首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the preparation Furolan, (2-furyl-2)-1,3-dioxolane, on the degree of mRNA polyadenylation and the pattern of protein synthesis in the ripening grain of several soft winter wheat (Triticum aestivum L.) cultivars were studied. It was demonstrated that Furolan stabilized mRNA in a cultivar-specific manner, thereby accelerating to various degrees the biochemical processes taking place in the ripening grain. Of the wheat cultivars studied, Krasnodarskaya 99 was the most responsive cultivar with respect to a set of changes in nucleic-protein metabolism; the cultivar Deya was next followed by the cultivar Bat’ko. The cultivar Kroshka did not respond to the treatment with Furolan. The cultivar specificity of this preparation allows its practical application to be optimized.  相似文献   

2.
3.
Ethylene promotes fruit ripening, including softening. The fruit of melting-flesh peach (Prunus persica (L). Batsch) cultivar 'Akatsuki' produces increasing levels of ethylene, and the flesh firmness softens rapidly during the ripening stage. On the other hand, the fruit of stony hard peach cultivars 'Yumyeong', 'Odoroki', and 'Manami' does not soften and produces little ethylene during fruit ripening and storage. To clarify the mechanism of suppression of ethylene production in stony hard peaches, the expression patterns of four ethylene biosynthesis enzymes were examined: ACC synthases (Pp-ACS1, Pp-ACS2, and Pp-ACS3) and ACC oxidase (Pp-ACO1). In the melting-flesh cultivar 'Akatsuki', Pp-ACS1 mRNA was dramatically induced after harvesting, and a large amount of ethylene was produced. On the other hand, in stony hard peaches, Pp-ACS1 mRNA was not induced during the ripening stage, and ethylene production was inhibited. Since Pp-ACS1 mRNA was induced normally in senescing flowers, wounded leaves, and wounded immature fruit of 'Yumyeong', Pp-ACS1 was suppressed only at the ripening stage, and was not a defect in Pp-ACS1. These results indicate that the suppression of fruit softening in stony hard peach cultivars was caused by a low level of ethylene production, which depends on the suppressed expression of Pp-ACS1.  相似文献   

4.
High Cd content in durum wheat (Triticum turgidum L. var durum) grain grown in the United States and Canada presents potential health and economic problems for consumers and growers. In an effort to understand the biological processes that result in excess Cd accumulation, root Cd uptake and xylem translocation to shoots in seedlings of bread wheat (Triticum aestivum L.) and durum wheat cultivars were studied. Whole-plant Cd accumulation was somewhat greater in the bread wheat cultivar, but this was probably because of increased apoplastic Cd binding. Concentration-dependent 109Cd2+-influx kinetics in both cultivars were characterized by smooth, nonsaturating curves that could be dissected into linear and saturable components. The saturable component likely represented carrier-mediated Cd influx across root-cell plasma membranes (Michaelis constant, 20–40 nm; maximum initial velocity, 26–29 nmol g−1 fresh weight h−1), whereas linear Cd uptake represented cell wall binding of 109Cd. Cd translocation to shoots was greater in the bread wheat cultivar than in the durum cultivar because a larger proportion of root-absorbed Cd moved to shoots. Our results indicate that excess Cd accumulation in durum wheat grain is not correlated with seedling-root influx rates or root-to-shoot translocation, but may be related to phloem-mediated Cd transport to the grain.  相似文献   

5.
Fruit softening is associated with cell wall disassembly mediated by the action of a complex set of enzymes and proteins. Expansins, a group of proteins with unknown enzymatic activity, are proposed to be involved in this process. In order to study the involvement of expansins in strawberry fruit softening we have analyzed the expression level of five expansin mRNAs (FaEXP1, FaEXP2, FaEXP4, FaEXP5 and FaEXP6) in the cultivars "Selva", "Camarosa" and "Toyonaka", which differ in fruit firmness during ripening. We have found a correlation between mRNA expression levels and fruit firmness for FaEXP1, FaEXP2 and FaEXP5. For these three mRNAs we have observed higher expression levels in the softest cultivar (Toyonaka) than in the other two firmer cultivars (Selva and Camarosa) at the beginning of ripening. This correlation was not found in the case of FaEXP4 and FaEXP6, although both genes displayed a different expression pattern in the three cultivars analyzed. Western-blot analysis revealed that the accumulation of expansin proteins begins earlier in the softest cultivar during ripening.  相似文献   

