首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 763 毫秒
1.
2.
There is currently no effective vaccine for Neisseria meningitidis (Nm) serogroup B. Generation of optimal immune responses to meningococci could be achieved by targeting meningococcal antigens to human dendritic cells (DCs). Recent studies have shown that diverse DC responses and subsequent generation of protective immunity can be observed if the microbes are viable or killed. This is important because the host is likely to be exposed to both live and killed bacteria during natural infection. There are currently few data on comparative DC responses to live and killed meningococci. We show here that exposure of human DC to live meningococci does not result in a typical maturation response, as determined by the failure to upregulate CD40, CD86, HLA-DR and HLA-Class I. Despite this, live meningococci were potent inducers of IL-12 and IL-10, although the ratios of these cytokines differed from those to killed organisms. Our data also suggest that enhanced phagocytosis of killed organisms compared with live may be responsible for the differential cytokine responses, involving an autocrine IL-10-dependent mechanism. The consequences of these findings upon the effectiveness of antigen presentation and T-cell responses are currently under investigation.  相似文献   

3.
Meningococcal lipooligosaccharide (LOS) is a major inflammatory mediator of fulminant meningococcal sepsis and meningitis with disease severity correlating with circulating concentrations of LOS and proinflammatory cytokines. In this study we show that the proinflammatory response to live meningococci in a mouse model of sepsis involves TLR4, but can develop independently of the expression of LOS. This is supported by data showing that in vivo an isogenic LOS-deficient strain, lpxA, induced equivalent disease severity and similar proinflammatory responses as the serogroup C wild-type parent strain FAM20. This response was abolished in TLR4-/- mice, and neither the wild-type strain of meningococci nor the LOS-deficient mutant was able to cause fatal sepsis in these mice. Mouse survival correlated with low levels of cytokines and chemokines, the chemotactic complement factor C5a and neutrophil levels in blood at 24 h post infection. These data suggest that during meningococcal sepsis the recognition of one or more unidentified non-LOS component(s) by TLR4 is important in stimulating proinflammatory responses, and that fatality associated with meningococcal sepsis in mice is induced by the proinflammatory host response.  相似文献   

4.
Measles virus (MV) infection causes acute childhood disease, associated in certain cases with infection of the central nervous system (CNS) and development of neurological disease. To develop a murine model of MV-induced pathology, we generated several lines of transgenic mice ubiquitously expressing as the MV receptor a human CD46 molecule with either a Cyt1 or Cyt2 cytoplasmic tail. All transgenic lines expressed CD46 protein in the brain. Newborn transgenic mice, in contrast to nontransgenic controls, were highly sensitive to intracerebral infection by the MV Edmonston strain. Signs of clinical illness (lack of mobility, tremors, and weight loss) appeared within 5 to 7 days after infection, followed by seizures, paralysis, and death of the infected animals. Virus replication was detected in neurons from infected mice, and virus was reproducibly isolated from transgenic brain tissue. MV-induced apoptosis observed in different brain regions preceded the death of infected animals. Similar results were obtained with mice expressing either a Cyt1 or Cyt2 cytoplasmic tail, demonstrating the ability of different isoforms of CD46 to function as MV receptors in vivo. In addition, maternally transferred immunity delayed death of offspring given a lethal dose of MV. These results document a novel CD46 transgenic murine model where MV neuronal infection is associated with the production of infectious virus, similarly to progressive infectious measles encephalitis seen in immunocompromised patients, and provide a new means to study pathogenesis of MV infection in the CNS.  相似文献   

