首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To understand the mechanism regulating spermatozoa motility, it is important to investigate the mechanism regulating the conversion of microtubule sliding into flagellar bending. Therefore, we analyzed microtubule sliding and its conversion into flagellar bending using a demembranated spermatozoa model in which microtubule sliding and flagellar bending could be analyzed separately by treating the demembranated spermatozoa with and without dithiothreitol, respectively. Using this model, we examined the roles of cAMP and its target molecules in regulating flagellar bending and microtubule sliding. Although flagellar bending did not occur in the absence of cAMP, microtubule extrusion occurred without it, suggesting that cAMP is necessary for the conversion of microtubule sliding into flagellar bending, but not for microtubule sliding itself. The target of cAMP for regulating flagellar bending was not cAMP-dependent protein kinase (PKA), since flagellar bending was still observed in the spermatozoa treated with a PKA-specific inhibitor. Alternatively, the Epac/Rap pathway may be the target. Epac2 and Rap2 were detected in hamster spermatozoa using immunoblotting. Since Rap2 is a GTPase, we investigated the flagellar bending of demembranated spermatozoa treated with GTPgammaS. The treatment markedly increased the beat frequency and bending rate. These results suggest that cAMP activates the Epac/Rap pathway to regulate the conversion of microtubule sliding into flagellar bending.  相似文献   

2.
Motor apparatus in human spermatozoa that lack central pair microtubules   总被引:1,自引:0,他引:1  
Electron microscopic examination of the spermatozoa from a man suffering from asthenozoospermia (poor or low sperm motility) showed that approximately 92% of the sperm flagella lacked central pair microtubules but possessed dynein arms and radial spokes while a small percentage of the spermatozoa had complete flagella. The characteristics of the motor apparatus of the spermatozoa and the effects of caffeine on the sperm motility were examined, as were the reactivation of demembranated spermatozoa and the sliding of doublet microtubules. Almost all spermatozoa were immotile in a Tyrode solution while only a small percentage of spermatozoa showed slow forward movement or feeble flagellar vibration, whereas addition of caffeine to the sperm suspension induced forward swimming of approximately half of the spermatozoa. The reactivation of demembranated spermatozoa with MgATP(2-) could not succeed because of disintegration of the demembranated flagella. However, when the demembranated spermatozoa were exposed to MgATP(2-) and then treated with elastase, the microtubular doublets of approximately half the number of the flagella slid from the end or middle of the flagella. These results suggest that the motor apparatus in the sperm flagella that lack the central pair microtubules is functionally assembled and intrinsically capable of undergoing flagellar movement but not strong enough to beat normally.  相似文献   

3.
Interdoublet sliding rates were assessed in bull sperm, utilizing a freeze–thaw procedure to allow axonemal disintegration. The sliding rate at 23°C increased with increasing MgATP concentrations up to 1 mMATP, to plateau at 8 μm/sec. The analyzed interdoublet shear in both live and demembranated (Triton X-100-extracted) bull sperm reactivated with 1 mMATP established maximal microtubule sliding rates at 6 μm/sec during flagellar beating. Therefore,in vitrosliding rates were sufficient to account for the beat in intact flagella. The effect of inhibitors of flagellar motility onin vitrosliding rates was evaluated. While 8 μMvanadate minimally reduced the sliding rate (to ≈ 4 μm/sec), only 0.5 μMvanadate was sufficient to terminate reactivated bull sperm motility. Nickel ion (0.66 mM) terminated all spontaneous motility, while only reducing microtubule sliding rates to ≈ 5.0 μm/sec. Exposing intact bull sperm to theophylline (1 mM), and incubating the subsequently demembranated sperm in cAMP (3 μM), improved flagellar motility, but had little impact on microtubule sliding rates as determined by axonemal disintegration. Furthermore, deactivating live sperm with 2 mMKCN and 4 mM2-deoxy- -glucose renders the subsequently reactivated sperm immotile (as long as exogenous cAMP is absent). Yet, this treatment only reduced the sliding rate by 38%. Paradoxically, 4 mMMgADP reduced the sliding rates most dramatically (86%), whereas demembranated sperm models retain a strong, coordinated beating pattern in the presence of MgADP. These results demonstrate that there is no direct relationship between interdoublet sliding rates and the capacity for coordinated flagellar beating.  相似文献   