6.
Using genomic in situ hybidization, among the common wheat cultivars produced in West Siberia (Siberian Research Institute of Agriculture, Omsk) with the involvement of the winter wheat cultivar Kavkaz carrying the wheat-rye 1RS.1BL translocation we identified three cultivars with this translocation: Omskaya 29, Omskaya 37, and Omskaya 38. The protein and crude gluten contents in the grain of these cultivars are equal to or exceed the levels observed in cultivars without the wheat-rye translocation. The common wheat cultivars carrying the wheat-rye translocation were evaluated in terms of resistance of plants reaching wax ripeness to leaf rust and powdery mildew in the natural field conditions. The cultivars Omskaya 37 and Omskaya 38 displayed a high field resistance to leaf rust and were resistant to a variable extent to powdery mildew. The cultivar Omskaya 29 was susceptible to leaf rust and powdery mildew pathogens. Importance of the selection direction and the role of the genetic background in developing common wheat cultivars carrying the wheat-rye translocation is discussed.  相似文献   

7.
Genotypic differences in phosphorus efficiency of wheat   总被引:1,自引:1,他引:0  
Horst  W. J.  Abdou  M.  Wiesler  F. 《Plant and Soil》1993,155(1):293-296
In an attempt to evaluate whether breeding and selection for high yielding capacity did change the P requirements of modern wheat cultivars, the response of two wheat cultivars to different levels of P supply was investigated. A traditional cultivar ("Peragis") and a modern cultivar ("Cosir") were cultivated in a C-loess low in available P and high in CaCO3 in 120 cm high PVC pots. Shoot and root growth at different developmental stages was compared. The grain yield of the modern cultivar Cosir was higher at limiting and non-limiting P supply and, therefore, this cultivar can be considered as more P-efficient than the traditional cultivar. From the results it can be concluded that the main factors contributing to the higher P efficiency of the modern cultivar are (i) efficient use of assimilates for root growth characteristics which enhance P acquisition: smaller root diameter, and longer root hairs, (ii) efficient remobilization of P from vegetative plant organs to the grains, and (iii) lower P requirement for grain yield formation because of lower ear number per plant but higher grain number per ear.  相似文献   

8.
Genetic regulation of grain hardness and protein content in intervarietal substitution lines for chromosomes of homeologous group 5 was examined. Common wheat cultivar Saratovskaya 29 with high bread-backing properties served as the recipient. Donors of chromosomes 5A and 5D were 18 cultivars with variable traits examined, including high-protein cultivars (Atlas 66 and Diamant 2), and soft-grain cultivars (Ul’yanovka and Chinese Spring). Analysis of substitution lines pointed to a substantial effect of chromosome 5D on the regulation of both traits. It was demonstrated that as a result of intervarietal substitution for chromosome 5D from donor cultivars Ul’yanovka and Chinese Spring, the endosperm softness was increased compared to the recipient cultivar Saratovskaya 29. Substitution lines Saratovskaya 29/Atlas 66 5D and Saratovskaya 29/Diamant 2 5D were characterized by high grain protein content, as well as by high endosperm hardness. In addition, the line Saratovskaya 29/Novosibirskaya 67 5D, characterized by grain hardness higher than in Saratovskaya 29, was isolated. In the lines with intervarietal substitution of chromosome 5A, grain protein content was found to be lower than in recipient cultivar Saratovskaya 29.  相似文献   

