首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uptake of plasmid deoxyribonucleic acid by Haemophilus   总被引:6,自引:4,他引:2       下载免费PDF全文
The uptake of circular and linear plasmid RSF0885 deoxyribonucleic acids, (DNAs) obtained from Haemophilus parainfluenzae 14, in both homologous and heterologous recipients was studied and compared with that of chromosomal DNA. High concentrations of divalent cations stimulated the uptake of either circular or linear plasmid DNA in H. parainfluenzae 14 competent cells but did not affect the uptake of chromosomal DNA. The biological activity of linear plasmid DNA was similar to that of circular DNA, and the transforming efficiencies for ampicillin resistance of both molecular forms were stimulated by divalent ions. Plasmid DNA was taken up efficiently either with or without the addition of divalent ions but was not biologically active in the heterologous Haemophilus influenzae Rd recipient. Our results suggest that in H. parainfluenzae 14 some of the steps for chromosomal and plasmid DNA uptake are different.  相似文献   

2.
The natural transformation of Acinetobacter calcoaceticus BD413 (trp E27) was characterized with respect to features that might be important for a possible gene transfer by extracellular DNA in natural environments. Transformation of competent cells with chromosomal DNA (marker trp +) occurred in aqueous solutions of single divalent cations. Uptake of DNA into the DNase I-resistant state but not the binding of DNA to cells was strongly stimulated by divalent cations. An increase of transformation of nearly 3 orders of magnitude was obtained as a response to the presence of 0.25 mM Ca2+. With CaCl2 solutions the transformation frequencies approached the highest values obtained under standard broth conditions, followed by MnCl2 and MgCl2. It is concluded that transformation requires divalent cations. DNA competition experiments showed that A. calcoaceticus does not discriminate between homologous and heterologous DNA. Furthermore, circular plasmid DNA competed with chromosomal DNA fragments and vice versa. The equally efficient transformation with plasmid pKT210 isolated from A. calcoaceticus or Escherichia coli indicated absence of DNA restriction in transformation. High efficiency plasmid transformation was obtained in samples of non-sterile natural groundwater and in non-sterile extracts of fresh and air-dried soil. Heat-treatment (10 min, 80°C) of the non-sterile liquid samples increased transformation only in the dried soil extract, probably by inactivation of DNases. The results presented suggest that competent cells of A. calcoaceticus can take up free high molecular weight DNA including plasmids of any source in natural environments such as soil, sediment or groundwater.  相似文献   

3.
Ca2+ treatment renders the outer membrane of Escherichia coli reversibly permeable for macromolecules. We investigated whether Ca2+-induced uptake of exogenous protein into the periplasm occurs by mechanisms similar to Ca2+-induced uptake of DNA into the cytoplasm during transformation. Protein import through the outer membrane was monitored by measuring reconstitution of maltose transport after the addition of shock fluid containing maltose-binding protein. DNA import through the outer and inner membrane was measured by determining the efficiency of transformation with plasmid DNA. Both processes were stimulated by increasing Ca2+ concentrations up to 400 mM. Plasmolysis was essential for a high efficiency; reconstitution and transformation could be stimulated 5- and 40-fold, respectively, by a high concentration of sucrose (400 mM) in cells incubated with a suboptimal Ca2+ concentration (50 mM). The same divalent cations that promote import of DNA (Ca2+, Ba2+, Sr2+, Mg2+, and Ni2+) also induced import of protein. Ca2+ alone was found to be inefficient in promoting reconstitution; successive treatment with phosphate and Ca2+ ions was essential. Transformation also was observed in the absence of phosphate, but could be stimulated by pretreatment with phosphate. The optimal phosphate concentrations were 100 mM and 1 to 10 mM for reconstitution and transformation, respectively. Heat shock, in which the cells are rapidly transferred from 0 to 42 degrees C, affected the two processes differently. Incubation of cells at 0 degrees C in Ca2+ alone allows rapid entry of protein, but not of DNA. Transformation was observed only when exogenous DNA was still present during the heat shock. Shock fluid containing maltose-binding protein inhibited transformation (with 6 microgram of DNA per ml, half-maximal inhibition occurred at around 300 microgram of shock fluid per ml). DNA inhibited reconstitution (with 5 microgram of shock fluid per ml, half-maximal inhibition occurred at around 3 mg of DNA per ml).  相似文献   