4.
Antibodies binding to sea urchin flagellar outer-doublet tubulin have been isolated from rabbit sera by tubulin-affinity chromatography employing electrophoretically purified tubulin as the immobilized substrate. This procedure provides "induced" antitubulin antibody from immune sera and "spontaneous" antitubulin antibody from preimmune sera. These antitubulins were characterized in terms of their specificity, ability to bind to sea urchin axonemes, and effects on the motility of reactivated spermatozoa. Induced antitubulin antibody specifically reduced the bend angle and symmetry of the movement of demembranated reactivated spermatozoa without affecting the beat frequency. At identical concentrations, spontaneous antitubulin had no effect on motility. Affinity-purified induced antitubulins from three other rabbits all gave specific bend-angle inhibition, whereas their corresponding spontaneous antitubulins had no effect on the flagellar movement. The effects of antitubulin on microtubule sliding were examined by observing the sliding disintegration of elastase-digested axonemes induced by MgATP2+-. Affinity-purified induced antitubulin antibody, in quantities sufficient to completely paralyze reactivated flagella, did not inhibit microtubule sliding. The amplitude-inhibiting effect of induced antitubulin on reactivated spermatozoa may be caused by action on a mechanism responsible for controlling flagellar bending rather than by interference with the active sliding process. This is the first report of an antitubulin antibody having an inhibitory activity on microtubule-associated movement.  相似文献   

5.
To investigate the activation mechanism of mouse sperm motility, the intact sperm in various activities were further investigated after demembranation. When dry sperm was diluted into sucrose solution, the sperm exhibited low motility with the swimming velocity of 13.5 ± 3.8 μm/s and the beat frequency of 1.5 ± 0.4 Hz. The demembranated sperm were immotile in the reactivation solution lacking cAMP. Meanwhile, when dry sperm was diluted into the solution containing either high concentration of NaCl or Ca2+, they exhibited the beat frequency of about 9 Hz. The demembranated ones exhibited the intermediate motility in the absence of cAMP. When dry sperm were diluted into the sucrose solution containing HCO3, the sperm exhibited a vigorous motility with the swimming velocity of 181.2 ± 10.1 μm/s and the beat frequency of 11.3 ± 1.2 Hz. The demembranated sperm exhibited the high reactivation motility (90%) and flagellar beat frequency (9 Hz) in the absence of cAMP. These values were almost equivalent to those obtained in the demembranated sperm pretreated with sucrose or Ca2+ or NaCl and reactivated in the presence of cAMP. The activation induced by bicarbonate was considered complete in comparison with the activation by Ca2+ or NaCl. It was likely that the activation of mouse sperm motility took multiple states. © 1993 Wiley-Liss, Inc.  相似文献   

6.
Using a selective inhibitor of cAMP-dependent protein kinase, N-[2(methylamino)ethyl]-5-isoquinolinesulfonamide (H-8), the requirement for cAMP-dependent phosphoproteins in the initiation of dog sperm flagellar motility was examined. H-8 inhibited motility of live as well as reactivated sperm in a dose-dependent manner. The half-maximal inhibition of reactivated motility (32 microM) paralleled the inhibition of pure catalytic subunit of cAMP-dependent protein kinase (50 microM) measured under the same conditions. H-8 inhibited protein phosphorylation both in whole models and in isolated Nonidet P-40 (NP-40) extracts of sperm. Axokinin, the heat-stable NP-40-soluble protein whose phosphorylation is required for flagellar reactivation, represented 97% of the de novo phosphate incorporation in the NP-40 extract after stimulation by cAMP. 500 microM H-8 inhibited axokinin phosphorylation by 87%. When sperm were reactivated in the presence of up to 5 mM H-8 with NP-40 extract that had been prephosphorylated with cAMP-dependent protein kinase, then neither cAMP nor cAMP-dependent protein kinase activity was required for full flagellar reactivation. If sperm were rendered completely immotile by pretreatment with H-8, then the resulting model remained immotile in the continued presence of H-8 unless prephosphorylated axokinin was added. These results suggest that phosphorylated axokinin is not only required for flagellar reactivation but is sufficient as well.  相似文献   

