatty liver disease,NAFLD)是遗传-环境-代谢应激相关因素所致的以肝细胞脂肪变性为主的临床病理综合征,其发生、发展均与细胞因子及脂肪细胞因子密切相关.本文回顾了肿瘤坏死因子-α(Tumor necrosis factor-α,INF-α)、白介素-6(interleukin-6,IL-6)、脂联素等经典因子与NAFLD的关系研究新进展,并介绍了视黄醇结合蛋白4(retinol binding protein4,RBP4)、apelin、visfatin等新脂肪细胞因子在NAFLD中的作用.  相似文献   

9.
We have previously demonstrated that 1α,25 dihydroxy-vitamin D(3) (1α,25(OH)(2)D(3)) has antiproliferative effects on the growth of endothelial cells transformed by the viral G protein-coupled receptor associated to Kaposi sarcoma (vGPCR). In this work, we have investigated whether 1α,25(OH)(2)D(3) exerts its growth inhibitory effects by inhibiting the Nuclear Factor κ B (NFκB) pathway which is highly activated by vGPCR. Cell proliferation studies demonstrated that 1α,25(OH)(2)D(3), similarly to bortezomib, a proteosome inhibitor that suppresses the activation of NFκB, reduced the proliferation of endothelial cells transformed by vGPCR (SVEC-vGPCR). The activity of NFκB in these cells decreased by 70% upon 1α,25(OH)(2)D(3) treatment. Furthermore, time and dose response studies showed that the hormone significantly decreased NFκB and increased IκBα mRNA and protein levels in SVEC-vGPCR cells, whereas in SVEC only IκBα increased significantly. Moreover, NFκB translocation to the nucleus was inhibited and occurred by a mechanism independent of NFκB association with vitamin D(3) receptor (VDR). 1α,25(OH)(2)D(3)-induced increase in IκBα required de novo protein synthesis, and was independent of MAPK and PI3K/Akt pathways. Altogether, these results suggest that down-regulation of the NFκB pathway is part of the mechanism involved in the antiproliferative effects of 1α,25(OH)(2)D(3) on endothelial cells transformed by vGPCR.  相似文献   

10.
Nonalcoholic fatty liver disease (NAFLD) has a high prevalence in the general population and can evolve into nonalcoholic steatohepatosis (NASH), cirrhosis, and complications such as liver failure and hepatocellular carcinoma. Recently, we reported that mitochondrial NADP+-dependent isocitrate dehydrogenase, encoded by the IDH2, plays an important role in the regulation of redox balance and oxidative stress levels, which are tightly associated with intermediary metabolism and energy production. In the present study, we showed that in mice targeted disruption of IDH2 attenuates age-associated hepatic steatosis by the activation of p38/cJun NH2-terminal kinase (JNK) and p53, presumably induced by the elevation of mitochondrial reactive oxygen species (ROS), which in turn resulted in the suppression of hepatic lipogenesis and inflammation via the upregulation of fibroblast growth factor 21 (FGF21) and the inhibition of NFκB signaling pathways. Our finding uncovers a new mechanism involved in hepatocellular steatosis and IDH2 may be a valuable therapeutic target for the management of NAFLD.  相似文献   

11.
In the liver tissues of obese diabetic or nondiabetic patients, triggering receptor expressed on myeloid cells-1 (TREM-1) is usually found to be upregulated, thus leading to upregulation of various inflammatory cytokines and lipid accumulation. On the other hand, nonalcoholic fatty liver disease (NAFLD), characterized by excess lipid accumulation, and inflammatory injury in liver, is becoming an epidemic disease, globally. In the present study, we aimed to investigate the biological role and the underlying mechanisms of TREM-1 in NAFLD. upregulation of TREM-1 occurred in high-fat diet (HFD)-induced mice NAFLD model and oleic acid-treated HepG2 and primary mouse hepatocytes cell model at messenger RNA and protein levels. Functional studies established that overexpression of TREM-1 displayed hyperlipidemia, and increased in inflammatory indicators and lipid accumulation-related genes, which was ameliorated by knockdown of TREM-1. Our results also showed that obvious lipid accumulation and inflammatory injury occurred in the liver tissue of HFD-fed mice, while treatment with lentiviral vector short hairpin TREM showed marked improvement in tissue morphology and architecture and less lipid accumulation, thus deciphering the mechanism through which knockdown of TREM-1 ameliorated the inflammatory response and lipid accumulation of NAFLD mice through inactivation of the nuclear factor-κB (NF-κB) and PI3K/AKT signal pathways, respectively. In conclusion, TREM-1/NF-κB and TREM-1/PI3K/AKT axis could be an important mechanism in ameliorating the inflammatory response and lipid accumulation, respectively, thus shedding light on the development of novel therapeutics to the treatment of NAFLD.  相似文献   