4.
K Kato  M Goto  H Fukuda 《Life sciences》1983,32(8):879-887
When investigating the effects of divalent cations (Mg2+, Ca2+, Sr2+, Ba2+, Mn2+ and Ni2+) on 3H-baclofen binding to rat cerebellar synaptic membranes, we found that the specific binding of 3H-baclofen was not only dependent on divalent cations, but was increased dose-dependently in the presence of these cations. The effects were in the following order of potency: Mn2+ congruent to Ni2+ greater than Mg2+ greater than Ca2+ greater than Sr2+ greater than Ba2+. Scatchard analysis of the binding data revealed a single component of the binding sites in the presence of 2.5 mM MgCl2, 2.5 mM CaCl2 or 0.3 mM MnCl2 whereas two components appeared in the presence of 2.5 mM MnCl2 or 1 mM NiCl2. In the former, divalent cations altered the apparent affinity (Kd) without affecting density of the binding sites (Bmax). In the latter, the high-affinity sites showed a higher affinity and lower density of the binding sites than did the single component of the former. As the maximal effects of four cations (Mg2+, Ca2+, Mn2+ and Ni2+) were not additive, there are probably common sites of action of these divalent cations. Among the ligands for GABAB sites, the affinity for (-), (+) and (+/-) baclofen, GABA and beta-phenyl GABA increased 2-6 fold in the presence of 2.5 mM MnCl2, in comparison with that in HEPES-buffered Krebs solution (containing 2.5 mM CaCl2 and 1.2 mM MgSO4), whereas that for muscimol was decreased to one-fifth. Thus, the affinity of GABAB sites for its ligands is probably regulated by divalent cations, through common sites of action.  相似文献   

5.
R W Wilson  V A Bloomfield 《Biochemistry》1979,18(11):2192-2196
The addition of the trivalent or tetravalent cations spermidine or spermine to a solution of T7 DNA in aqueous solution causes an alteration of the DNA from its extended coil form to a condensed form. If performed at low DNA concentration and at low ionic strengths, this transformation results in a monomolecular collapse to form a particle with a hydrodynamic radius of about 500 A. We have monitored this change using quasielastic and total intensity light scattering. In a solution of 50% methanol in water, the divalent cations Mg2+ and putrescine also can cause the condensation of DNA. Using Manning's (1978) counterion condensation theory, we calculate a striking unity among these disparate ions: the collapse occurs in each case when from 89 to 90% of the DNA phosphate charges are neutralized by condensed counterions.  相似文献   

6.
Genetic transformation of bacterial cells required the induction of a state of competence to bind and absorb free DNA molecules. Induction of competence in Haemophilus influenzae was accompanied by the generation on the cell surface of membrane extensions ("blebs") 80 to 100 nm in diameter. When competent cells were returned to normal growth conditions, they shed these structures as free vesicles with a concomitant loss of cellular DNA-binding activity. Purified vesicle preparations retained the ability to bind double-stranded DNA in a nuclease-resistant, salt-stable form. Binding was specific for DNA molecules containing the 11-base pair Haemophilus uptake sequence, required Na+ and divalent cations (Mg2+, Ca2+, or Mn2+), and was inhibited by the presence of EDTA or high concentrations of salt (greater than 0.5 M NaCl). Binding was not stimulated by nucleotide triphosphates and was insensitive to the uncoupling agents dinitrophenol and carbonyl cyanide m-chlorophenylhydrazone. Vesicles contained the major Haemophilus outer membrane proteins and were enriched in several minor proteins.  相似文献   

7.
Binding of the origin of replication of Escherichia coli to the outer membrane   总被引:29,自引:0,他引:29  
The replication origin of the Escherichia coli chromosome binds with high affinity to outer membrane preparations. This binding requires a 460 bp stretch of origin DNA between positions -40 and 420 of the oriC map. Specific binding can be detected by the use of a membrane filter retention assay in the presence of excess calf thymus DNA. This binding is enhanced by divalent cations and takes place specifically at a few (0.7-3.0) membrane sites per cell. The apparent affinity of origin DNA for membranes is enhanced by two peptides, (55 kilodaltons (kd) and 75 kd), which remain attached to the DNA through treatment with 5.5 M cesium chloride.  相似文献   