7.
Sperm activating and -attracting factor (SAAF), derived from the egg of the ascidian Ciona, activates sperm motility through adenosine 3':5'-cyclic monophosphate (cAMP)-synthesis. A demembranated preparation of intact immotile sperm without SAAF was shown to require cAMP for reactivation. However, a demembranated preparation of intact motile sperm treated with SAAF did not require cAMP for reactivation, suggesting that cAMP is a prerequisite factor for SAAF-dependent activation of sperm motility. Furthermore, a cAMP-dependent protein kinase (PKA) inhibitor, H-89, was found to inhibit sperm motility. During in vivo or in vitro activation of sperm motility by SAAF or cAMP, a 26 kDa axonemal protein and 21 kDa dynein light chain were phosphorylated, respectively, suggesting the involvement of PKA-dependent phosphorylation of these proteins in sperm activation. The calmodulin antagonist, W-7, and an inhibitor of calmodulin-dependent myosin light chain kinase, ML-7, also inhibited the activation of sperm motility. Inhibition was reversed by the addition of phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine. Demembranated preparations of immotile sperm in the presence of W-7 or ML-7 were reactivated by cAMP, suggesting that calmodulin participated in sperm activation and that cAMP synthesis was followed by activation of a calmodulin-dependent mechanism.  相似文献   

8.
Hamster spermatozoa from the caput and cauda epididymides were demembranated with 0.04% Triton X-100 and reactivated with 1 mM ATP. Motility parameters were analysed by video recording and stroboscopic photography. In the absence of added cAMP, reactivated cauda sperm showed percentage motility and forward swimming patterns similar to those of intact cells, but velocities were lower. When 2 or 20 μM cAMP was present, the velocities were increased but there was no effect on beat frequencies or percentage of forward progressing sperm. Cyclic AMP also markedly increased the percentage of cauda sperm which at first displayed nonprogressive “looping” movement. Addition of cAMP to the reactivation medium greatly improved the otherwise feeble and irregular motility of the demembranated caput sperm by increasing the percentage motility and beat frequencies of nonprogressive cells. It also induced forward motility with beat frequencies and velocities similar to cauda sperm reactivated in the absence of cAMP, but looping was never seen, indicating a change in the flagellar apparatus with maturation. The time required for the exhibition of the cAMP effects was reduced when caput sperm were reactivated in extracts of another previously maximally reactivated caput sperm preparation. The results suggest the production of some potent compound(s) by the axonemes for the manifestation of the cAMP effects.  相似文献   

