首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 101 毫秒
1.
The nucleolar and mitochondrial morphology of developing reconstructed bovine nuclear transfer (NT) embryos and stage-matched in vivo-produced control embryos were examined under the electron microscope. Each reconstructed embryo at the one-cell (n = 12), two-cell (n = 5), three-cell (n = 3), four-cell (n = 5), 5–8 cell (n = 5) and blastocyst (n = 3) stages was produced by fusion of a 16–32-cell-stage blatomere with an aged enucleated bovine oocyte. The normal and reconstructed embryos showed similar mitochondrial morphology. However, NT embryos produced several pleiomorphic forms not seen in controls, and were more heterogenous at early stages of development. Control embryos exhibited nucleolar features considered indicative of rRNA synthesis from the eight-cell stage onwards. In contrast, the NT embryos presented nucleoli with morphology consistent with rRNA synthesis in all embryos examined, except in the three-cell and in two of the five four-cell embryos. From this nucleolar morphology, it was concluded that nuclear reprogramming does not occur immediately following nuclear transfer, but occurs gradually over the first two or three cell cycles. © 1996 Wiley-Liss, Inc.  相似文献   

2.
3.
4.
5.
Nuclear transfer protocol for the pig using cryopreserved delipated four- to eight-cell and morula stage embryos as nucleus donors was developed. Donor embryos, which had been delipated by micromanipulation following centrifugation for polarizing cytoplasmic lipid droplets, were cryopreserved with 1.5 M 1,2-propanediol and 0.1 M sucrose. Recipient cytoplasts were prepared from ovulated oocytes. Activation of oocytes could be induced more efficiently when electric stimulation was given 53 hr after the hCG injection or later (66–83%), compared with 52 hr or earlier (11–16%, P < 0.05), suggesting that aging after ovulation may be required for in vivo matured porcine oocytes to be activated by electric stimuli. Membrane fusion rates between donor blastomeres and enucleated oocytes were 88% (127/144) and 97% (56/58, P > 0.05) for the four- to eight-cell and morula stage embryos, respectively. In vitro developmental rates to the two-cell (53/100 vs. 35/65), four-cell (34/100 vs. 26/65), and morula stage (17/100 vs. 18/65) were the same between the nuclear transfer embryos with four- to eight-cell and morula nuclei. However, more embryos reconstituted with morula nuclei developed to blastocysts (15% vs. 6%, P < 0.05). These data demonstrated that blastomeres of cryopreserved, delipated porcine embryos can be used as donor nuclei for nuclear transfer. Frozen-thawed, delipated blastomeres can be efficiently isolated and fused, and therefore provide a useful source of donor nuclei. Mol. Reprod. Dev. 48:339–343, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
7.
8.
9.
10.
Nucleolar fine structure, "blebbing" activity of nuclear envelope, and activation of heterogeneous nuclear RNA (hnRNA) synthesis were studied in bovine reconstructed embryos obtained by electrofusion of a single eight-cell blastomere with an enucleated oocyte. Developmental progress of nucleolar fine structure and hnRNA synthesis are arrested during three cell cycles following fusion. The activation of both appears during the eight-cell stage of the reconstructed embryo, after the same number of cell cycles after fusion as in nonmanipulated bovine embryos after fertilization. "Blebbing" activity of nuclear envelope, which is already absent in original blastomeres, reappears after fusion and continues for the next two cell cycles. From the present results, it can be concluded that the donor nuclei are arrested after fusion in morphology and function. Their reactivation corresponds to the developmental pattern typical for normal bovine embryos.  相似文献   

