首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated the short‐term impact of disturbance on genetic diversity and structure of the tropical butterfly Drupadia theda Felder (Lepidoptera: Lycaenidae). Populations were sampled from five landscapes in East Kalimantan (Borneo, Indonesia) which were differentially disturbed by selective logging and the 1997/1998 El Niño Southern Oscillation (ENSO)‐induced drought and fires. Sampling occurred before (in 1997) and after the forest fires (in 1998, 1999, 2000, and 2004). Drupadia theda populations underwent serious population size reductions following the 1997/1998 ENSO event. For a total of 208 individuals, we sequenced a 509‐bp segment of mtDNA containing the control region plus the 5’ end of the 12S rDNA gene. Haplotype diversity in D. theda populations ranged from 0.468 to 0.953. Just after the 1997/1998 ENSO event, number of recorded individuals and genetic diversity were very low in D. theda populations sampled in the two severely burned areas and in a small pristine forest fragment that was surrounded by burned forest and thereby affected by drought. Interestingly, higher levels of genetic diversity were observed in logged forest compared to proximate pristine forest. After 1998, the genetic composition within the three ENSO‐disturbed areas diverged. In the twice‐burned forest, the genetic diversity in 1999 already approached pre‐fire levels, while it remained nearly unchanged in proximate once‐burned forest. Our data suggest that the 1997/1998 ENSO‐induced drought and fires caused massive reductions in the genetic diversity of D. theda and that population recoveries were linked to their geographical position relative to patches of unburned forest (and thus to source populations).  相似文献   

2.
Aim Glacial refugia during the Pleistocene had major impacts on the levels and spatial apportionment of genetic diversity of species in northern latitude ecosystems. We characterized patterns of population subdivision, and tested hypotheses associated with locations of potential Pleistocene refugia and the relative contribution of these refugia to the post‐glacial colonization of North America and Scandinavia by common eiders (Somateria mollissima). Specifically, we evaluated localities hypothesized as ice‐free areas or glacial refugia for other Arctic vertebrates, including Beringia, the High Arctic Canadian Archipelago, Newfoundland Bank, Spitsbergen Bank and north‐west Norway. Location Alaska, Canada, Norway and Sweden. Methods Molecular data from 12 microsatellite loci, the mitochondrial DNA (mtDNA) control region, and two nuclear introns were collected and analysed for 15 populations of common eiders (n = 716) breeding throughout North America and Scandinavia. Population genetic structure, historical population fluctuations and gene flow were inferred using F‐statistics, analyses of molecular variance, and multilocus coalescent analyses. Results Significant inter‐population variation in allelic and haplotypic frequencies were observed (nuclear DNA FST = 0.004–0.290; mtDNA ΦST = 0.051–0.927). Whereas spatial differentiation in nuclear genes was concordant with subspecific designations, geographic proximity was more predictive of inter‐population variance in mitochondrial DNA haplotype frequency. Inferences of historical population demography were consistent with restriction of common eiders to four geographic areas during the Last Glacial Maximum: Belcher Islands, Newfoundland Bank, northern Alaska and Svalbard. Three of these areas coincide with previously identified glacial refugia: Newfoundland Bank, Beringia and Spitsbergen Bank. Gene‐flow and clustering analyses indicated that the Beringian refugium contributed little to common eider post‐glacial colonization of North America, whereas Canadian, Scandinavian and southern Alaskan post‐glacial colonization is likely to have occurred in a stepwise fashion from the same glacial refugium. Main conclusions Concordance of proposed glacial refugia used by common eiders and other Arctic species indicates that Arctic and subarctic refugia were important reservoirs of genetic diversity during the Pleistocene. Furthermore, suture zones identified at MacKenzie River, western Alaska/Aleutians and Scandinavia coincide with those identified for other Arctic vertebrates, suggesting that these regions were strong geographic barriers limiting dispersal from Pleistocene refugia.  相似文献   

