首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Whether polarized treadmilling is an intrinsic property of microtubules assembled from pure tubulin has been controversial. We have tested this possibility by imaging the polymerization dynamics of individual microtubules in samples assembled to steady-state in vitro from porcine brain tubulin, using a 2% glycerol buffer to reduce dynamic instability. Fluorescence speckled microtubules were bound to the cover-glass surface by kinesin motors, and the assembly dynamics of plus and minus ends were recorded with a spinning-disk confocal fluorescence microscopy system. At steady-state assembly, 19% of the observed microtubules (n = 89) achieved treadmilling in a plus-to-minus direction, 34% in a minus-to-plus direction, 37% grew at both ends, and 10% just shortened. For the population of measured microtubules, the distribution of lengths remained unchanged while a 20% loss of original and 27% gain of new polymer occurred over the 20-min period of observation. The lack of polarity in the observed treadmilling indicates that stochastic differences in dynamic instability between plus and minus ends are responsible for polymer turnover at steady-state assembly, not unidirectional treadmilling. A Monte Carlo simulation of plus and minus end dynamics using measured dynamic instability parameters reproduces our experimental results and the amount of steady-state polymer turnover reported by previous biochemical assays.  相似文献   

2.
The microtubule cytoskeleton plays an important role in eukaryotic cells, e. g., in cell movement or morphogenesis. Microtubules, formed by assembly of tubulin dimers, are dynamic polymers changing randomly between periods of growing and shortening, a property known as dynamic instability. Another process characterizing the dynamic behaviour is the so-called treadmilling due to different binding constants of tubulin at both microtubule ends. In this study, we used tetramethylrhodamine (TMR)-labeled tubulin added to microtubule suspensions to determine the net exchange rate (NER) of tubulin dimers by fluorescence correlation spectroscopy (FCS) as a measure for microtubule dynamics. This approach, which seems to be suitable as a screening system to detect compounds influencing the NER of tubulin dimers into microtubules at steady-state, showed that taxol, nocodazole, colchicine, and vinblastine affect microtubule dynamics at concentrations as low as 10(-9)-10(-10) M.  相似文献   

3.
Stathmin is a ubiquitous microtubule destabilizing protein that is believed to play an important role linking cell signaling to the regulation of microtubule dynamics. Here we show that stathmin strongly destabilizes microtubule minus ends in vitro at steady state, conditions in which the soluble tubulin and microtubule levels remain constant. Stathmin increased the minus end catastrophe frequency approximately 13-fold at a stathmin:tubulin molar ratio of 1:5. Stathmin steady-state catastrophe-promoting activity was considerably stronger at the minus ends than at the plus ends. Consistent with its ability to destabilize minus ends, stathmin strongly increased the treadmilling rate of bovine brain microtubules. By immunofluorescence microscopy, we also found that stathmin binds to purified microtubules along their lengths in vitro. Co-sedimentation of purified microtubules polymerized in the presence of a 1:5 initial molar ratio of stathmin to tubulin yielded a binding stoichiometry of 1 mol of stathmin per approximately 14.7 mol of tubulin in the microtubules. The results firmly establish that stathmin can increase the steady-state catastrophe frequency by a direct action on microtubules, and furthermore, they indicate that an important regulatory action of stathmin in cells may be to destabilize microtubule minus ends.  相似文献   