11.
Somatic cloning does not always result in ontogeny in mammals, and development is often associated with various abnormalities and embryo loss with a high frequency. This is considered to be due to aberrant gene expression resulting from epigenetic reprogramming errors. However, a fundamental question in this context is whether the developmental abnormalities reported to date are specific to somatic cloning. The aim of this study was to determine the stage of nuclear differentiation during development that leads to developmental abnormalities associated with embryo cloning. In order to address this issue, we reconstructed cloned embryos using four- and eight-cell embryos, morula embryos, inner cell mass (ICM) cells, and embryonic stem cells as donor nuclei and determined the occurrence of abnormalities such as developmental arrest and placentomegaly, which are common characteristics of all mouse somatic cell clones. The present analysis revealed that an acute decline in the full-term developmental competence of cloned embryos occurred with the use of four- and eight-cell donor nuclei (22.7% vs. 1.8%) in cases of standard embryo cloning and with morula and ICM donor nuclei (11.4% vs. 6.6%) in serial nuclear transfer. Histological observation showed abnormal differentiation and proliferation of trophoblastic giant cells in the placentae of cloned concepti derived from four-cell to ICM cell donor nuclei. Enlargement of placenta along with excessive proliferation of the spongiotrophoblast layer and glycogen cells was observed in the clones derived from morula embryos and ICM cells. These results revealed that irreversible epigenetic events had already started to occur at the four-cell stage. In addition, the expression of genes involved in placentomegaly is regulated at the blastocyst stage by irreversible epigenetic events, and it could not be reprogrammed by the fusion of nuclei with unfertilized oocytes. Hence, developmental abnormalities such as placentomegaly as well as embryo loss during development may occur even in cloned embryos reconstructed with nuclei from preimplantation-stage embryos, and these abnormalities are not specific to somatic cloning.  相似文献   

12.
13.
Single blastomeres from four- and eight-cell mouse embryos were fused into the enucleated halves of two-cell embryos, and the ability of these reconstituted embryos to develop in vitro and in vivo was examined. The proportion of these reconstituted embryos developing to blastocysts was 74% (60/81) when four-cell embryo blastomeres were used as nuclei donors and 31% (57/182) when eight-cell embryo blastomeres were used. Eight complete sets of the quadruplet-reconstituted embryos developed to blastocysts, and five live young (9%, 5/57) were obtained after transfer; however, none of the live young were clones. Although when using blastomeres from eight-cell embryos no complete set of eight developed to blastocysts, sextuplets were obtained. The blastocysts, however, failed to produce live young after transfer. In assessing the outgrowths, it was found that 43% of those derived from reconstituted embryos using blastomeres from four-cell embryos had an inner cell mass (ICM); however, outgrowths derived from reconstituted embryos using blastomeres from eight-cell embryos lacked an ICM. These results suggest that the genomes of four- and eight-cell nuclei introduced into the enucleated halves of two-cell embryos are reversed to support the development of the reconstituted embryo.  相似文献   

14.
The effect of the stage of the cell cycle of donor cells and recipient cytoplasts on the timing of DNA replication and the developmental ability in vitro of bovine nuclear transfer embryos was examined. Embryos were reconstructed by fusing somatic cells with unactivated recipient cytoplasts or with recipient cytoplasts that were activated 2 h before fusion. Regardless of whether recipient cytoplasts were unactivated or activated, the embryos that were reconstructed from donor cells at the G0 phase initiated DNA synthesis at 6-9 h postfusion (hpf). The timing of DNA synthesis was similar to that of parthenogenetic embryos, and was earlier than that of the G0 cells in cell culture condition. Most embryos that were reconstructed from donor cells at the G1/S phase initiated DNA synthesis within 6 hpf. The developmental rate of embryos reconstructed by a combination of G1/S cells and activated cytoplasts was higher than the rates of embryos in the other combination of donor cells and recipient cytoplasts. The results suggest that the initial DNA synthesis of nuclear transfer embryos is affected by the state of the recipient oocytes, and that the timing of initiation of the DNA synthesis depends on the donor cell cycle. Our results also suggest that the cell cycles of somatic cells synchronized in the G1/S phase and activated cytoplasts of recipient oocytes are well coordinated after nuclear transfer, resulting in high developmental rates of nuclear transfer embryos to the blastocyst stage in vitro.  相似文献   