3.
The identification of ecological and evolutionary mechanisms that might account for the elevated biotic diversity in tropical forests is a central theme in evolutionary biology. This issue is especially relevant in the Neotropical region, where biological diversity is the highest in the world, but where few studies have been conducted to test factors causing population differentiation and speciation. We used mtDNA sequence data to examine the genetic structure within white‐backed fire‐eye (Pyriglena leuconota) populations along the Tocantins River valley in the south‐eastern Amazon Basin, and we confront the predictions of the river and the Pleistocene refuge hypotheses with patterns of genetic variation observed in these populations. We also investigated whether these patterns reflect the recently detected shift in the course of the Tocantins River. We sampled a total of 32 individuals east of, and 52 individuals west of, the Tocantins River. Coalescent simulations and phylogeographical and population genetics analytical approaches revealed that mtDNA variation observed for fire‐eye populations provides little support for the hypothesis that populations were isolated in glacial forest refuges. Instead, our data strongly support a key prediction of the river hypothesis. Our study shows that the Tocantins River has probably been the historical barrier promoting population divergence in fire‐eye antbirds. Our results have important implications for a better understanding of the importance of large Amazonian rivers in vertebrate diversification in the Neotropics.  相似文献   

4.
Global climate change is apparent within the Arctic and the south‐western deserts of North America, with record drought in the latter reflected within 640 000 km2 of the Colorado River Basin. To discern the manner by which natural and anthropogenic drivers have compressed Basin‐wide fish biodiversity, and to establish a baseline for future climate effects, the Stream Hierarchy Model (SHM) was employed to juxtapose fluvial topography against molecular diversities of 1092 Bluehead Sucker (Catostomus discobolus). MtDNA revealed three geomorphically defined evolutionarily significant units (ESUs): Bonneville Basin, upper Little Colorado River and the remaining Colorado River Basin. Microsatellite analyses (16 loci) reinforced distinctiveness of the Bonneville Basin and upper Little Colorado River, but subdivided the Colorado River Basin into seven management units (MUs). One represents a cline of three admixed gene pools comprising the mainstem and its lower‐gradient tributaries. Six others are not only distinct genetically but also demographically (i.e. migrants/generation <9.7%). Two of these (i.e. Grand Canyon and Canyon de Chelly) are defined by geomorphology, two others (i.e. Fremont‐Muddy and San Raphael rivers) are isolated by sharp declivities as they drop precipitously from the west slope into the mainstem Colorado/Green rivers, another represents an isolated impoundment (i.e. Ringdahl Reservoir), while the last corresponds to a recognized subspecies (i.e. Zuni River, NM). Historical legacies of endemic fishes (ESUs) and their evolutionary potential (MUs) are clearly represented in our data, yet their arbiter will be the unrelenting natural and anthropogenic water depletions that will precipitate yet another conservation conflict within this unique but arid region.  相似文献   

5.
This study tests population genetic patterns across the Eurasian dreissenid mussel invasions of North America—encompassing the zebra mussel Dreissena polymorpha (1986 detection) and the quagga mussel D. rostriformis bugensis (detected in 1990, which now has largely displaced the former in the Great Lakes). We evaluate their source-spread relationships and invasion genetics using 9–11 nuclear microsatellite loci for 583 zebra mussels (21 sites) and 269 quagga mussels (12 sites) from Eurasian and North American range locations, with the latter including the Great Lakes, Mississippi River basin, Atlantic coastal waterways, Colorado River system, and California reservoirs. Additionally, mtDNA cytochrome b gene sequences are used to verify species identity. Our results indicate that North American zebra mussels originate from multiple non-native northern European populations, whereas North American quagga mussels trace to native estuaries in the Southern Bug and Dnieper Rivers. Invasive populations of both species show considerable genetic diversity and structure (zebra F ST = 0.006–0.263, quagga F ST = 0.008–0.267), without founder effects. Most newer zebra mussel populations have appreciable genetic diversity, whereas quagga mussel populations from the Colorado River and California show some founder effects. The population genetic composition of both species changed over time at given sites; with some adding alleles from adjacent populations, some losing them, and all retaining closest similarity to their original composition. Zebra mussels from Kansas and California appear genetically similar and assign to a possible origin from the St. Lawrence River, whereas quagga mussels from Nevada and California assign to a possible origin from Lake Ontario. These assignments suggest that overland colonization pathways via recreational boats do not necessarily reflect the most proximate connections. In conclusion, our microsatellite results comprise a valuable baseline for resolving present and future dreissenid mussel invasion pathways.  相似文献   