8.
Prokaryotes can exchange chromosomal and plasmid genes via extracellular DNA in a process termed genetic transformation. This process has been observed in the test tube for several bacterial species living in the environment but it is not clear whether transformation occurs in natural bacterial habitats. A major constituent of terrestrial environments are solid particles such as quartz, silt and clay, which have considerable surface areas and which make up the solid-liquid interfaces of the habitat. In previous experiments the adsorption of DNA to chemically purified quartz and clay minerals was shown and the partial protection of adsorbed DNA against DNAase I. In a microcosm consisting of natural groundwater aquifer material (GWA) sampled directly from the environment and groundwater (GW) both linear duplex and supercoiled plasmid DNA molecules bound rapidly and quantitatively to the minerals. The divalent cations required to form the association were those present in the GWA/GW microcosm. The association was stable to extended elution over one week at 23°C. Upon adsorption, the DNA became highly resistant against enzymatic degradation. About 1000 times higher DNAase I concentrations were needed to degrade bound DNA to the same extent as DNA dissolved in GW. Furthermore, chromosomal and plasmid DNA bound on GWA transformed competent cells of Bacillus subtilis. However, in contrast to DNA in solution, on GWA the chromosomal DNA was more active in transformation than the plasmid DNA. The studies also revealed that in the transformation of B. subtilis Mg2+ can be replaced by Na+, K+ or NH4 The observations suggest that in soil and sediment environments, mineral material with inorganic precipitates and organic matter can harbour extracellular DNA leaving it available for genetic transformation.  相似文献   

9.
In earlier studies of genetic competence in Escherichia coli induced with calcium-containing buffers, a strong correlation was found between transformation efficiency and the formation of poly-beta-hydroxybutyrate/calcium polyphosphate (PHB/Ca2+/PPi) complexes in the plasma membranes. In this study, we replaced Ca2+ with one of a number of other cations--monovalent, divalent, and trivalent--and found significant numbers of transformants (transformation efficiency, > 10(5)/micrograms of pBR322 DNA) only when the cells had high levels of PHB/Ca2+/PPi and the medium contained at least one of the divalent cations Ca2+, Mn2+, Sr2+, or Mg2+. Cells with high levels of the complexes were not competent when the medium did not contain these cations, but the cations were also ineffectual when the cells had few complexes. Surprisingly, Mn, Sr, and Mg were not incorporated into the complexes in place of Ca. These results indicate that PHB/Ca2+/PPi complexes and the above-mentioned divalent cations each have essential but disparate roles in genetic competence. Moreover, the strong selectivity of PHB/PPi for Ca2+ suggests the binding sites in the complexes are ionophoretic.  相似文献   

10.
Paracoccus denitrificans grown in a complex medium was highly susceptible to lysozyme, in contrast to cells grown in a complex medium supplemented with Mg2+ and Ca2+ or in a succinate-salts medium. The complex medium was deficient in divalent cations needed for optimum outer membrane stability. The major change in molecular compositions of outer membranes isolated from cells grown under the different conditions was a higher ratio of ornithine-containing lipid to phospholipid in complex-medium-grown cells (0.63) than in cells grown in complex medium with Mg2+ and Ca2+ (0.22) or in succinate-salts medium (0.14). We suggest that the dipolarionic ornithine-containing lipid is less dependent than acidic phospholipids on divalent cations for its incorporation into the outer membrane.  相似文献   

11.
An erythromycin-resistant strain (M4 Er-1) was selected from Spiroplasma citri M4+. The transfer by transformation of the erythromycin-resistance character to the erythromycin-sensitive S. citri strain R8A2+ was studied. Transfer became effective and reproducible when cells were treated with alkali cations plus polyethylene glycol. Comparison of the efficiency of transformation of the erythromycin-sensitive strain S. citri R8A2+ by total and extrachromosomal DNA purified from the erythromycin-resistant strain M4 Er-1 showed that the plasmid pM42 was able to transfer the erythromycin-resistance. pM42 was mapped with restriction endonucleases and found to be related to the pMH1 plasmid previously isolated from S. citri MH. Hybridization analysis of DNA from sensitive and resistant strains has shown that a sequence from pM42, analogous to a sequence from pMH1, was integrated at a specific locus in the chromosome of the erythromycin-resistant cells, i.e., of the transformed R8A2 cells and of the spontaneous mutant M4 Er-1 strain.  相似文献   