4.
R H Himes  H W Detrich 《Biochemistry》1989,28(12):5089-5095
The tubulins of Antarctic fishes, purified from brain tissue and depleted of microtubule-associated proteins (MAPs), polymerized efficiently in vitro to yield microtubules at near-physiological and supraphysiological temperatures (5, 10, and 20 degrees C). The dynamics of the microtubules at these temperatures were examined through the use of labeled guanosine 5'-triphosphate (GTP) as a marker for the incorporation, retention, and loss of tubulin dimers. Following attainment of a steady state in microtubule mass at 20 degrees C, the rate of incorporation of [3H]GTP (i.e., tubulin dimers) during pulses of constant duration decreased asymptotically toward a constant, nonzero value as the interval prior to label addition to the microtubule solution increased. Concomitant with the decreasing rate of label incorporation, the average length of the microtubules increased, and the number concentration of microtubules decreased. Thus, redistribution of microtubule lengths (probably via dynamic instability and/or microtubule annealing) appears to be responsible for the time-dependent decrease in the rate of tubulin uptake. When the microtubules had attained both a steady state in mass and a constant length distribution, linear incorporation of labeled tubulin dimers over time occurred at rates of 1.45 s-1 at 5 degrees C, 0.48 s-1 at 10 degrees C, and 0.18 s-1 at 20 degrees C. Thus, the microtubules displayed greater rates of subunit flux, or treadmilling, at lower, near-physiological temperatures. At each temperature, most of the incorporated label was retained by the microtubules during a subsequent chase with excess unlabeled GTP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Taxol binds to polymerized tubulin in vitro   总被引:20,自引:8,他引:12       下载免费PDF全文
Taxol, a natural plant product that enhances the rate and extent of microtubule assembly in vitro and stabilizes microtubules in vitro and in cells, was labeled with tritium by catalytic exchange with (3)H(2)O. The binding of [(3)H]taxol to microtubule protein was studied by a sedimentation assay. Microtubules assembled in the presence of [(3)H]taxol bind drug specifically with an apparent binding constant, K(app), of 8.7 x 19(-7) M and binding saturates with a calculated maximal binding ration, B(max), of 0.6 mol taxol bound/mol tubulin dimer. [(3)H]Taxol also binds and assembles phosphocellulose-purified tubulin, and we suggest that taxol stabilizes interactions between dimers that lead to microtubule polymer formation. With both microtubule protein and phosphocellulose- purified tubulin, binding saturation occurs at approximate stoichiometry with the tubulin dimmer concentration. Under assembly conditions, podophyllotoxin and vinblastine inhibit the binding of [(3)H]taxol to microtubule protein in a complex manner which we believe reflects a competition between these drugs, not for a single binding site, but for different forms (dimer and polymer) of tubulin. Steady-state microtubules assembled with GTP or with 5’-guanylyl-α,β-methylene diphosphonate (GPCPP), a GTP analog reported to inhibit microtubule treadmilling (I.V. Sandoval and K. Weber. 1980. J. Biol. Chem. 255:6966-6974), bind [(3)H]taxol with approximately the same stoichiometry as microtubules assembled in the presence of [(3)H]taxol. Such data indicate that a taxol binding site exists on the intact microtubule. Unlabeled taxol competitively displaces [(3)H]taxol from microtubules, while podophyllotoxin, vinblastine, and CaCl(2) do not. Podophyllotoxin and vinblastine, however, reduce the mass of sedimented taxol-stabilized microtubules, but the specific activity of bound [(3)H]taxol in the pellet remains constant. We conclude that taxol binds specifically and reversibly to a polymerized form of tubulin with a stoichiometry approaching unity.  相似文献   

6.
MAP2C is a microtubule-associated protein abundant in immature nerve cells. We isolated a cDNA clone encoding whole mouse MAP2C of 467 amino acid residues. In fibroblasts transiently transfected with cDNA of MAP2C, interphase microtubule networks were reorganized into microtubule bundles. To reveal the dynamic properties of microtubule bundles, we analyzed the incorporation sites of exogenously introduced tubulin by microinjection of biotin-labeled tubulin and the turnover rate of microtubule bundles by photoactivation of caged fluorescein- labeled tubulin. The injected biotin-labeled tubulin was rapidly incorporated into distal ends of preexisting microtubule bundles, suggesting a concentration of the available ends of microtubules at this region. Although homogenous staining of microtubule bundles with antibiotin antibody was observed 2 h after injection, the photoactivation study indicated that turnover of microtubule bundles was extremely suppressed and < 10% of tubulin molecules would be exchanged within 1 h. Multiple photoactivation experiments provided evidence that neither catastrophic disassembly at the distal ends of bundles nor concerted disassembly due to treadmilling at the proximal ends could explain the observed rapid incorporation of exogenously introduced tubulin molecules. We conclude that microtubules bundled by MAP2C molecules are very stable while the abrupt increase of free tubulin molecules by microinjection results in rapid assembly from the distal ends within the bundles as well as free nucleation of small microtubules which are progressively associated laterally with preexisting microtubule bundles. This is the first detailed study of the function of MAPs on the dynamics of microtubules in vivo.  相似文献   