6.
Aim Hypotheses proposed for lineage diversification of tropical montane species have rarely been tested within oceanic islands. Our goal was to understand how basin barriers and Pleistocene climatic fluctuations shaped the distribution of diversity in Eleutherodactylus portoricensis (Eleutherodactylidae), a frog endemic to the montane rain forests of Puerto Rico. Location The north‐eastern (Luquillo) and south‐eastern (Cayey) mountains of Puerto Rico. Methods We generated mitochondrial DNA (mtDNA) control region sequences (c. 565 bp) from 144 individuals of E. portoricensis representing 16 localities, and sequenced 646 bp of cytochrome b and 596 bp of nuclear DNA (nDNA) rhodopsin exon and intron 1 from a subset of individuals. We conducted a phylogenetic analysis on the mtDNA sequence data and explored population substructure with maximum parsimony networks, a spatial analysis of molecular variance, and pairwise FST analysis. Coalescent simulations were performed to test alternative models of population divergence in response to late Pleistocene interglacial periods. Historical demography was assessed through coalescent analyses and Bayesian skyline plots. Results We found: (1) two highly divergent groups associated with the disjunct Luquillo and Cayey Mountains, respectively; (2) a shallow mtDNA genetic discontinuity across the La Plata Basin within the Cayey Mountains; (3) phylogeographic congruence between nDNA and mtDNA markers; (4) divergence dates for both mtDNA and nDNA pre‐dating the Holocene interglacial (c. 10 ka), and nDNA suggesting divergence in the penultimate interglacial (c. 245 ka); and (5) historical demographic stability in both lineages. Main conclusions The low‐elevation Caguas Basin is a long‐term barrier to gene flow between the two montane frog populations. Measures of genetic diversity for mtDNA were similar in both lineages, but lower nDNA diversity in the Luquillo Mountains lineage suggests infrequent dispersal between the two mountain ranges and colonization by a low‐diversity founder population. Population divergence began prior to the Holocene interglacial. Stable population sizes over time indicate a lack of demonstrable demographic response to climatic changes during the last glacial period. This study highlights the importance of topographic complexity in promoting within‐island vicariant speciation in the Greater Antilles, and indicates long‐term persistence and lineage diversification despite late Pleistocene climatic oscillations.  相似文献   

7.
The longnose dace, Rhinichthys cataractae, is a primary freshwater fish inhabiting riffle habitats in small headwater rivers and streams across the North American continent, including drainages east and west of the Continental Divide. The mitochondrially encoded cytochrome b gene (1140 bp) and 2298–2346 bp of the nuclear‐encoded genes S7 and RAG1 were obtained from 87 individuals of R. cataractae (collected from 17 sites throughout its range) and from several close relatives. Phylogenetic analyses recovered a monophyletic R. cataractae species‐group that contained Rhinichthys evermanni, Rhinichthys sp. ‘Millicoma dace’, and a non‐exclusive R. cataractae. Within the R. cataractae species‐group, two well‐supported lineages were identified, including a western lineage (containing R. evermanni, R. sp. ‘Millicoma dace’ and individuals of R. cataractae from Pacific slope drainages) and an eastern lineage (containing individuals of R. cataractae from Arctic, Atlantic, and Gulf slope drainages). Within the eastern lineage of R. cataractae, two well‐supported groups were recovered: a south‐eastern group, containing individuals from the Atlantic slope, southern tributaries to the Mississippi River, and the Rio Grande drainage; and a north‐eastern group, containing individuals from the Arctic slope and northern tributaries to the Mississippi River. Estimates of the timing of divergence within the R. cataractae species‐group, combined with ancestral area‐reconstruction methods, indicate a separation between the eastern and western lineages during the Pliocene to early‐Pleistocene, with a direction of colonization from the west of the Continental Divide eastward. Within the southern portion of its range, R. cataractae likely entered the Rio Grande drainage during the Pleistocene via stream capture events between the Arkansas River (Mississippi River drainage) and headwaters of the Rio Grande. A close relationship between populations of R. cataractae in the Rio Grande drainage and the adjacent Canadian River (Mississippi River drainage) is consistent with hypothesized stream capture events between the Pecos (Rio Grande drainage) and Canadian rivers during the late‐Pleistocene. The population of R. cataractae in the lower Rio Grande may have become separated from other populations in the Rio Grande drainage (upper Rio Grande and Pecos River) and Canadian River during the late‐Pleistocene, well before initiation of recent and significant anthropogenic disturbance within the Rio Grande drainage. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 317–333.  相似文献   