9.
Sperm motility is a process which involves a cascade of events mediated by cAMP and Ca2+, cAMP in the initiation of flagellar movement, and Ca2+ in the regulation of beat asymmetry, and it has been suggested that these two messengers act through phosphorylation/dephosphorylation of axonemal proteins. Only a few studies on human sperm protein phosphorylation have been reported and no relation of this process with motility or other function has been established. In the present study, phosphorylation of human sperm proteins was performed using detergent-demembranated spermatozoa, in which motility is reactivated by the addition of ATP. This system allows direct accessibility of intracellular kinases to [32P]-γATP and allows some relation between protein phosphorylation and flagellar movements. After electrophoresis and autoradiography, numerous phosphoproteins were detected. Phosphorylation of 2 proteins (36 and 51 kDa) was stimulated by cAMP in a concentration-dependent manner, and this increase was prevented by inhibitors of cAMP-dependent protein kinase. In order to characterize phosphoproteins originating from the cytoskeleton or axoneme, detergent extracted spermatozoa were also subjected to phosphorylation. Three major phosphorylated proteins (14.8, 15.3, and 16.2 kDa) were detected, the first two expressing cAMP-dependency according to their cAMP concentration-dependent increase in phosphorylation and the reversal of this effect by inhibitors of cAMP-dependent protein kinase. Proteins phosphorylation during the reactivation of demembranated spermatozoa previously immobilized H2O2, xanthine + xanthine oxidase-generated reactive oxygen species, or the oxidative phosphorylation uncoupler rotenone, revealed increases in cAMP-independent phosphorylation of proteins of 16.2, 46, and 93 kDa. These results documenting human sperm phosphoproteins form a base for further studies on the role of protein phosphorylation in sperm functions. © 1996 Wiley-Liss, Inc.  相似文献   

10.
To investigate the role of axonemal components in the mechanics and regulation of flagellar movement, we have generated a series of monoclonal antibodies (mAb) against sea urchin (Lytechinus pictus) sperm axonemal proteins, selected for their ability to inhibit the motility of demembranated sperm models. One of these antibodies, mAb D1, recognizes an antigen of 142 kDa on blots of sea urchin axonemal proteins and of purified outer arm dynein, suggesting that it acts by binding to the heaviest intermediate chain (IC1) of the dynein arm. mAb D1 blocks the motility of demembranated sea urchin spermatozoa by modifying the beating amplitude and shear angle without affecting the ATPase activity of purified dynein or of demembranated immotile spermatozoa. Furthermore, mAb D1 had only a marginal effect on the velocity of sliding microtubules in trypsin-treated axonemes. This antibody was also capable of inhibiting the motility of flagella of Oxyrrhis marina, a primitive dinoflagellate, and those of demembranated human spermatozoa. Localization of the antigen recognized by mAb D1 by immunofluorescence reveals its presence on the axonemes of flagella from sea urchin spermatozoa and O. marina but not on the cortical microtubule network of the dinoflagellate. These results are consistent with a dynamic role for the dynein intermediate chain IC1 in the bending and/or wave propagation of flagellar axonemes.  相似文献   

11.
Digital image analysis of the flagellar movements of cynomolgus macaque spermatozoa hyperactivated by caffeine and cAMP was carried out to understand the change in flagellar movements during hyperactivation. The degree of flagellar bending increased remarkably after hyperactivation, especially at the base of the midpiece. Mainly two beating patterns were seen in the hyperactivated monkey sperm flagella: remarkably asymmetrical flagellar bends of large amplitude and relatively symmetrical flagellar bends of large amplitude. The asymmetrical bends were often seen in the early stage of hyperactivation, whereas the symmetrical bends executed nonprogressive, figure-of-eight movement. Beat frequency of the hyperactivated spermatozoa significantly decreased while wavelength of flagellar waves roughly doubled. To determine the conditions under which the axonemes of hyperactivated sperm flagella have asymmetrical or symmetrical bends, the plasma membranes of monkey spermatozoa were extracted with Triton X-100 and motility was reactivated with MgATP(2-) under various conditions. The asymmetrical flagellar bends were brought about by Ca(2+), whereas the symmetrical flagellar bends resulted from low levels of Ca(2+) and high levels of cAMP. Under these conditions, beat frequency and wavelength of flagellar waves of demembranated, reactivated spermatozoa were similar to those of the hyperactivated spermatozoa. These results suggest that during hyperactivation of monkey spermatozoa intracellular Ca(2+) concentrations first rise, and then decrease while cAMP concentrations increase simultaneously.  相似文献   