7.
We have investigated the effects of taxol on steady-state tubulin flux and on the apparent molecular rate constants for tubulin addition and loss at the two ends of bovine brain microtubules in vitro. These microtubules, which consist of a mixture of 70% tubulin and 30% microtubule-associated proteins (MAPs), undergo a net addition of tubulin at one end of each microtubule (A end) and a precisely balanced net loss of tubulin at the opposite end (D end) at steady state in vitro. They do not exhibit to a detectable extent the "dynamic instability" behavior described recently for MAP-free microtubules, which would be evident as an increase in the mean microtubule length and a decrease in the number of microtubules in the suspensions [Mitchison, T., & Kirschner, M. (1984) Nature (London) 312, 237-242]. We used a double-label procedure in which microtubules were labeled with tritium and carbon-14 at A ends and carbon-14 at D ends to distinguish the two ends, combined with a microtubule collection procedure that permitted rapid and accurate analysis of retention of the two labels in the microtubules. We found that taxol slowed the flux of tubulin in a concentration-dependent manner, with 50% inhibition occurring between 5 and 7 microM drug. The effects of taxol on the apparent molecular rate constants for tubulin addition and loss at the two microtubule ends were determined by dilution analysis at an intermediate taxol concentration. The results indicated that taxol decreased the magnitudes of the dissociation rate constants at the two ends to similar extents, while exerting little effect on the association rate constants.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
One recent hypothesis for the mechanism of chromosome movement during mitosis predicts that a continual, uniform, poleward flow or "treadmilling" of microtubules occurs within the half-spindle between the chromosomes and the poles during mitosis (Margolis, R. L., and L. Wilson, 1981, Nature (Lond.), 293:705-711). We have tested this treadmilling hypothesis using fluorescent analog cytochemistry and measurements of fluorescence redistribution after photobleaching to examine microtubule behavior during metaphase of mitosis. Mitotic BSC 1 mammalian tissue culture cells or newt lung epithelial cells were microinjected with brain tubulin labeled with 5-(4,6-dichlorotriazin-2-yl) amino fluorescein (DTAF) to provide a fluorescent tracer of the endogenous tubulin pool. Using a laser microbeam, fluorescence in the half-spindle was photobleached in either a narrow 1.6 micron wide bar pattern across the half-spingle or in a circular area of 2.8 or 4.5 micron diameter. Fluorescence recovery in the spindle fibers, measured using video microscopy or photometric techniques, occurs as bleached DTAF-tubulin subunits within the microtubules are exchanged for unbleached DTAF-tubulin in the cytosol by steady-state microtubule assembly-disassembly pathways. Recovery of 75% of the bleached fluorescence follows first-order kinetics and has an average half-time of 37 sec, at 31-33 degrees C. No translocation of the bleached bar region could be detected during fluorescence recovery, and the rate of recovery was independent of the size of the bleached spot. These results reveal that, for 75% of the half-spindle microtubules, FRAP does not occur by a synchronous treadmilling mechanism.  相似文献   