15.
16.
This study reconstructed heterogeneous embryos using camel skin fibroblast cells as donor karyoplasts and ovine oocytes as recipient cytoplasts for investigating the developmental potential of the reconstructed embryos. Serum-starved adult camel skin fibroblast cells were used as donor somatic cells. Ovine oocytes matured in vitro were employed as recipient cytoplasts. The fusion of fibroblast cells into recipient cytoplasm was induced by electrofusion. The fused oocytes were activated by 5mM/ml inomycin with 2mM/ml 6-dimethylaminopurine (6-DMAP). The activated reconstructed embryos were co-cultured with ovine cumulus cells in synthetic oviduct fluid supplemented with amino acid (SOFaa) and 10% fetal calf serum (FCS) for 168h. A total of 300 enucleated ovine oocytes were available for xenonuclear embryo reconstruction. The results showed that 71% of the nuclear transfer couplets were successfully fused, 55% of the fused oocytes cleaved within 48h after activation, 82% of the cleaved oocytes developed to 2-16-cell embryo stages and 18% of the cleaved nuclear transfer zygotes developed to the morula stage. This study demonstrated that the xenonuclear transfer camel embryos can undergo the first embryonic division and subsequent development to morula stage in vitro.  相似文献   

17.
Cryopreservation of cytoplasts would help to resolve the logistics of matching the availability of oocytes with embryo donors in nuclear transfer. Therefore, the developmental potential of nuclear transfer bovine embryos reconstructed using vitrified cytoplasts was investigated. In vitro matured oocytes were denuded, enucleated, activated with calcium ionophore (10 microM, 5 min) and cycloheximide (10 microg/mL, 6 h) and then vitrified by the open pulled straw (OPS) method. After immediate warming, the nuclear transfer embryos were reconstructed using blastomeres from nonvitrified,in vitro-produced embryo donors. Compared with control nuclear transfer embryos that were reconstructed using nonvitrified cytoplasts, fusion rates (% +/- SEM) were not affected (83.7+/-9.2 vs. 79.8+/-4.6; P>0.05), but cleavage (55.7+/-2.9 vs. 92.8+/-3.9; P = 0.0002) and blastocyst rates (7.2+/-5.0 vs. 32.6+/-7.8; P = 0.0025, vitrified vs. nonvitrified cytoplasts, respectively) per successful fusion were reduced. One nuclear transfer blastocyst reconstructed from a vitrified cytoplast was transferred to a synchronized recipient. After a normal length gestation (265 d), twin calves (21 and 26 kg) were delivered. Microsatellite analysis confirmed that the calves were homozygotic (the embryo split in utero), and were derived from the in vitro-produced embryo donor. The twins were dead at birth, but post-mortem analysis of the calves indicated no abnormalities or infections, suggesting that their death was related to the twin pregnancy and the known fragility of nuclear transfer calves. These data demonstrate that open pulled straw-vitrified cytoplasts are capable of supporting full-term development of nuclear transfer embryos.  相似文献   

18.
19.
A total of 15 blue fox vixens aged 1–6 years were mated, 12 once on the first day of estrus and three a second time 48 hr after the first mating, and were killed 4 hr to 8 days following mating. Ova were collected from the oviducts, evaluated by stereomicroscopy, and studied by transmission (TEM; N = 49, 12 vixens) or scanning (SEM, N = 11, three vixens) electron microscopy. At 0–3 days after ovulation, the ova had not cleaved and were at different stages of meiotic maturation. In about one-half of these ova, representing all stages of meiotic maturation, a decondensing sperm head without nuclear envelope or a small pronucleus with partial nuclear envelope was observed. No clear relationship was found between maternal meiotic stage and the stage of paternal pronucleus formation. Sperm tails were never identified in the ooplasm. Cortical granules were released after sperm penetration at early stages of meiotic maturation. Thus the block against polyspermic penetration was activated during maturation of the oocyte. The first two-cell stage appeared 4 days after ovulation (3 days after mating), the first four-cell stage the following day (day 5), and the first eight-cell stage 6 days after ovulation (5 days after mating). In a single vixen mated late (7 days postovulation) two- to four-cell stages appeared the following day (day 8). This indicates that the time required for the first cleavage division decreases with increasing interval from ovulation to mating. The development of a functional nucleolus with fibrillar centers and fibrillar and granular components at the eight-cell stage indicates activation of embryonic RNA synthesis in fox embryos at the six- to eight-cell stage, suggesting that the embryonic genome is activated at this stage. © 1993 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号