12.
He S  Jenkins-Keeran K  Woods LC 《Theriogenology》2004,61(7-8):1487-1498
The objective of the present study was to identify the effect of osmolality, ions (K+, H+, Ca2+, Mg2+) and cAMP on the initiation of sperm motility in striped bass (Morone saxatilis). Striped bass spermatozoa remained motile in solutions isotonic to seminal plasma (350 mOsm/kg) until osmolality reached 600 mOsm/kg. K+ (0-100 mM) had no effect ( p>0.05 ) on sperm motility, and sperm displayed a high percentage of motility over a wide range of pH (6.0-8.5). Sperm motility could be initiated in Ca2+-free solutions. In contrast, sperm motility was inhibited (P<0.01) by solutions containing > or =10 mM Ca2+, and sperm could not be reactivated by a Ca2+-free solution. This Ca2+ inhibition was not affected by verapamil, a Ca2+ channel blocker. However, if sperm motility was first initiated in a Ca2+-free solution, the addition of Ca2+ solutions, up to 80 mM, failed to inhibit sperm motility, suggesting that Ca2+ inhibited the initiation of motility, but had no control of motile spermatozoa. Mg2+ solutions had similar inhibitory effects on sperm motility as Ca2+ solutions. Therefore, initiation of motility in striped bass sperm may be related to voltage-gated channels across the cell's plasma membrane. Membrane permeable cAMP did not initiate motility of quiescent, intact striped bass spermatozoa, and motility of demembranated sperm could be activated in the absence of cAMP.  相似文献   

13.
Hyperactivated motility is observed among sperm in the mammalian oviduct near the time of ovulation. It is characterized by high-amplitude, asymmetrical flagellar beating and assists sperm in penetrating the cumulus oophorus and zona pellucida. Elevated intracellular Ca2+ is required for the initiation of hyperactivated motility, suggesting that calmodulin (CALM) and Ca2+/CALM-stimulated pathways are involved. A demembranated sperm model was used to investigate the role of CALM in promoting hyperactivation. Ejaculated bovine sperm were demembranated and immobilized by brief exposure to Triton X-100. Motility was restored by addition of reactivation medium containing MgATP and Ca2+, and hyperactivation was observed as free Ca2+ was increased from 50 nM to 1 microM. However, when 2.5 mM Ca2+ was added to the demembranation medium to extract flagellar CALM, motility was not reactivated unless exogenous CALM was readded. The inclusion of anti-CALM IgG in the reactivation medium reduced the proportion hyperactivated in 1 microM Ca2+ to 5%. Neither control IgG, the CALM antagonist W-7, nor a peptide directed against the CALM-binding domain of myosin light chain kinase (MYLK2) inhibited hyperactivation. However, when sperm were reactivated in the presence of CALM kinase II (CAMK2) inhibiting peptides, hyperactivation was reduced by 75%. Furthermore, an inhibitor of CAMK2, KN-93, inhibited hyperactivation without impairing normal motility of intact sperm. CALM and CAMK2 were immunolocalized to the acrosomal region and flagellum. These results indicate that hyperactivation is stimulated by a Ca2+/CALM pathway involving CAMK2.  相似文献   

14.
When the plasma membrane of hamster and boar spermatozoa was extraced by treatment with Triton X-100 and the demembranated spermatozoa were transferred to a reactivating medium containing only ATP, axonemes were initially immotile, and then gradually became motile. Under these experimental conditions, the cAMP content in the reactivating medium increased soon. This suggests that cAMP is synthesized from ATP by adenylate cyclase involved in incompletely removed or solubilized residual sperm membrane and that the autosynthesized cAMP causes the delay in motility initiation. This delayed initiation of motility did not occur when phosphodiesterase was added to the reactivating medium and the phosphodiesterase-dependent quiescent sperm became motile instantaneously at any time when excess cAMP was supplemented. Furthermore, demembranated sperm which were diluted in the reactivating medium containing ATP and cAMP, immediately became motile. cAMP levels in the cell increased during the initiation of sperm motility in both species. These results suggest that cAMP is the real factor indispensable for the initiation of sperm motility at ejaculation in mammals.  相似文献   