9.
Direct observation of steady-state microtubule dynamics   总被引:27,自引:19,他引:8       下载免费PDF全文
Different types of unusual dynamic behavior have been reported for steady-state microtubules. While almost all earlier reports relied on kinetic measurements of bulk polymerization, we have directly visualized the steady-state addition of subunits to individual microtubules through the use of tubulin derivitized with biotin. Biotinylated tubulin was used both as an internal "seed" for polymerization and as a marker for assembly onto the ends of microtubules composed of purified tubulin. Biotinylated segments were distinguished from unmodified tubulin by double-label immunofluorescence. Microtubule lengths, number concentrations, and segment lengths have been monitored with time at steady state under two buffer conditions. The results indicate that the microtubule steady state under these conditions is a balance between a majority of slowly growing microtubules and a minority of rapidly depolymerizing ones as described by the "dynamic instability" model (Mitchison T., and M. Kirschner, 1984, Nature (Lond.)., 312:232-242). Microtubules show no evidence of treadmilling; instead most show progressive growth off both ends at steady state. Although solvent conditions markedly influence the growth rates, qualitatively the behavior is unchanged.  相似文献   

10.
Estimation of the diffusion-limited rate of microtubule assembly.   总被引:2,自引:0,他引:2       下载免费PDF全文
Microtubule assembly is a complex process with individual microtubules alternating stochastically between extended periods of assembly and disassembly, a phenomenon known as dynamic instability. Since the discovery of dynamic instability, molecular models of assembly have generally assumed that tubulin incorporation into the microtubule lattice is primarily reaction-limited. Recently this assumption has been challenged and the importance of diffusion in microtubule assembly dynamics asserted on the basis of scaling arguments, with tubulin gradients predicted to extend over length scales exceeding a cell diameter, approximately 50 microns. To assess whether individual microtubules in vivo assemble at diffusion-limited rates and to predict the theoretical upper limit on the assembly rate, a steady-state mean-field model for the concentration of tubulin about a growing microtubule tip was developed. Using published parameter values for microtubule assembly in vivo (growth rate = 7 microns/min, diffusivity = 6 x 10(-12) m2/s, tubulin concentration = 10 microM), the model predicted that the tubulin concentration at the microtubule tip was approximately 89% of the concentration far from the tip, indicating that microtubule self-assembly is not diffusion-limited. Furthermore, the gradients extended less than approximately 50 nm (the equivalent of about two microtubule diameters) from the microtubule tip, a distance much less than a cell diameter. In addition, a general relation was developed to predict the diffusion-limited assembly rate from the diffusivity and bulk tubulin concentration. Using this relation, it was estimated that the maximum theoretical assembly rate is approximately 65 microns/min, above which tubulin can no longer diffuse rapidly enough to support faster growth.  相似文献   

11.
Microtubules are dynamic polymers with central roles in the mitotic checkpoint, mitotic spindle assembly, and chromosome segregation. Agents that block mitotic progression and cell proliferation by interfering with microtubule dynamics (microtubule-targeted tubulin-polymerizing agents (MTPAs)) are powerful antitumor agents. Effects of MTPAs (e.g. paclitaxel) on microtubule dynamics have not yet been directly demonstrated in intact animals, however. Here we describe a method that measures microtubule dynamics as an exchange of tubulin dimers into microtubules in vivo. The incorporation of deuterium ((2)H(2)) from heavy water ((2)H(2)O) into tubulin dimers and polymers is measured by gas chromatography/mass spectrometry. In cultured human lung and breast cancer cell lines, or in tumors implanted into nude mice, tubulin dimers and polymerized microtubules exhibited nearly identical label incorporation rates, reflecting their rapid exchange. Administration of paclitaxel during 24 h of (2)H(2)O labeling in vivo reduced (2)H labeling in polymers while increasing (2)H in dimers, indicating diminished flux of dimers into polymers (i.e. inhibition of microtubule dynamic equilibrium). In vivo inhibition of microtubule dynamics was dose-dependent and correlated with inhibition of DNA replication, a stable isotopic measure of tumor cell growth. In contrast, microtubule polymers from sciatic nerve of untreated mice were not in dynamic equilibrium with tubulin dimers, and paclitaxel increased label incorporation into polymers. Our results directly demonstrate altered microtubule dynamics as an important action of MTPAs in vivo. This sensitive and quantitative in vivo assay of microtubule dynamics may prove useful for pre-clinical and clinical development of the next generation of MTPAs as anticancer drugs.  相似文献   