9.
A sprouting-resistant and a sprouting-susceptible wheat cultivar were utilized to examine the role of ABA levels and sensitivity responses in wheat embryonic germination. Endogenous embryonic ABA levels were measured in both cultivars throughout grain maturation utilizing a new and sensitive ABA immunoassay. Embryonic ABA levels of each cultivar were similar with the sprouting-susceptible cultivar having about a 25% lower ABA level than that of the sprouting-resistant cultivar. Larger differences between the cultivars were noted in sensitivity to ABA, as measured by capability of ABA to block embryonic germination. ABA inhibited embryonic germination much more effectively in the sprouting-resistant cultivar.  相似文献   

10.
Using late sowing practice, the reproductive growth (anthesis and kernel filling) phase of two wheat cultivars, HD 1553 and HD 2307 was exposed to warmer growth conditions, and the effect on grain yield was examined. The grain weight declined in late-sown plants of both cultivars, but the number of grains per spike decreased drastically in HD 1553 plants. In this cultivar exposure to warmer temperature during reproductive phase led to 67% fewer grains per spike. Examination of photosynthetic and enzymatic antioxidant capacity in flag leaves of late-sown plants revealed a marked reduction in chlorophyll and carotenoid pigmentation in addition to a decline in the activity of H2O2 metabolising enzymes in HD 1553 cultivar. The photo-oxidative pigment loss due to warmer growth conditions in late-shown HD 1553 plants could lead to a reduction in flag leaf photosynthesis and contribute to poor grain yield.  相似文献   

11.
The accumulation of anthocyanin pigments is one of the most important traits that turn strawberry fruit attractive to consumers. During ripening, strawberry fruit color development is associated to anthocyanin synthesis through the phenylpropanoid pathway. Phenylalanine ammonia-lyase (PAL) is a key enzyme in this pathway, having a determining role in strawberry fruit quality. In this work, we studied the level of anthocyanins during fruit ripening of two cultivars that differ in color development (Camarosa and Toyonoka). Toyonoka showed a lower anthocyanin accumulation that was limited to external fruit tissue, while Camarosa accumulated higher amount of anthocyanins in both internal and external sections. In addition, we cloned a full-length gene (FaPAL6) and analyzed its expression in different strawberry plant tissues. The expression of this gene is fruit specific, and increases during fruit ripening in both cultivars along with anthocyanin accumulation. The mRNA level of FaPAL6 was higher in Camarosa. PAL enzyme activity increased at similar rates in both cultivars at early ripening stages, but at the end of ripening PAL activity diminished in Toyonoka while it rose markedly in Camarosa. PAL activity was higher in internal fruit tissue, showing no correlation with anthocyanin level of the same section in both cultivars. The higher FaPAL6 expression and activity detected in Camarosa could be associated to the enhanced anthocyanin accumulation found in this cultivar.  相似文献   

12.
The volatile composition of white Agudelo, Blanco lexitimo, Godello and red Serradelo cultivars (NW Spain) harvested at two different stages of ripening have been evaluated. C6-compounds, alcohols, volatile fatty acids, monoterpenes, C13-norisoprenoids, volatile phenols and carbonyl compounds were identified and quantified in free and glycosidically bound forms by gas chromatography–mass spectrometry (GC–MS). The total volatile concentration showed a significant increase between the two ripening stages studied for all cultivars. The free volatile composition increased during maturity for Godello and Serradelo cultivars; however the glycosidically bound concentration increases for all cultivars with exception of B. lexitimo. Free C6-compounds ((E)-2-hexanal, 1-hexanol and (E)-2-hexen-1-ol) and bound alcohols (benzyl alcohol and 2-phenylethanol) showed the highest concentrations of volatile compounds for all grape cultivars in the two dates studied. Godello cultivar showed the highest change of volatile concentration between two ripening dates because of the high value of free C6-compounds. B. lexitimo was the most terpene-rich cultivar at the last ripening stage due to linalool; however C13-norisoprenoids in free form were detected in low concentrations for all cultivars but not in Godello and B. lexitimo cultivars at the last ripening stage. Free hexanoic acid increased during ripening in all cultivars. The evolution of volatiles during ripening of grape juice from the cultivars studied was not proportional to the changes in sugar content, which shows that the technological and aromatic maturities did not occur at the same time in these cultivars. The results also showed the cultivar * ripening date interaction for all, free and bound, groups of compounds.  相似文献   