8.
Thorough sampling is necessary to delineate lineage diversity for polytypic ‘species’ such as Cyprinella lutrensis. We conducted extensive mtDNA sampling (cytochrome b and ND4) from the Pecos River, Rio Grande, and South Canadian River, New Mexico. Our study focussed on the Pecos River due to its complex geological history and potential to harbour multiple lineages. We used geometric–morphometric, morphometric, and meristic analyses to test for phenotypic divergence and combined nucDNA with mtDNA to test for cytonuclear disequilibrium and combined our sequences with published data to conduct a phylogenetic re‐assessment of the entire C. lutrensis clade. We detected five co‐occurring mtDNA lineages in the Pecos River, but no evidence for cytonuclear disequilibrium or phenotypic divergence. Recognized species were interspersed amongst divergent lineages of ‘C. lutrensis’. Allopatric divergence among drainages isolated in the Late Miocene and Pliocene apparently produced several recognized species and major divisions within ‘C. lutrensis’. Pleistocene re‐expansion and subsequent re‐fragmentation of a centralized lineage founded younger, divergent lineages throughout the Rio Grande basin and Edwards Plateau. There is also evidence of recent introductions to the Rio Grande, Pecos and South Canadian Rivers. Nonetheless, deeply divergent lineages have coexisted since the Pleistocene.  相似文献   

9.
Synopsis Crayfish are not native to the Colorado River basin (CRB), however they are now established in portions of the mainstem and in many tributaries. I used density manipulation experiments in a laboratory setting to determine intra- and interspecific competition for food between Orconectes virilis, an aggressive polytrophic crayfish now common in the CRB, and two native fishes: Gila chub, Gila intermedia, and flannelmouth sucker, Catostomus latipinnis. I tested each fish species in separate trials. Growth of Gila chub decreased when animal densities increased, however they were more affected by intraspecific competition than by crayfish presence. In contrast, growth of flannelmouth suckers was more affected by crayfish than by intraspecific competition. Crayfish growth was not significantly altered by presence of either fish. Crayfish thus reduced fish growth by competition for food, but the effect differed markedly between the two species. An erratum to this article can be found at .  相似文献   

10.
Aim The Pleistocene glaciations were the most significant historical event during the evolutionary life span of most extant species. However, little is known about the consequences of these climate changes for the distribution and demography of marine animals of the north‐eastern Atlantic. The present study focuses on the phylogeographic and demographic patterns of the sand goby, Pomatoschistus minutus (Teleostei: Gobiidae), a small marine demersal fish. Location North‐eastern Atlantic, Mediterranean, Irish, North and Baltic seas. Methods Analysis was carried out by sequencing the mtDNA cytochrome b gene of sand gobies from 12 localities throughout the species’ range, and using this information in combination with published data of allozyme markers and mtDNA control region sequences. Several phylogenetic methods and a network analysis were used to explore the phylogeographic pattern. The historical demography of P. minutus was studied through a mismatch analysis and a Bayesian skyline plot. Results Reciprocal monophyly was found between a Mediterranean Sea (MS) clade and an Atlantic Ocean (AO) clade, both with a Middle Pleistocene origin. The AO Clade contains two evolutionary significant units (ESUs): the Iberian Peninsula (IB) Group and the North Atlantic (NA) Group. These two groups diverged during Middle Pleistocene glacial cycles. For the NA Group there is evidence for geographic sorting of the ancestral haplotypes with recent radiations in the Baltic Sea, Irish Sea, North Sea and Bay of Biscay. The demographic histories of the Mediterranean Clade and the two Atlantic ESUs were influenced mainly by expansions dated as occurring during the Middle Pleistocene glaciations and post‐Eem, respectively. Main conclusions The pre‐LGM (Last Glacial Maximum) subdivision signals were not erased for P. minutus during the LGM. Middle Pleistocene glaciations yielded isolated and differently evolving sets of populations. In contrast to the case for most other taxa, only the northern Atlantic group contributed to the post‐glacial recolonization. The historical demography of Mediterranean sand gobies was influenced mainly by Middle Pleistocene glaciations, in contrast to that of the Atlantic populations, which was shaped by Late Pleistocene expansions.  相似文献   