12.
Small-angle neutron scattering has been used to examine taxol-stabilized microtubules and other tubulin samples in both H(2)O and D(2)O buffers. Measurements were made at pH/pD values between 6.0 and 7.8, and observed scattered intensities, I(Q), have been interpreted in terms of multicomponent models of microtubules and related tubulin polymers. A semiquantitative curve fitting procedure has been used to estimate the relative amounts of the supramolecular components of the samples. At both pH and pD 7.0 and above, the tubulin polymers are seen to be predominantly microtubules. Although in H(2)O buffer the polymer distribution is little changed as the pH varies, when pD is lowered the samples appear to contain an appreciable amount of sheetlike structures and the average microtubule protofilament number increases from ca. 12.5 at pD > or = approximately 7.0 to ca. 14 at pD approximately 6.0. Such structural change indicates that analysis of microtubule solutions based on H(2)O/D(2)O contrast variation must be performed with caution, especially at lower pH/pD.  相似文献   

13.
BACKGROUND: CLIP-170 is a microtubule binding protein specifically located at microtubule plus ends, where it modulates their dynamic properties and their interactions with intracellular organelles. The mechanism by which CLIP-170 is targeted to microtubule ends remains unclear today, as well as its precise effect on microtubule dynamics. RESULTS: We used the N-terminal part of CLIP-170 (named H2), which contains the microtubule binding domains, to investigate how it modulates in vitro microtubule dynamics and structure. We found that H2 primarily promoted rescues (transitions from shrinkage to growth) of microtubules nucleated from pure tubulin and isolated centrosomes, and stimulated microtubule nucleation. Electron cryomicroscopy revealed that H2 induced the formation of tubulin rings in solution and curved oligomers at the extremities of microtubules in assembly conditions. CONCLUSIONS: These results suggest that CLIP-170 targets specifically at microtubule plus ends by copolymerizing with tubulin and modulates microtubule nucleation, polymerization, and rescues by the same basic mechanism with tubulin oligomers as intermediates.  相似文献   

14.
The length dynamics both of microtubule-associated protein (MAP)-rich and MAP-depleted bovine brain microtubules were examined at polymer mass steady state. In both preparations, the microtubules exhibited length redistributions shortly after polymer mass steady state was attained. With time, however, both populations relaxed to a state in which no further changes in length distributions could be detected. Shearing the microtubules or diluting the microtubule suspensions transiently increased the extent to which microtubule length redistributions occurred, but again the microtubules relaxed to a state in which changes in the polymer length distributions were not detected. Under steady-state conditions of constant polymer mass and stable microtubule length distribution, both MAP-rich and MAP-depleted microtubules exhibited behavior consistent with treadmilling. MAPs strongly suppressed the magnitude of length redistributions and the steady-state treadmilling rates. These data indicate that the inherent tendency of microtubules in vitro is to relax to a steady state in which net changes in the microtubule length distributions are zero. If the basis of the observed length redistributions is the spontaneous loss and regain of GTP-tubulin ("GTP caps") at microtubule ends, then in order to account for stable length distributions the microtubule ends must reside in the capped state far longer than in the uncapped state, and uncapped microtubule ends must be rapidly recapped. The data suggest that microtubules in cells may have an inherent tendency to remain in the polymerized state, and that microtubule disassembly must be induced actively.  相似文献   