12.
The effect of various metabolic inhibitors (carbonylcyanid-m-chlorophenylhydrazone, nigericin, valinomycin, dicyclocarbodiimide, arsenate, NaF, etc.) and lipid-soluble synthetic ions (tetraphenylphosphonium bromide and tetraphenylboron sodium) on deoxyribonucleic acid (DNA) entry during transformation of Ca2+-treated Escherichia coli cells with plasmid DNA and on cell viability was investigated. In contrast to intact cells, Ca2+-treated E. coli cells were permeable to nigericin, valinomycin, and the other drugs tested. The inhibitors differentially affected [14C]proline active transport, and whereas some drugs inhibited transformation, the effects did not correlate with the effects on transport. The most potent inhibitors of transformation were nigericin, dicyclocarbodiimide, and tetraphenylboron sodium. Carbonylcyanid-m-chlorophenylhydrazone, tetraphenylphosphonium bromide, and valinomycin were relatively inactive. Tetraphenylboron sodium- and nigericin-treated cells bound were plasmid [14C]DNA in the deoxyribonuclease-resistant form than the control and other sample cells. Nevertheless, te penetration of exogenous plasmid DNA into the cell was greatly reduced, at least in case of nigericin. Unlike the other drugs, nigericin and dicyclocarbodiimide drastically affected the cell viability, the former within very short times of interaction. It is concluded that proton motive force does not play any significant role in DNA entry into Ca2+-treated E. coli cells. The results also suggest that adenosine 5'-triphosphate is not required for DNA entry either. The inhibitory effect of certain drugs is discussed in terms of structural perturbations induced by the drugs in cell envelope membranes.  相似文献   

13.
Deoxyribonucleic acid (DNA) from the covalently closed circular DNA molecules of Pseudomonas phage PM2 was found to enter normally transformable cells of Streptococcus pneumoniae as readily as linear bacterial DNA. In a mutant of S. pneumoniae that lacks a membrane nuclease and is defective in DNA entry, as many molecules of PM2 DNA as of linear DNA were bound on the outside of cells at equivalent DNA concentrations. Bound DNA suffered single-strand breaks, but circular DNA with preexisting breaks was bound no better than closed circles. In the presence of divalent cations, DNA bound to cells of a leaky nuclease mutant showed double-strand breaks. At least the majority of PM2 DNA that entered normal cells was single stranded. These results are consistent with a mechanism for DNA entry in which DNA is first nicked on binding, then a double-strand break is formed by cleavage of the complementary strand, and continued processive action of the membrane nuclease facilitates entry of the originally nicked strand. Although the bulk of circular donor DNA appeared to enter in this way, the results do not exclude entry of a small amount of donor DNA in an intact form.  相似文献   

14.
A plasmid containing a single cloned insertion of Haemophilus influenzae chromosomal deoxyribonucleic acid that carried a novobiocin resistance marker was 2.6 times larger than the parent plasmid, RSF0885, which conferred ampicillin resistance. The most frequent type of transformation by this plasmid (designated pNov1) was the transfer of novobiocin resistance to the chromosome, with the loss of the plasmid from the recipient. In accord with this observation, after radioactively labeled pNov1 entered a competent cell, it lost acid-insoluble counts, as well as biological activity. The level of ampicillin transformation, which involved establishment of the plasmid, was almost two orders of magnitude lower than the level of novobiocin transformation. Both types of transformation were depressed profoundly in rec-1 and rec-2 mutants. Ampicillin transformants of wild-type cells always contained plasmids that were the same size as pNov1, although most of these transformants were not novobiocin resistant. Plasmid pNov1 in wild-type cells but not in rec-1 or rec-2 cells often recombined with the chromosome, causing a homologous region of the chromosome to be substituted for part of the plasmid, as shown by restriction and genetic analyses. Our data suggested that plasmid-chromosome recombination took place only around the time when the plasmid entered a cell, rather than after it became established.  相似文献   