11.
We used comparative landscape genetics to examine the relative roles of historical events, intrinsic traits and landscape factors in determining the distribution of genetic diversity of river fishes across the North American Great Plains. Spatial patterns of diversity were overlaid on a patch‐based graphical model and then compared within and among three species that co‐occurred across five Great Plains watersheds. Species differing in reproductive strategy (benthic vs. pelagic‐spawning) were hypothesized to have different patterns of genetic diversity, but the overriding factor shaping contemporary patterns of diversity was the signature of past climates and geological history. Allelic diversity was significantly higher at southern latitudes for Cyprinella lutrensis and Hybognathus placitus, consistent with northward expansion from southern Pleistocene refugia. Within the historical context, all species exhibited lowered occupancy and abundance in heavily fragmented and drier upstream reaches, particularly H. placitus; a pelagic‐spawning species, suggesting rates of extirpation have outpaced losses of genetic diversity in this species. Within most tributary basins, genetically diverse populations of each species persisted. Hence, reconnecting genetically diverse populations with those characterized by reduced diversity (regardless of their position within the riverine network) would provide populations with greater genetic and demographic resilience. We discuss cases where cross‐basin transfer may be appropriate to enhance genetic diversity and mitigate negative effects of climate change. Overall, striking similarities in genetic patterns and in response to fragmentation and dewatering suggest a common strategy for genetic resource management in this unique riverine fish assemblage.  相似文献   

12.
The northern Dolly Varden, Salvelinus malma malma, is a typical representative of arctic fauna distributed in northeastern Asia and northwestern North America. Because its spawning habitats were affected by Pleistocene glacial advances over most of its natural range, S. m. malma is among the most interesting objects of phylogeographic and microevolutionary studies. We reconstructed the genealogy of mtDNA haplotypes from 27 Alaskan and Asian populations to study the influence of glacial and geological vicariance events on the contemporary population genetic structure, phylogeographic subdivision and distribution of the northern Dolly Varden. Analysis of restriction site states in three PCR‐amplified mtDNA regions (ND1/ND2, ND5/ND6, Cytb/D‐loop; 47% of the mitochondrial genome) resolved 75 haplotypes in 436 fish. Similar patterns of subspecific variation apparent from hierarchical diversity and nested clade analyses of mtDNA haplotypes identify weak spatial differentiation and low levels of divergence. Our results suggest that (1) demographic history has been influenced by historical range expansions and recent isolation by distance, (2) present populations from Asia and North America were colonized from one main Beringian Refugium, and (3) that this taxon's ancestral population probably experienced a bottleneck in the Beringian Refugium during the late Pleistocene (Wisconsin) glacial period.  相似文献   

13.
The delimitation of species boundaries, particularly those obscured by reticulation, is a critical step in contemporary biodiversity assessment. It is especially relevant for conservation and management of indigenous fishes in western North America, represented herein by two species with dissimilar life histories codistributed in the highly modified Colorado River (i.e., flannelmouth sucker, Catostomus latipinnis; bluehead sucker, C. (Pantosteus) discobolus). To quantify phylogenomic patterns and examine proposed taxonomic revisions, we first employed double‐digest restriction site‐associated DNA sequencing (ddRAD), yielding 39,755 unlinked SNPs across 139 samples. These were subsequently evaluated with multiple analytical approaches and by contrasting life history data. Three phylogenetic methods and a Bayesian assignment test highlighted similar phylogenomic patterns in each, but with considerable difference in presumed times of divergence. Three lineages were detected in bluehead sucker, supporting elevation of C. (P.) virescens to species status and recognizing C. (P.) discobolus yarrowi (Zuni bluehead sucker) as a discrete entity. Admixture in the latter necessitated a reevaluation of its contemporary and historic distributions, underscoring how biodiversity identification can be confounded by complex evolutionary histories. In addition, we defined three separate flannelmouth sucker lineages as ESUs (evolutionarily significant units), given limited phenotypic and genetic differentiation, contemporary isolation, and lack of concordance (per the genealogical concordance component of the phylogenetic species concept). Introgression was diagnosed in both species, with the Little Colorado and Virgin rivers in particular. Our diagnostic methods, and the agreement of our SNPs with previous morphological, enzymatic, and mitochondrial work, allowed us to partition complex evolutionary histories into requisite components, such as isolation versus secondary contact.  相似文献   