15.
K W Farrell  L Wilson 《Biochemistry》1984,23(16):3741-3748
The kinetics of radiolabeled guanosine 5'-triphosphate-tubulin dimer addition to preformed microtubule copolymers, containing large numbers of tubulin-colchicine complexes (TCs), were examined at apparent equilibrium. The results indicated that radiolabeled dimer addition to copolymers occurs predominantly by a "treadmilling" reaction, analogous to that described for unpoisoned microtubules, and that some labeled dimer uptake also occurs by equilibrium exchange. The data further showed that TCs decrease the steady-state treadmilling reaction in a concentration-dependent manner. Since microtubule copolymers exhibited a treadmilling reaction, it was possible to differentially radiolabel opposite copolymer ends with [3H]- and [14C]guanine nucleotides and thus to measure the effects of TCs on dimer loss from opposite copolymer ends upon copolymer dilution. Dimer loss from both copolymer ends was inhibited in a concentration-dependent manner, but dimer loss from copolymer net assembly (A) ends (defined under steady-state conditions) was inhibited to a far greater extent than that from the opposite, net disassembly (D) copolymer ends. TCs therefore exhibited a graded, polar poisoning action, with copolymer A-end association and dissociation rate constants being far more susceptible to TC inhibition than those at the opposite copolymer D ends. The potential significance of this TC effect for regulating microtubule spatial orientation in vivo is discussed.  相似文献   

16.
The dynamic behavior of mammalian microtubules has been extensively studied, both in living cells and with microtubules assembled from purified brain tubulin. To understand the intrinsic dynamic behavior of mammalian nonneural microtubules, we purified tubulin from cultured HeLa cells. We find that HeLa cell microtubules exhibit remarkably slow dynamic instability, spending most of their time in an attenuated state. The tempered dynamics contrast sharply with the dynamics of microtubules prepared from purified bovine brain tubulin under similar conditions. In accord with their minimal dynamic instability, assembled HeLa cell microtubules displayed a slow treadmilling rate and a low guanosine-5'-triphosphate hydrolysis rate at steady state. We find that unlike brain tubulin, which consists of a heterogeneous mixture of beta-tubulin isotypes (beta(II), beta(III), and beta(IV) and a low level of beta(I)), HeLa cell tubulin consists of beta(I) tubulin ( approximately 80%) and a minor amount of beta(IV) tubulin ( approximately 20%). The slow dynamic behavior of HeLa cell microtubules in vitro differs strikingly from the dynamic behavior of microtubules in living cultured mammalian cells, supporting the idea that accessory factors create the robust dynamics that occur in cells.  相似文献   

17.
Summary Depolymerization kinetics of microtubules assembled to steady-state by pod ophyllotoxin treatment show a dose-dependent effect of this mitotic poison on the net rate of microtubule disassembly. Pulse-chase experiments with microtubules at steady-state indicate that the depolymerization effect induced by superstoichiometric concentrations of podophyllotoxin relative to tubulin is polar and time-dependent, i.e. the rate of tubulin loss decreases along with the time of treatment in the presence of the drug. Under these conditions the rate of microtubule disassembly is much faster than one could expect from a unique effect of drug-tubulin complex on the microtubule assembly end. Podophyllotoxin-tubulin complex is not able to induce active depolymerization of microtubules, while free podophyllotoxin is. These results are consistent with the hypothesis that this drug acts on the microtubule assembly-disassembly process by two different mechanisms: 1) as a free drug, it actively promotes polar depolymerization of microtubules, and 2) as a drug-tubulin complex, it retards the addition of subunits into the microtubule ends.  相似文献   

18.
Microtubule dynamics in interphase cells   总被引:67,自引:50,他引:17       下载免费PDF全文
The sites of microtubule growth and the kinetics of elongation have been studied in vivo by microinjection of biotin-labeled tubulin and subsequent visualization with immunocytochemical probes. Immunofluorescence and immunoelectron microscopy demonstrate that injected biotin-labeled subunits are incorporated into new segments of growth which are contiguous with unlabeled microtubules. Rapid incorporation occurs by elongation of existing microtubules and new nucleation off the centrosome. The growth rate is 3.6 micron/min and is independent of the concentration of injected labeled tubulin. This rate of incorporation together with turnover of existing microtubules leads to approximately 80% exchange in 15 min. The observed kinetics and pattern of microtubule turnover allow for an evaluation of the relevance of several in vitro models for steady-state dynamics to the in vivo situation. We have also observed a substantial population of quasi-stable microtubules that does not exchange subunits as rapidly as the majority of microtubules and may have specialized functions in the cell.  相似文献   