5.
It has become increasingly apparent in studies of mutant mice and observations of disease that cytokine production by fully committed effector T cells within the Th1 and Th2 phenotype can vary within each group. This can potentially influence the type and effectiveness of a given immune response. The factors responsible for inducing variable Th1 and Th2 subtype responses have not been well established. Using transgenic mice expressing the myelin basic protein-specific TCR, we demonstrate here that two distinct populations of Th2 cells that are characterized primarily by differential IL-4 and IL-5 expression levels can be generated depending upon the levels of IFN-gamma present at the time of priming. We also demonstrate that populations expressing high levels of IL-4 relative to IL-5 vs those with intermediate levels of IL-4 relative to IL-5 are stable and possess distinct effector functions in an experimental autoimmune encephalomyelitis model.  相似文献   

6.
7.
8.
Inhibitory receptors specific for alleles of MHC class I proteins play an important role in determining the reactivity and specificity of NK cells. To determine whether these receptors are also able to regulate T cell functions, we have studied anti-viral immune responses in mice transgenic for a class I-specific inhibitory receptor, Ly49A. Although nontransgenic mice express Ly49A primarily on NK cells and some T cells, the Ly49A transgenic mice express Ly49A on all lymphocytes, including T cells. We have assessed the activation, expansion, cytokine production, and cytotoxic activity of CD8 T cells in both transgenic and nontransgenic mice following infection with lymphocytic choriomeningitis virus. As expected, nontransgenic mice made a potent virus-specific CD8 T cell response following virus infection. However, as measured in cytolysis assays and by cytokine production, virus-specific CD8 T cell activity was reduced in Ly49A transgenic mice. This inhibition was largely, but not always exclusively, dependent upon the presence, either in vivo or in vitro, of the Ly49A ligand, H-2Dd. Strikingly Ly49A transgenic mice have reduced capacity to control infection with the virulent lymphocytic choriomeningitis virus variant clone 13. Overall, these studies demonstrate that expression of killer inhibitory receptors can modulate anti-viral T cell responses in vivo and in vitro.  相似文献   

9.
Transgenic mice expressing the human insulin gene do not produce insulin-specific antibody after injection of human insulin. Nevertheless, they have some peripheral T cells that proliferate to human insulin in vitro. To investigate the nature of these T cells, human insulin-specific T cell hybridomas were produced from transgenic and nontransgenic mice. Transgenic hybridomas required more insulin to achieve maximum responses and they produced lower levels of lymphokines than nontransgenic hybridomas. The majority of nontransgenic hybridomas recognized only human and pork insulin whereas transgenic hybridomas recognized beef, sheep, and/or horse insulin in addition to human and pork insulin. The TCR expressed by transgenic and nontransgenic hybridomas were determined by Northern analysis. Both types of hybridomas used several different V alpha and V beta gene families and no favored association between V alpha and V beta gene usage was detected in either type. V beta 1 was used by 7 of 16 nontransgenic hybridomas but only by 1 of 16 transgenic hybridomas. V beta 6 receptors were predominantly expressed by the transgenic hybridomas and all V beta 6-bearing hybridomas recognized beef as well as human insulin. The differences in Ag reactivity and TCR gene usage suggest that V beta 1-bearing human insulin-reactive T cells were clonally deleted or inactivated in the transgenic animal. Other clones, representing a minor subpopulation in nontransgenic mice, were recovered from transgenic mice.  相似文献   

10.
Disease model: dissecting the pathogenesis of the measles virus   总被引:4,自引:0,他引:4  
Host-pathogen interactions of measles virus (MV), a leading cause of childhood mortality worldwide, are still poorly understood. Using transgenic mice that express the human MV receptor CD46, we generated models to study the pathogenesis of MV infection of the central nervous system (CNS) and immune system. CNS infection in CD46 transgenic mice allows replication and spread throughout neurons, inflammation, and ultimately death of the animals. CD46-transgenic mice can also be used to study immunosuppression, a hallmark of measles. Together with mouse knockout technology and a system for generating recombinant MVs, CD46 transgenic mice will ultimately lead to a better understanding of both viral and host factors contributing to disease.  相似文献   