14.
Aim Natural processes of colonization and human‐mediated introductions have shaped current patterns of biodiversity in the Mediterranean Basin. We use a comparative phylogeographic approach to investigate the genetic structure of Herpestes ichneumon and Genetta genetta (Carnivora) across the Strait of Gibraltar, and test for their supposedly contemporaneous introduction into Iberia. Location Mediterranean Basin and Africa. Methods We sequenced two mitochondrial fragments (cytochrome b and control region) of 91 (H. ichneumon) and 185 (G. genetta) individuals, including the sole archaeological record of G. genetta in Iberia, dating from the Muslim occupation. We used phylogenetic and tokogenetic methods, summary statistics, neutrality tests, geographic–genetic pairwise comparisons and coalescent estimates to explore the history of the two species in the Mediterranean Basin. Results In North Africa, an autochthonous (Clade I) and a western African mtDNA clade, coalescing in the Middle to Late Pleistocene, co‐occurred in both species. Only Clade I was present in Europe. In H. ichneumon, the European pool showed deep coalescence (median = 335 kyr) and high genetic differentiation and diversity compared with its North African counterpart, suggesting long‐term stability of female effective population size. In sharp contrast, G. genetta in Europe exhibited lower genetic diversity, weak differentiation with North Africa and recent demographic expansion; however, Andalusia and Catalonia (Spain) showed distinctly higher genetic diversity, and the archaeological specimen had the predominant European haplotype. Main conclusions The co‐occurrence of autochthonous and sub‐Saharan lineages in North Africa (1) supports a new, emerging biogeographic scenario in North Africa, and (2) suggests a connection through the Sahara, possibly from the Middle Pleistocene onwards. Our results refute the idea that H. ichneumon was introduced into Europe contemporaneously with G. genetta. Instead, they support a scenario of sweepstake dispersal during Late Pleistocene sea‐level fluctuations, followed by long‐term in situ evolution throughout the last glaciation cycles. Genetta genetta appears to have undergone a recent spread from at least two independent introduction ‘hotspots’ in Catalonia and Andalusia, possibly following antique trade routes and/or Muslim invasions. Despite their contrasting histories, the European gene pools of both species represent unusual cases leading to the preservation of autochthonous, North African lineages.  相似文献   

15.
The contemporary distribution of genetic variation within and among high latitude populations cannot be fully understood without taking into consideration how species responded to the impacts of Pleistocene glaciations. Broad whitefish, Coregonus nasus, a species endemic to northwest North America and the Arctic coast of Russia, was undoubtedly impacted by such events because its geographic distribution suggests that it survived solely within the Beringian refuge from where it dispersed post‐glacially to achieve its current range. We used microsatellite DNA to investigate the role of glaciations in promoting intraspecific genetic variation in broad whitefish (N = 14 localities, 664 fish) throughout their North American range and in one Russian sample. Broad whitefish exhibited relatively high intrapopulation variation (average of 11.7 alleles per locus, average HE = 0.61) and moderate levels of interpopulation divergence (overall FST = 0.10). The main regions assayed in our study (Russia, Alaska, Mackenzie River and Travaillant Lake systems) were genetically differentiated from each other and there were declines in genetic diversity with distance from putative refugia. Additionally, Mackenzie River system populations showed less developed and more variable patterns of isolation‐by‐distance than populations occupying former Alaskan portions of Beringia. Finally, our data suggest that broad whitefish dispersed from Beringia using coastal environments and opportunistically via headwater stream connections that once existed between Yukon and Mackenzie River drainages. Our results illustrate the importance of history (e.g. glaciation) and contemporary dispersal ecology in shaping the current genetic population structure of Arctic faunas.  相似文献   