15.
The MobA protein encoded by plasmid R1162 plays an important role in conjugative mobilization between bacterial cells. It has two functional domains, the N-terminal relaxase domain and C-terminal primase domain. The N-terminal 186 residues (minMobA) is the minimal domain required for relaxase activity. We investigated the effects of different divalent metallic cations on minMobA activity measuring DNA binding, DNA nicking, and protein denaturation experiments. The results show that divalent cations are not required for DNA binding but are required for DNA nicking. The range of metals that function in minMobA suggests the cation role is largely structural. The most tightly binding cation is Mn2+, but the expressed protein shows roughly equal amounts of Mg2+ and Ca2+, both of which facilitate substrate binding and catalysis. Surprisingly, Zn2+ does not facilitate DNA binding nor allow nicking activity.  相似文献   

16.
Thermal denaturation of deoxyribonucleic acid (DNA) in situ in individual unbroken cells is studied by a cytofluorometric method. This method allows us to investigate DNA denaturation in the presence of divalent cations at concentrations reported to be necessary to maintain native structure of nuclear chromatin. Under these conditions the pattern of DNA denaturation is very different than when studied in the presence of ethylenediaminetetraacetate or citrate. The results suggest that with divalent cations present, the histone basic charges are more uniformly distributed along whole nuclear DNA. Various cell types exhibit great differences in sensitivity to DNA denaturation when assayed in the presence of 1 mM MgCl2. Human lymphocytes, monocytes and certain kinds of human leukemic cells show differences large enough to be used as a parameter for their recognition in mixed samples. Possible applications of the method in basic research on chromatin conformation and as a tool for cell recognition in diagnostic cytology or in the classification of human leukemia are proposed.  相似文献   

17.
The rat mesenteric vasculature contains high affinity binding sites specific for [3H]Arg8-vasopressin which mediate its vasoconstrictor action. We have investigated the in vitro effect of monovalent and divalent cations and guanine nucleotides on the interactions between [3H]Arg8-vasopressin and its receptor in this preparation. Binding was increased by divalent cations from fourfold in the presence of Mg2+ at 5 mM to ninefold in the presence of Mn2+ at 5 mM. The potency order of divalent cations to increase binding was Mn2+ greater than Co2+ greater than Ni2+ greater than Mg2+ greater than Ca2+ approximately equal to control without cations. Addition of Na2+ or other monovalent cations (K+, Li+, and NH4+) in the presence or absence of divalent cations reduced binding significantly. Analysis of saturation binding curves showed a single high affinity site. In the presence of 5 mM Mn2+, binding capacity (Bmax) increased to 139 +/- 23 fmol/mg protein. Receptor affinity was enhanced (KD decreased to 0.33 +/- 0.07 nM). In presence of 5 mM Mg2+ or 150 mM Na+, Bmax and affinity were reduced. The addition of 100 microM GTP or its nonhydrolyzable analogue, Gpp(NH)p, reduced receptor affinity in the presence of Mn2+ + Na+, Mg2+, and Mg2+ + Na+, but not in the presence of Mn2+ alone. Computer modeling of competition binding curves demonstrated that in contrast with saturation studies, the data were best explained by a two-site model with high affinity, low capacity sites and low affinity, high capacity sites. Mn2+ or Mn2+ + Na+ with or without guanine nucleotides resulted in a predominance of high affinity sites. GTP or Gpp(NH)p in the presence of Mg2+ or Mg2+ + Na+ induced a reduction of affinity of the high affinity binding sites and the number of these sites. In the presence of Mg2+ + Na+ and guanine nucleotides, high affinity sites were maximally decreased. An association kinetic study indicated that the association rate constant (K+1) was increased by divalent cations and reduced by guanine nucleotides, without change in the dissociation rate constant (K-1). The equilibrium dissociation constant (KD) calculated with these rate constants (K-1/K+1) was similar to that obtained in saturation experiments at steady state. Dissociation kinetics were biphasic, indicating the presence of two receptor states, one of high and one of low affinity, associated with a slow and a rapid dissociation rate. Cations and guanine nucleotides interact with one or more sites closely associated with vasopressin receptors, including possibly with a GTP-sensitive regulatory protein, to modulate receptor affinity for vasopressin.  相似文献   