15.
Free Ca2+ changes the curvature of epididymal rat sperm flagella in demembranated sperm models. The radius of curvature of the flagellar midpiece region was measured and found to be a continuous function of the free Ca2+ concentration. Below 10(-7) M free Ca2+, the sperm flagella assumed a pronounced curvature in the same direction as the sperm head. The curvature reversed direction at 2.5 x 10(-6) M Ca2+ to assume a tight, hook-like bend at concentrations of 10(-5) to 10(-4) M free Ca2+. Sodium vanadate at 2 x 10(-6) M blocked flagellar motility, but did not inhibit the Ca2+-mediated change in curvature. Nickel ion at 0.2 mM and cadmium ion at 1 microM interfered with the transition and induced the low Ca2+ configuration of the flagellum. The forces that maintain the Ca2+-dependent curvature are locally produced, as dissection of the flagella into segments did not significantly alter the curvature of the excised portions. Irrespective of the induced pattern of curvature, the sperm exhibited coordinated, repetitive flagellar beating in the presence of ATP and cAMP. At 0.3 mM ATP the flagellar waves propagated along the principal piece while the level of free Ca2+ controlled the overall curvature. When Ca2+-treated sperm models with hooked midpieces were subjected to higher concentrations of ATP (1-5 mM), some cells exhibited a pattern of movement similar to hyperactivated motility in capacitated live sperm. This type of motility involved repetitive reversals of the Ca2+-induced bend in the midpiece, as well as waves propagated along the principal piece. The free Ca2+ available to the flagellum therefore appeared to modify both the pattern of motility and the flagellar curvature.  相似文献   

16.
Flagellar movement of intact and demembranated, reactivated ram spermatozoa   总被引:2,自引:0,他引:2  
The flagellar movement of intact ejaculated ram sperm, and of demembranated models reactivated with ATP, has been studied using high-speed, high-resolution video microscopy. Intact sperm attached to the coverslip by their heads had an average beat frequency of 20.9 Hz and an average wave amplitude of 20.2 micron. There was little difference in the beat frequency or waveform of these sperm and sperm swimming freely near the coverslip or captured by their heads with a micropipette and held far from the coverslip, indicating that the flagellar waveform of ram sperm is relatively resistant to distortion as a result of immobilization of the head or proximity to a surface. The beat envelope was nearly planar as determined by observations of free-swimming sperm and sperm captured by their head and oriented so they were beating either parallel or perpendicular to the plane of focus. The effect of various conditions for demembranation and reactivation of the sperm were examined. Treatment of sperm with 0.2% Triton X-100 removed most of their plasma membrane. Under optimal conditions, nearly 100% of the demembranated sperm reactivated at MgATP2- concentrations ranging from approximately 4 microM to approximately 20 mM. From approximately 1 mM to approximately 10 mM MgATP2-, their beat pattern closely resembled that of intact sperm; beat frequency depended on MgATP2- concentration. Percent motility was maximal between pH 7.5 and 8.0 and decreased sharply below pH 7.0 and above pH 8.5. The addition of 50 microM cAMP to the reactivation medium had no effect on percent motility or the beat pattern and did not accelerate the initiation of movement.  相似文献   