16.
Inferring how the Pleistocene climate oscillations have repopulated the extant population structure of Chondrus crispus Stackh. in the North Atlantic Ocean is important both for our understanding of the glacial episode promoting diversification and for the conservation and development of marine organisms. C. crispus is an ecologically and commercially important red seaweed with broad distributions in the North Atlantic. Here, we employed both partial mtDNA Cox1 and nrDNA internal transcribed spacer region 2 (ITS2) sequences to explore the genetic structure of 17 C. crispus populations from this area. Twenty‐eight and 30 haplotypes were inferred from these two markers, respectively. Analysis of molecular variance (AMOVA) and of the population statistic ΦST not only revealed significant genetic structure within C. crispus populations but also detected significant levels of genetic subdivision among and within populations in the North Atlantic. On the basis of high haplotype diversity and the presence of endemic haplotypes, we postulate that C. crispus had survived in Pleistocene glacial refugia in the northeast Atlantic, such as the English Channel and the northwestern Iberian Peninsula. We also hypothesize that C. crispus from the English Channel refugium repopulated most of northeastern Europe and recolonized northeastern North America in the Late Pleistocene. The observed phylogeographic pattern of C. crispus populations is in agreement with a scenario in which severe Quaternary glaciations influenced the genetic structure of North Atlantic marine organisms with contiguous population expansion and locally restricted gene flow coupled with a transatlantic dispersal in the Late Pleistocene.  相似文献   

17.
Aim A small fauna of amphibious snails (genus Assiminea Fleming, 1828) living in association with highly mineralized springs in the Death Valley–lower Colorado River region (DVLCR) is thought to be a relict of the Bouse Embayment, a putative late Miocene–early Pliocene transgression of the ancestral Gulf of California along the lower Colorado River valley. We analysed the phylogenetic relationships of this fauna using mtDNA sequence data (1171 bp) to determine whether, as would be consistent with this hypothesis, it forms a substantially divergent unit sister to marine coastal congeners. Location South‐western Great Basin and lower Colorado River region, USA. Methods Two genes [mitochondrial cytochrome c oxidase subunit I (COI) and the mitochondrial 16S ribosomal RNA gene] were sequenced for 10 populations of DVLCR assimineas (Assiminea infima Berry, 1947 ; Assiminea sp.). We also sequenced an undescribed population from a spring in the Colorado River delta; western North American Pacific Coastal Assiminea californica (Tryon, 1865); the three other congeners that live on the continent; and three Old World assimineids (outgroups). Phylogenies based on the combined data set were obtained using Bayesian methods, and divergence times were estimated using a COI molecular clock for related gastropods. Results Composite haplotypes of the DVLCR assimineas, together with that observed in the Colorado River delta population, formed a weakly supported clade that was sister to a clade composed of populations of North American Pacific and Atlantic coastal species. The genetic distance between members of these two clades was 3.46 ± 0.47% for COI and 1.69 ± 0.38% for 16S. The former clade was composed of five subunits that differed from each other by 1.29–2.84% (COI) and 0.52–1.98% (16S) sequence divergence. Main conclusions Application of the COI clock suggests that progenitors of the DVLCR fauna diverged from coastal ancestors 2.13–1.89 Ma (late Pliocene), several million years after the Bouse Embayment would have been terminated by the establishment of the lower (freshwater) Colorado River. This finding, together with shallow genetic structuring of several DVLCR lineages that are widely distributed across the topographically complex regional landscape, suggests that the Assiminea fauna of this inland area was more likely to have been founded by coastal colonists transported on water birds than through a direct connection with the sea.  相似文献   

18.
Mitochondrial 16S rDNA and CO I gene were used as molecular markers for the analysis of the genetic diversity and differentiation of Daphnia galeata populations in nine water bodies in the middle and lower reaches of the Yangtze River. In the combined 16S rDNA and CO I gene sequences, 54 variable sites and 44 haplotypes were observed among 219 individuals belonging to nine D. galeata populations. Average haplotype diversity and nucleotide diversity were, respectively, 0.72% and 0.56%. The F‐statistics (FST) value of the D. galeata populations was 0.149. According to the results of the neutral test, D. galeata in the middle and lower reaches of the Yangtze River had experienced a bottleneck effect in the history. Molecular variance analysis indicated that the genetic differentiation of the D. galeata populations mainly occurred within populations (85.09%). Greater genetic differentiations of D. galeata among individuals within populations appeared in the populations from the Huaihe River basin, whereas smaller genetic differentiations occurred in the populations from the middle reaches of the Yangtze River. Strong gene flows were all observed between Group I (four populations from the middle reaches of the Yangtze River) and Group ΙΙ (three populations from the middle and lower reaches of the Yangtze River), and Group ΙΙΙ (two populations from the Huaihe River basin). The effective migration rates (M) were 851.49 from Group I to Group ΙΙ and 685.96 from Group I to Group ΙΙΙ, respectively. However, no significant relationship was observed between the genetic differentiation and geographical distance of the nine populations (r = .137, p > .05). Results suggested that the genetic differentiation of D. galeata in the water bodies in the middle and lower reaches of the Yangtze River resulted mainly from geographical isolation.  相似文献   