19.
Tubulin is an unstable protein when stored in solution and loses its ability to form microtubules rapidly. We have found that D2O stabilizes the protein against inactivation at both 4 and 37 degrees C. In H2O-based buffer, tubulin was completely inactivated after 40 h at 4 degrees C, but in buffer prepared in D2O, no activity was lost after 54 h. Tubulin was completely inactivated at 37 degrees C in 8 h in H2O buffer, but only 20% of the activity was lost in D2O buffer. Tubulin also lost its colchicine binding activity at a slower rate in D2O. The deuterated solvent retarded an aggregation process that occurs during incubation at both temperatures. Inactivation in H2O buffer was partially reversed by transferring the protein to D2O buffer; however, aggregation was not reversed. The level of binding of BisANS, a probe of exposed hydrophobic sites in proteins, increases during the inactivation of tubulin. In D2O, the rate of this increase is slowed somewhat. We propose that D2O has its stabilizing effect on a conformational step or steps that involve the disruption of hydrophobic forces. The conformational change is followed by an aggregation process that cannot be reversed by D2O. As reported previously [Ito, T., and Sato, H. (1984) Biochim. Biophys. Acta 800, 21-27], we found that D2O stimulates the formation of microtubules from tubulin. We also observed that the products of assembly in D2O/8% DMSO consisted of a high percentage of ribbon structures and incompletely folded microtubules. When these polymers were disassembled and reassembled in H2O/8% DMSO, the products were microtubules. We suggest that the combination of D2O and DMSO, both stimulators of tubulin assembly, leads to the rapid production of nuclei that lead to the formation of ribbon structures rather than microtubules.  相似文献   

20.
M A Jordan  L Wilson 《Biochemistry》1990,29(11):2730-2739
We have investigated the effects of vinblastine at micromolar concentrations and below on the dynamics of tubulin exchange at the ends of microtubule-associated-protein-rich bovine brain microtubules. The predominant behavior of these microtubules at polymer-mass steady state under the conditions examined was tubulin flux, i.e., net addition of tubulin at one end of each microtubule, operationally defined as the assembly or A end, and balanced net loss at the opposite (disassembly or D) end. No dynamic instability behavior could be detected by video-enhanced dark-field microscopy. Addition of vinblastine to the microtubules at polymer-mass steady state resulted in an initial concentration-dependent depolymerization predominantly at the A ends, until a new steady-state plateau at an elevated critical concentration was established. Microtubules ultimately attained the same stable polymer-mass plateau when vinblastine was added prior to initiation of polymerization as when the drug was added to already polymerized microtubules. Vinblastine inhibited tubulin exchange at the ends of the microtubules at polymer-mass steady state, as determined by using microtubules differentially radiolabeled at their opposite ends. Inhibition of tubulin exchange occurred at concentrations of vinblastine that had very little effect on polymer mass. Both the initial burst of incorporation that occurs in control microtubule suspensions following a pulse of labeled GTP and the relatively slower linear incorporation of label that follows the initial burst were inhibited in a concentration-dependent manner by vinblastine. Both processes were inhibited to the same extent at all vinblastine concentrations examined. If the initial burst of label incorporation represents a low degree of dynamic instability (very short excursions of growth and shortening of the microtubules at one or both ends), then vinblastine inhibits both dynamic instability and flux to similar extents. The ability of vinblastine to inhibit tubulin exchange at microtubule ends in the micromolar concentration range appeared to be mediated by the reversible binding of vinblastine to tubulin binding sites exposed at the polymer ends. Determination by dilution analysis of the effects of vinblastine on the apparent dissociation rate constants for tubulin loss at opposite microtubule ends indicated that a principal effect of vinblastine is to decrease the dissociation rate constant at A ends (i.e., it produces a kinetic cap at A ends), whereas it has no effect on the D-end dissociation rate constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号