13.
The effects of soil water regime and wheat cultivar, differing in drought tolerance with respect to root respiration and grain yield, were investigated in a greenhouse experiment. Two spring wheat (Triticum aestivum) cultivars, a drought sensitive (Longchun 8139-2) and drought tolerant (Dingxi 24) were grown in PVC tubes (120 cm in length and 10 cm in diameter) under an automatic rain-shelter. Plants were subjected to three soil moisture regimes: (1) well-watered control (85% field water capacity, FWC); (2) moderate drought stress (50% FWC) and (3) severe drought stress (30% FWC). The aim was to study the influence of root respiration on grain yield under soil drying conditions. In the experiment, severe drought stress significantly (p < 0.05) reduced shoot and root biomass, photosynthesis and root respiration rate for both cultivars, but the extent of the decreases was greater for Dingxi 24 compared to that for Longchun 8139-2. Compared with Dingxi 24, 0.04 and 0.07 mg glucose m−2 s−1 of additional energy, equivalent to 0.78 and 1.43 J m−2 s−1, was used for water absorption by Longchun 8139-2 under moderate and severe drought stress, respectively. Although the grain yield of both cultivars decreased with declining soil moisture, loss was greater in Longchun 8139-2 than in Dingxi 24, especially under severe drought stress. The drought tolerance cultivar (Dingxi 24), had a higher biomass and metabolic activity under severe drought stress compared to the sensitive cultivar (Longchun 8139-2), which resulted in further limitation of grain yield. Results show that root respiration, carbohydrates allocation (root:shoot ratio) and grain yield were closely related to soil water status and wheat cultivar. Reductions in root respiration and root biomass under severe soil drying can improve drought tolerant wheat growth and physiological activity during soil drying and improve grain yield, and hence should be advantageous over a drought sensitive cultivar in arid regions.  相似文献   

14.
Durum wheat (Triticum turgidum L. var. durum) accumulates Cd from the soil depending on various factors. When grown in hydroponic solution containing Cd (20 microg l(-1)), roots had higher tissue Cd concentrations than shoots or heads. Kyle (the higher grain-Cd accumulating cultivar) had lower root-Cd, and greater shoot-Cd and head-Cd concentrations than Arcola (the lower grain-Cd accumulating cultivar). These cultivar differences were greater at flowering and ripening than at tillering. Much of the root-Cd was lost between the flowering and ripening stages of development. Distribution of (106)Cd among plant parts, after a single 24 h feeding, demonstrated that root-to-shoot transfer of Cd in Arcola was similar to that of Kyle at tillering, but it had ceased at flowering in Arcola but not Kyle. None of the Cd in wheat heads at ripening originated from (106)Cd exposure in the previous 24 h, suggesting that grain-Cd is a function of total shoot accumulation. Both cultivars demonstrated basipetal translocation of Cd; Arcola at tillering translocated more Cd from shoots to roots than Kyle. The proportion of Cd(2+)/Cd(total) in the nutrient solution decreased with time, suggesting that plant activity altered the solution chemistry. The alteration probably resulted from either preferential depletion of solution Cd(2+) and/or addition of root exudates. Lower grain-Cd accumulation in Arcola possibly resulted from a combination of reduced root-to-shoot transfer of Cd at flowering, as well as enhanced shoot-to-root retranslocation of Cd, at least in younger plants. Plant-mediated changes in solution-Cd speciation did not play a role.  相似文献   