19.
The traditional southern Pleistocene refugia hypothesis in Europe has lately been challenged for several animal and plant species. The Carpathian Basin, especially at the marginal regions, is one of the recently recognized biodiversity hotspots in Europe. Marginal populations are prone to have lower genetic diversity and higher genetic differentiation than central populations. Here, we examined one mitochondrial DNA fragment (D‐loop) and nine nuclear (microsatellite) loci to describe the genetic diversity and phylogeographical pattern of fire salamander (Salamandra salamandra) populations in the Carpathian Basin with focusing on the southern margins of the Western Carpathians, where isolated populations of this species are present. Analyses of microsatellites indicated reduced genetic diversity for most of the isolated populations. Based on the mitochondrial DNA, only two haplotypes were found, whereas the analyses with the nuclear markers revealed a more recent genetic split between Western (Alpine) and Eastern (Carpathian) populations, and separated the Apuseni Mountains population (part of the Western Carpathians). Using approximate Bayesian computation analyses, we identified the most probable colonization scenario for the isolated North Hungarian Carpathian Basin populations. The split between isolated salamander populations from the central populations in the Carpathian Mountains dates back to the beginning of the Late Pleistocene, while the split between most of the Hungarian populations can be associated with the Last Glacial Maximum. We found evidence for long‐time isolation between the marginal Carpathian Basin and central populations. Our results also show that S. salamandra survived glacial periods in the temperate forests of north‐east Pannonia (North Hungarian Mountains), confirming that the Carpathian Basin served as important northerly refugia during the Pleistocene climatic oscillations.  相似文献   

20.
Aim We inferred the phylogeography of the alpine butterfly Colias meadii Edwards (Pieridae) and compared its genetic structure with that of another high elevation, co‐distributed butterfly, Parnassius smintheus Doubleday (Papilionidae), to test if the two Rocky Mountain butterflies responded similarly to the palaeoclimatic cycles of the Quaternary. Location Specimens were collected from 18 alpine sites in the Rocky Mountains of North America, from southern Colorado to northern Montana. Methods We sequenced 867 and 789 nucleotides of cytochrome oxidase I from an average of 19 and 20 individuals for C. meadii and P. smintheus, respectively, from each of the same 18 localities. From the sequence data, we calculated measures of genetic diversity within each population (H, θ), genetic divergence among populations (FST), and tested for geographic structure through an analysis of molecular variance (amova ). Population estimates were compared against latitude and between species using a variety of statistical tests. Furthermore, nested clade analysis was implemented to infer historic events underlying the geographic distribution of genetic variation in each species. Then, we compared the number of inferred population events between species using a nonparametric Spearman's rank correlation test. Finally, we ran coalescent simulations on each species’ genealogy to test whether the two species of Lepidoptera fit the same model of population divergence. Results Our analyses revealed that: (1) measures of within‐population diversity were not correlated with latitude for either species, (2) within‐site diversity was not correlated between species, (3) within a species, nearly all populations were genetically isolated, (4) both species exhibited significant and nearly identical partitioning of genetic variation at all hierarchical levels of the amova , including a strong break between populations across the Wyoming Basin, (5) both species experienced similar cycles of expansion and contraction, although fewer were inferred for C. meadii, and (6) data from both species fit a model of three refugia diverging during the Pleistocene. Main conclusions While our findings supported a shared response of the two butterfly species to historic climate change across coarse spatial scales, a common pattern was not evident at finer spatial and temporal scales. The shared demographic history of the two species is consistent with an expanding–contracting archipelago model, suggesting that populations persisted across the geographic range throughout the climate cycles, experiencing isolation on ‘sky islands’ during interglacial periods and becoming connected as they migrated down‐slope during cool, wet climates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号