18.
The activity of deoxyribonucleic acid polymerase in some species of algae   总被引:2,自引:1,他引:1  
1. The activities of DNA polymerase preparations from the algae Euglena gracilis, Chlamydomonas reinhardtii, Chlorella pyrenoidosa, Anabaena variabilis and Anacystis nidulans were measured. The blue-green algae Anabaena and Anacystis contain a 5-20-fold higher activity of the enzyme than do the green algae. DNA polymerases from the blue-green algae show a pH optimum of 9 and prefer a relatively low Mg(2+) concentration (1-3mm). DNA polymerases from the green algae, however, display a pH optimum between 7.5 and 8.5 and an optimum Mg(2+) concentration of 8mm. With all algae, a higher polymerase activity was obtained with denatured salmon sperm DNA as template than with native DNA. All four deoxyribonucleoside 5'-triphosphates must be present for full activity of the polymerases. 2. With one exception, the deoxyribonuclease activities in the preparations, measured under conditions of the DNA polymerase assay, are low compared with corresponding preparations from Escherichia coli. Chlamydomonas extracts contain a high deoxyribonuclease activity. 3. After purification on columns of DEAE-cellulose, the polymerase activity was linear over a wide range of protein concentrations, except for Chlamydomonas preparations, where the observed deviation from linearity was probably attributable to the high nuclease activity. 4. DNA polymerases from all these algae bind strongly to DNA-cellulose; 6-40-fold purifications of the enzyme were obtained by chromatography on columns of DNA-cellulose. 5. The partially purified polymerases of Euglena and Anacystis are heat-labile but become much more heat-stable when tested in the presence of DNA.  相似文献   

19.
Magnesium (Mg2+) increases binding of follicle-stimulating hormone (FSH) to membrane-bound receptors and increases adenylyl cyclase activity. We examined the effects of divalent and monovalent cations on FSH binding to receptors in granulosa cells from immature porcine follicles. Divalent and monovalent cations increased binding of [125I]iodo-porcine FSH (125I-pFSH). The divalent cations Mg2+, calcium (Ca2+) and manganese, (Mn2+) increased specific binding a maximum of 4- to 5-fold at added concentrations of 10 mM. Mg2+ caused a half-maximal enhancement of binding at 0.6 mM, whereas Ca2+ and Mn2+ had half-maximal effects at 0.7 mM and 0.8 mM, respectively. The monovalent cation potassium (K+) increased binding a maximum of 1.5-fold at an added concentration of 50 mM, whereas the monovalent cation (Na+) did not increase binding at any concentration tested. The difference between K+ and Na+ suggested that either enhancement of binding was not a simple ionic effect or Na+ has a negative effect that suppresses its positive effect. Ethylenediamine tetraacetic acid, a chelator of Mg2+, prevented binding of 125I-pFSH only in the presence of Mg2+, whereas pregnant mare's serum gonadotropin, a competitor with FSH for the receptor, prevented binding in both the absence and the presence of Mg2+. Guanyl-5-ylimidodiphosphate (Gpp[NH]p) inhibited binding of 125I-pFSH in the absence or presence of Mg2+, but only at Gpp(NH)p concentrations greater than 1 mM. We used Mg2+ to determine if divalent cations enhanced FSH binding by increasing receptor affinity or by increasing the apparent number of binding sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
DNA-envelope complexes isolated from osmotically lysed spheroplasts of Escherichia coli contained 0.2 to 1% of the total cellular DNA after labeling with [3H]thymidine. Molecular weight determinations indicated that the amount of bound DNA was equivalent in most cases to a maximum of three binding sites per chromosome. Bound DNA from E. coli B/r was distributed approximately equally between inner and outer membrane components when envelopes were fractionated on sucrose equilibrium gradients. Outer membrane-DNA complexes, in particular, fraction H1, with a density of 1.24 g/cm3, were quite stable against shearing and against Sarkosyl NL97. In the case of E. coli B/r, H1-DNA was also relatively resistant to deoxyribonuclease. Inner membrane-DNA complexes, in contrast, were quite labile and readily dissociated to release free DNA. The outer membrane fractions did not appear to contain replication fork DNA, but small amounts may have been present in the inner membrane complexes. A two- to eightfold enrichment for chromosomal origin DNA in the envelope was obtained when cultures of E. coli K-12, synchronized for DNA replication, were pulse labeled at different times in the replication cycle. This enrichment was found invariably in the outer membrane fractions. However, the data do not exclude the possibility that this DNA is bound to regions of adhesion between inner and outer membranes which sediment with a density indistinguishable from that of the outer membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号