12.
13.
14.
Organs‐on‐chip (OoCs) are catching on as a promising and valuable alternative to animal models, in line with the 3Rs initiative. OoCs enable the creation of three‐dimensional (3D) tissue microenvironments with physiological and pathological relevance at unparalleled precision and complexity, offering new opportunities to model human diseases and to test the potential therapeutic effect of drugs, while overcoming the limited predictive accuracy of conventional 2D culture systems. Here, we present a liver‐on‐a‐chip model to investigate the effects of two naturally occurring polyphenols, namely quercetin and hydroxytyrosol, on nonalcoholic fatty liver disease (NAFLD) using a high‐content analysis readout methodology. NAFLD is currently the most common form of chronic liver disease; however, its complex pathogenesis is still far from being elucidated, and no definitive treatment has been established so far. In our experiments, we observed that both polyphenols seem to restrain the progression of the free fatty acid‐induced hepatocellular steatosis, showing a cytoprotective effect due to their antioxidant and lipid‐lowering properties. In conclusion, the findings of the present work could guide novel strategies to contrast the onset and progression of NAFLD.  相似文献   

15.
The prevalence of nonalcoholic fatty liver disease (NAFLD) is much higher in patients with type II diabetes (T2D). Inflammasomes are multimolecular complexes reported to involve inflammatory conditions. The nuclear factor (erythroid-derived 2)-like factor 2/antioxidant responsive element (Nrf2/ARE) pathway is an important regulator of antioxidant status in cells. Antidiabetic drug glibenclamide (GLB) is reported as  NACHT, leucine-rich repeat, and pyrin domain domains-containing protein 3 (NLRP3) inflammasome inhibitor, whereas anti-multiple sclerosis drug dimethyl fumarate (DMF) is reported as an Nrf2/ARE pathway activator. Both GLB and DMF possess anti-inflammatory and antioxidant properties, therefore, the hypothesis was made to look into the alone as well as the combination potential of GLB, DMF, and GLB + DMF, against NAFLD in diabetic rats. This study was aimed to investigate (1) the involvement of NLRP3 inflammasome and Nrf2/ARE signaling in diabetes-associated NAFLD (2) the effect of GLB, DMF, GLB + DMF, and metformin (MET) interventions on NLRP3 inflammasome and Nrf2/ARE signaling in diabetes-associated NAFLD. The rats were injected with streptozotocin (STZ) 35 mg/kg and fed a high-fat diet (HFD) for 17 consecutive weeks to induce diabetic NAFLD. The oral treatment of GLB 0.5 mg/kg/day, DMF 25 mg/kg/day, their combination and MET 200 mg/kg/day, were provided from the 6th to the 17th week. Treatment with GLB, DMF, GLB + DMF, and MET significantly alleviated HFD + STZ-induced plasma glucose, triglycerides, cholesterol, %HbA1c, hepatic steatosis, NLRP3, apoptosis-associated speck-like protein containing a caspase activation and recruitment domain, CARD, caspase-1, interleukin-1β (IL-1β), nuclear factor-κB (NF-κB), Nrf2, superoxide dismutase 1, catalase, IGF 1, heme oxygenase 1, receptor for the advanced glycation end product (RAGE), and collagen-1 in diabetic rats. Further, a mechanistic molecular study employing other specific NLRP3 inhibitors and Nrf2 activators will significantly contribute to the development of novel therapy for fatty liver diseases.  相似文献   

16.
17.
18.
Mechanisms associated with the progression of non-alcoholic fatty liver disease (NAFLD) remain unclear. We attempted to identify the pattern of altered gene expression at different time points in a high fat diet (HFD)-induced NAFLD mouse model. The early up-regulated genes are mainly involved in the innate immune responses, while the late up-regulated genes represent the inflammation processes. Although recent studies have shown that microRNAs play important roles in hepatic metabolic functions, the pivotal role of microRNAs in the progression of NAFLD is not fully understood. We investigated the functions of miR-451, which was identified as a target gene in the inflammatory process in NAFLD. miR-451 expression was significantly decreased in the palmitate (PA)-exposed HepG2 cells and in liver tissues of HFD-induced non-alcoholic steatohepatitis (NASH) mice. Its decreased expressions were also observed in liver specimens of NASH patients. In vitro analysis of the effect of miR-451 on proinflammatory cytokine provided evidence for negative regulation of PA-induced interleukin (IL)-8 and tumor necrosis factor-alpha (TNF-α) production. Furthermore, miR-451 over-expression inhibited translocation of the PA-induced NF-κB p65 subunit into the nucleus. Our result showed that Cab39 is a direct target of miRNA-451 in steatotic cells. Further study showed that AMPK activated through Cab39 inhibits NF-κB transactivation induced in steatotic HepG2 cells. miR-451 over-expression in steatotic cells significantly suppressed PA-induced inflammatory cytokine. These results provide new insights into the negative regulation of miR-451 in fatty acid-induced inflammation via the AMPK/AKT pathway and demonstrate potential therapeutic applications for miR-451 in preventing the progression from simple steatosis to severely advanced liver disease.  相似文献   