11.
Complement receptor (CR) type 2 (CR2/CD21) is normally expressed only during the immature and mature stages of B cell development. In association with CD19, CR2 plays an important role in enhancing mature B cell responses to foreign Ag. We used a murine Vlambda2 promoter/Vlambda2-4 enhancer minigene to develop transgenic mice that initiate expression of human CR2 (hCR2) during the CD43(+)CD25(-) late pro-B cell stage of development. We found peripheral blood B cell numbers reduced by 60% in mice expressing high levels of hCR2 and by 15% in mice with intermediate receptor expression. Splenic B cell populations were altered with an expansion of marginal zone cells, and basal serum IgG levels as well as T-dependent immune responses were also significantly decreased in transgenic mice. Mice expressing the highest levels of hCR2 demonstrated in the bone marrow a slight increase in B220(int)CD43(+)CD25(-) B cells in association with a substantial decrease in immature and mature B cells, indicative of a developmental block in the pro-B cell stage. These data demonstrate that stage-specific expression of CR2 is necessary for normal B cell development, as premature receptor expression substantially alters this process. Alterations in B cell development are most likely due to engagement of pre-B cell receptor-mediated or other regulatory pathways by hCR2 in a CD19- and possibly C3 ligand-dependent manner.  相似文献   

12.
13.
We have examined mechanisms of tolerance to circulating self-proteins in mice that are transgenic for human insulin. Normal, nontransgenic mice develop serum antibody responses when injected with human insulin in CFA; syngeneic transgenic mice do not. B cell responsiveness was assessed by immunizing with human insulin coupled to a T-independent Ag, Brucella abortus. No differences were found in the numbers of insulin-specific splenic plaque-forming cells between transgenic and nontransgenic mice suggesting that insulin-specific B cells are not tolerant in transgenic mice. Similarly, APC from transgenic and nontransgenic mice display no differences in their ability to process and present human insulin to human insulin-specific T cells in vitro. However, marked differences were detected between transgenic and nontransgenic T cells. Lymph node T cells from transgenic mice primed with human insulin provided no detectable helper activity for secondary antibody responses to human insulin whereas, lymph node T cells from nontransgenic mice did. Nevertheless, lymph node T cells from transgenic mice developed significant proliferative responses to human insulin. Lymph node T cells obtained from transgenic and nontransgenic mice were fused to BW5147 and human insulin-specific T cell hybridomas were generated. The fact that human insulin-specific T cell hybridomas were obtained from the transgenic mice suggests that these T cells were not clonally deleted. In addition, APC from transgenic mice did not stimulate human insulin-specific hybridomas from normal mice in the absence of exogenous insulin. We suggest that T cells specific for human insulin are not deleted in the thymus of transgenic mice because APC in the thymus do not bear the requisite levels of endogenous human insulin/Ia complexes. Therefore, we conclude that tolerance in the transgenic mice is preserved by peripheral mechanisms.  相似文献   

14.
In many cases of neurological disease associated with viral infection, such as measles virus (MV)-induced subacute sclerosing panencephalitis in children, it is unclear whether the virus or the antiviral immune response within the brain is the cause of disease. MV inoculation of transgenic mice expressing the human MV receptor, CD46, exclusively in neurons resulted in neuronal infection and fatal encephalitis within 2 weeks in neonates, while mice older than 3 weeks of age were resistant to both infection and disease. At all ages, T lymphocytes infiltrated the brain in response to inoculation. To determine the role of lymphocytes in disease progression, CD46+ mice were back-crossed to T- and B-cell-deficient RAG-2 knockout mice. The lymphocyte deficiency did not affect the outcome of disease in neonates, but adult CD46+ RAG-2 mice were much more susceptible to both neuronal infection and central nervous system disease than their immunocompetent littermates. These results indicate that CD46-dependent MV infection of neurons, rather than the antiviral immune response in the brain, produces neurological disease in this model system and that immunocompetent adult mice, but not immunologically compromised or immature mice, are protected from infection.  相似文献   