17.
Sea bass spermatozoa are maintained immotile in the seminal fluid, but initiate swimming for 45 s at 20 degrees C, immediately after dispersion in a hyperosmotic medium (1100 mOsm kg-1). The duration of this motile period could be extended by a reduction of the amplitude of the hyperosmotic shock. Five seconds after the initiation of motility, 94.4 +/- 1.8% of spermatozoa were motile with a swimming velocity of 141.8 +/- 1.2 microns s-1, a flagellar beat frequency of 60 Hz and a symmetric type of flagellar swimming, resulting in linear tracks. Velocity, flagellar beat frequency, percentage of motile cells and trajectory diameter decreased concomitantly throughout the swimming phase. After 30 s of motility, the flagellar beat became asymmetric, leading to circular trajectories. Ca2+ modulated the swimming pattern of demembranated spermatozoa, suggesting that the asymmetric waves produced by intact spermatozoa after 30 s of motility were induced by an accumulation of intracellular Ca2+. Moreover, increased ionic strength in the reactivation medium induced a dampening of waves in the distal portion of the flagellum and, at high values, resulted in an arrest of wave generation in demembranated spermatozoa. In non-demembranated cells, the intracellular ATP concentration fell immediately after transfer to sea water. In contrast, the AMP content increased during the same period, while the ADP content increased slightly. In addition, several morphological changes affected the mitochondria, chromatin and midpiece. These results indicate that the short swimming period of sea bass spermatozoa is controlled by energetic and cytoplasmic ionic conditions and that it is limited by osmotic stress, which induces marked changes in cell morphology.  相似文献   

18.
Specific effects of both in vivo activation and in vitro activation by cAMP-dependent phosphorylation on bending wave parameters of demembranated, reactivated, tunicate (Ciona intestinalis) and sea urchin (Lytechinus pictus) sperm flagella can be reversed by exposure to protein phosphatase. The effects of protein phosphatase incubation can be imitated by inclusion of LiCl in the reactivation solutions. The primary effect of cAMP-dependent phosphorylation appears to be activation of a regulatory mechanism controlling flagellar oscillation, rather than activation of the active sliding mechanism. Lithium appears to act on the same regulatory mechanism.  相似文献   

19.
Demembranated model of rat epididymal spermatozoa was employed to establish the conditions for the initiation of flagellar movement. Extensive initiation of the flagellar movement required 0.5 mM ATP, 1 μM cAMP and pH 7.9. The requirement for ATP was highly specific and can partially be replaced by 2′-deoxy-ATP only, but not by analogs of ATP or other nucleoside triphosphates. In contrast, the cAMP requirement was less specific and can partially be replaced by other cyclic nucleotides and cAMP-analogs except 2′-deoxy-cAMP and 2′,3′-cAMP. The data implied that the intracellular pH rise, not the cAMP increase, was the probable trigger for the initiation of sperm motility after ejaculation. During sperm maturation, the sperm motile apparatus appeared unchanged with respect to the above conditions of reactivation.  相似文献   

20.
The flagellar beat of hyperactivated Suncus spermatozoa was analyzed by digital imaging and was compared to that of the nonhyperactivated (activated) spermatozoa in order to examine the function of the accessory fibers during the flagellar beat and the sliding filament mechanism inducing the motility of the hyperactivated spermatozoa. Unusual large and long characteristics of the accessory fibers were involved in generating the gently curved bends and a low beat frequency. Examination of the motility parameters of the flagellar beat of the activated and hyperactivated spermatozoa attached to a slide glass by their heads revealed that there were two beating modes: a frequency-curvature dependent mode in the activated flagellar beat and a nearly constant frequency mode in the hyperactivated flagellar beat. The hyperactivated flagellar beat was characterized by sharp bends in the proximal midpiece and a low beat frequency. The sharp bends in the proximal midpiece were induced by the increase in the total length of the microtubule sliding at the flagellar base. The rate of microtubule sliding (sliding velocity) in the axoneme remained almost constant in the flagellar beat of both the activated and hyperactivated spermatozoa. Comparison of the sliding velocity in Suncus, golden hamster, monkey, and sea urchin sperm flagella with their stiffness suggests that the sliding velocity is determined by the stiffness at the flagellar base and that the same sliding microtubule system functions in both mammalian and echinoderm spermatozoa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号