19.
Obesity is a major contributor to the development of steatohepatitis and fibrosis from nonalcoholic fatty liver disease (NAFLD). Hypoxia aggravates progression of NAFLD. In mice on high-fat diet (HFD), hepatic steatosis leads to liver tissue hypoxia, evidenced by accumulation of hypoxia inducible factor-1-alpha (HIF-1α), which is a central regulator of the global response to hypoxia. Hepatocyte cell signaling is an important factor in hepatic fibrogenesis. We here hypothesize that HIF-1α knockout in hepatocyte may protect against liver fibrosis. We first found that HFD led to 80% more hepatic collagen deposition than Hif1a−/−hep mice, which was confirmed by a-SMA staining of liver tissue. Body weight and liver weight were similar between groups. We then found the increasing HIF1a expression and decreasing PTEN expression in the mice on HFD and in PA-treated HepG2 cells. Finally, we found that HIF1 mediated PTEN/nfkb-p65 pathway plays an important role in the development of NAFLD to liver fibrosis. Collectively, these results identify a novel HIF1a/PTEN/NF-κ Bp65 signaling pathway in NAFLD, which could be targeted for the therapy.  相似文献   

20.
目的探讨脐带间充质干细胞(hUC-MSCs)对非酒精性脂肪肝病(NAFLD)大鼠肝脏损伤的作用及其与TLR4/NF-κB炎症通路和氧化应激的关系。 方法SD大鼠随机分为3组:正常对照组(NC组)、模型对照组(MC组)和hUC-MSCs治疗组(MC+hUC-MSCs组)。每组大鼠均为10只,分别喂食常规或高糖高脂饲料并给予相应治疗8周,其中MC+hUC-MSCs组每两周尾静脉注射含5×106个hUC-MSCs。检测各组肝指数、谷丙转氨酶(ALT)、谷草转氨酶(AST)、甘油三酯(TG)、胆固醇(TC)、低密度脂蛋白(LDL)、高密度脂蛋白(HDL)和胰岛素抵抗指数(HOMA-IR)。光镜和电镜观察大鼠肝脏组织病理改变,评估NAFLD活动度积分(NAS);Western Blot法检测大鼠肝脏组织超氧化物歧化酶(SOD)、8-羟基脱氧鸟苷(8-OHdG)、肿瘤坏死因子(TNF-α)、白介素-6(IL-6)Toll样受体4(TLR4)和核因子-κB (NF-κB)蛋白表达。组间比较采用单因素方差分析。 结果干预结束后,(1)NC组TG(0.96±0.29)?mmol/?L、TC(2.23±0.37)mmol/L、LDL(0.71±0.18)mmol/L、HDL(2.95±0.27)mmol/L,与MC组TG(5.79± 0.68)mmol/L、TC(6.08±0.79)mmol/L、LDL(6.06±0.31)mmol/L、HDL(0.75±0.18)?mmol/?L比较差异具有统计学意义(均P < 0.05);与MC组比较,MC+hUC-MSCs组上述指标差异具有统计学意义(均P < 0.05)。(2)光镜下NC组肝细胞形态正常;MC组出现肝细胞脂肪变性、肝小叶排列不齐及炎症细胞浸润;而MC+hUC-MSCs组肝组织病理改变明显好转。与NC组比较,MC组肝组织NAS升高;与MC组比较,MC+hUC-MSCs组NAS降低[(0.36±0.16)分vs(8.72±0.35)分、(4.78±0.51)分,P < 0.05]。电镜下亦观察到与MC组比较,MC+hUC-MSCs大鼠肝细胞脂肪变性、胞核变形、内质网和线粒体形态异常明显改善。(3)与NC组比较,MC组大鼠TNF-α、IL-6、8-OHdG、TLR4和NF-κB蛋白表达均增高(均P < 0.05),SOD降低(P?< 0.05);与MC组比较,MC+hUC-MSCs组大鼠上述指标改善(P < 0.05)。 结论hUC-MSCs通过抑制氧化应激和TLR4/NF-κB而保护NAFLD大鼠肝脏功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号