15.
The IL-7/IL-7R-dependent signaling pathway plays a crucial role in regulating the immune response in intestinal mucosa. Here we demonstrate the pivotal role of this pathway in the development and treatment of chronic colitis. T cells expressing high levels of IL-7R were substantially infiltrated in the chronic inflamed mucosa of TCR alpha-chain knockout mice and IL-7 transgenic mice. Transfer of mucosal T cells expressing high levels of IL-7R, but not T cells expressing low levels of IL-7R, from these mice into recombinase-activating gene-2(-/-) mice induced chronic colitis. Selective elimination of T cells expressing high levels of IL-7R by administrating small amounts of toxin-conjugated anti-IL-7R Ab completely ameliorated established, ongoing colitis. These findings provide evidence that therapeutic approaches targeting mucosal T cells expressing high levels of IL-7R are effective in the treatment of chronic intestinal inflammation and may be feasible for use in the therapy of human inflammatory bowel disease.  相似文献   

16.
Adult male transgenic mice expressing the human growth hormone (hGH) gene are hypoprolactinemic. To evaluate the effects of exogenous prolactin (PRL) and endogenously secreted hGH on pituitary and Leydig cell function, adult male transgenic and nontransgenic mice (10-16 wk of age) were treated s.c. with either saline-polyvinylpyrrolidone (PVP) or oPRL (100 micrograms/mouse) in saline-PVP. Animals were treated twice daily; a total of 7 injections were given. One hour after the last injection, each group of mice was treated i.p. either with saline or oLH (0.3 microgram/g BW); 2 h later, blood was obtained via heart puncture. Plasma FSH, LH, PRL, androstenedione (A-dione), and testosterone (T) levels were measured by validated RIAs. Basal PRL levels were significantly lower (p less than 0.001) and basal LH concentrations were significantly higher (p less than 0.01) in transgenic than in nontransgenic mice. Administration of PRL significantly decreased (p less than 0.01) plasma LH levels in transgenic mice, whereas similar treatment of nontransgenic mice increased (p less than 0.01) circulating LH concentrations. Plasma FSH levels were unaffected in transgenic and nontransgenic mice treated with saline or PRL. Basal plasma A-dione and T levels were similar in both groups of animals and were significantly increased after treatment with LH. Administration of PRL increased T levels in transgenic and nontransgenic mice, but the T response to LH treatment was greater in PRL-treated transgenic mice, indicating the synergistic effect of hGH in the biosynthesis of T.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
IL-10 plays an essential role in blocking cytokine production by activated macrophages. To analyze the consequences of enforced expression of IL-10 by macrophages on innate and adaptive immune responses, we generated transgenic mice (macIL-10tg mice) expressing an epitope-tagged IL-10 (Flag-IL-10) under control of the human CD68 promoter. Expression of Flag-IL-10 was constitutive and restricted to macrophages, as shown by sorting splenocyte cell populations and intracellular staining for IL-10. Transgenic macrophages displayed suppressed production of TNF-alpha and IL-12 upon stimulation with LPS. When macIL-10tg mice were challenged with LPS, serum levels of proinflammatory cytokines were attenuated compared with controls. Infection with Mycobacterium bovis bacille Calmette-Guérin resulted in approximately 10-fold-higher bacterial loads than in wild-type mice. Normal T and B cell responses were observed in macIL-10tg mice, suggesting that macrophage-specific overexpression of IL-10 predominantly acts in an autocrine/paracrine manner, resulting in chronically deactivated macrophages that manifest an impaired ability to control pathogens.  相似文献   

18.
Fas (CD95) and Fas ligand (FasL/CD95L) are involved in programmed cell death and the regulation of host immune responses. FasL has been shown to provide immune privilege, thus prolonging the survival of unmatched grafts in a variety of tissues, such as eyes and testis. In murine FasL (mFasL) transgenic mice, FasL provoked granulocyte infiltration and insulitis in the pancreas. We intended to study whether the expression of human FasL, instead of mFasL, on mouse beta islet cells could avoid granulocyte infiltration, and whether islet cells transgenic for FasL could be used in islet transplantation. We produced transgenic mice in which the human FasL transgene was driven by rat insulin promoter and was expressed exclusively in the pancreas islet cells in ICR mice. In contrast to mFasL transgenic mice, histochemical staining showed that the pancreas was intact in human FasL transgenic ICR mice. However, when human FasL transgenic islet cells were transplanted into allogeneic mice with streptozotocin-induced diabetes, human FasL appeared not to prolong graft survival. Intensive granulocyte infiltration into the islet grafts was observed in recipients (Balb/c mice) which received islet grafts from human FasL transgenic mice, but not from nontransgenic, allogeneic ICR mice on day 31. Our observations suggest that FasL alone is insufficient to confer immune protection, and that other environmental factors might contribute to the formation of immune privilege sites in vivo Copyright 2001 National Science Council, ROC and S. Karger AG, Basel.  相似文献   

19.
Eosinophils accumulate in the gastrointestinal tract in a number of medical disorders, but the mechanisms involved are largely unknown. To understand the significance of cytokine expression by enterocytes, enterocyte transgenic mice that overexpressed the eosinophil-selective cytokines eotaxin and interleukin (IL)-5 were generated. Transgenic mice, generated by utilizing the rat intestinal fatty acid-binding protein promoter (Fabpi), overexpressed the mRNA for these cytokines in the small intestine. Overexpression of IL-5 resulted in marked increases of eosinophils in the bone marrow and blood, whereas eotaxin overexpression resulted in similar levels compared with nontransgenic control mice. In contrast, both IL-5 and eotaxin transgenic mice had significant accumulation of eosinophils in the gastrointestinal mucosa compared with control mice. Eotaxin-induced gastrointestinal eosinophilia was substantially higher than that induced by IL-5 and was especially prominent within the lamina propria of the villi. Interestingly, genetic rescue of eotaxin deficiency (by transgenic overexpression of eotaxin in eotaxin gene-targeted mice) resulted in significant restoration of gastrointestinal eosinophil levels. Finally, the intestinal eosinophilia induced by the eotaxin transgene was beta(7) integrin-dependent. Taken together, these results demonstrate that expression of eotaxin and IL-5 in intestinal epithelium induces compartmentalized dysregulation of eosinophil trafficking and the important role of the beta(7) integrin in gastrointestinal allergic responses.  相似文献   

20.
Ovarian follicle apoptosis in bovine growth hormone transgenic mice   总被引:8,自引:0,他引:8  
Growth hormone directly or via insulin like-growth factor-I has been shown to inhibit preovulatory follicle apoptosis, which is the underlying mechanism of follicular atresia. We studied the levels of apoptosis in the ovaries of transgenic mice expressing bovine growth hormone. Female bovine growth hormone transgenic mice (n = 10) and nontransgenic litter mates (n = 8) were killed at early proestrus. Ovaries were collected, sectioned, and processed using a nonradioactive in situ method for apoptosis detection. Follicles were classified and counted on the basis of size and level of apoptosis. Our results demonstrate that the percentage of ovarian follicles containing apoptotic cells was lower in transgenic versus normal mice (30% vs. 46%; P < 0.05). The percentage of follicles undergoing heavy apoptosis was lower (P < 0.05) in transgenic versus control animals in preovulatory and early antral follicles, but it was not different in preantral follicles. The percentage of healthy preovulatory follicles was also higher in transgenic versus normal mice (7.4% vs. 4.3%; P < 0.05). These results indicate that growth hormone overexpression in transgenic mice significantly decreases follicle apoptosis, and thus atresia in the mouse ovary, therefore leading to increased propensity for ovulation in these animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号