15.
水氮互作对小麦籽粒蛋白质、淀粉含量及其组分的影响   总被引:9,自引:0,他引:9  
以两个不同品质类型的小麦品种(强筋品种豫麦34、弱筋品种豫麦50)为材料,在大田条件下,研究了3个灌水处理(W1:拔节水;W2:拔节水+花后15 d灌浆水;W3:拔节水+灌浆水+花后28 d麦黄水)和3个氮肥水平(0、150、270 kg·hm-2)对籽粒蛋白质、淀粉含量及其组分的影响.结果表明:270 kg·hm-2的施氮量有利于提高强筋小麦(豫麦34)籽粒蛋白质含量,籽粒清蛋白、醇溶蛋白和谷蛋白含量明显提高,谷/醇增大;支链淀粉和总淀粉含量提高,直/支下降;籽粒产量增加.弱筋小麦(豫麦50)在150 kg·hm-2 的施氮量下,清蛋白和醇溶蛋白含量增加,球蛋白和谷蛋白含量下降,谷/醇降低;支链淀粉和总淀粉含量提高;不施氮肥或氮肥施用过多(270 kg·hm-2)均影响籽粒蛋白质和淀粉的积累,使产量下降.W2处理促进了籽粒蛋白质和淀粉积累,W1或W3处理均不利于籽粒蛋白质和淀粉积累,且导致籽粒产量下降.水、氮互作效应中,强筋和弱筋小麦分别以全生育期270 kg·hm-2和150 kg·hm-2施氮量配合拔节水+灌浆水(W2)为比较理想的水氮运筹方式.  相似文献   

16.
The formation of soluble phenol compounds, including flavonols, was studied in winter (Erythrospermum, Lutescens 230, and R 47-28) and spring cultivars (Lada) of wheat (Triticum aestivum L.). The contents of soluble phenol compounds and flavonols were 1.8-2.6 and 0.5-1.3 mg/kg fresh weight, respectively. These results illustrate the similarity of phenol metabolism in leaves of winter and spring wheat cultivars. The exception was the cultivar R 47-28 that accumulated the maximum amount of phenol compounds (e.g., flavonols). In this cultivar the ratio of flavonols reached 50% of total soluble phenol content. In other cultivars, this parameter did not exceed 25-35%. The data indicate that the cultivar R 47-28 differs from other wheat cultivars in the metabolism of phenol compounds. The observed differences are probably related to genetic modifications of the cultivar R 47-28 during selection.  相似文献   

17.
A field experiment was conducted with cultivation of hybrid and conventional cultivars in a rice paddy from China. Rhizosphere soil was sampled and CO(2) flux was measured at tillering (S1), grain filling (S2) and ripening (S3) across the growth stages. Microbial community structure, abundance and activity were analyzed using a combination of functional (enzymes) and denaturing gradient gel electrophoresis (DGGE) and real-time PCR molecular approaches. Invertase and urease activities, total microbial biomass carbon, bacterial 16S rRNA and fungal internal transcribed spacer rRNA gene copies were found to be the highest at S2 under both cultivars, being greater under the hybrid cultivar than under the conventional cultivar across the stages. Moreover, the CO(2) flux was 11%, 16% and 25% higher under the hybrid cultivar than under the conventional cultivar at S1, S2 and S3, respectively. Principal component analyses of the PCR-DGGE profile revealed a significant difference between conventional and hybrid cultivars across growth stages. Sequencing DGGE bands of the bacterial 16S rRNA gene showed that a particular bacterial group of Alphaproteobacteria was enhanced and several distinct operational taxonomic units markedly resembled Ascomycota under the hybrid cultivar. These illustrate a significant selection of a particular group of bacteria and fungi of the hybrid cultivar. However, the potential impacts of these cultivar effects in soil C and N cycling deserve further field studies.  相似文献   

18.
选用千粒重大小不同的小麦品种,研究了去除顶端两个小穗对两类品种(大粒品种和小粒品种)千粒重、穗粒数、穗粒重、籽粒平均灌浆速率、单穗平均增重速率、植株光合速率及14C同化物运转分配的影响。试验结果表明,去除顶端两个小穗后,两类品种的千粒重提高,穗粒数降低或基本不受影响,但降低比例明显低于去除小穗数的比例。籽粒平均灌浆速率和单穗平均增重速率(分别表征籽粒库容活性和穗粒库容活性)相应提高。结果,两类品种的穗粒重表现为补偿性增长。两类品种比较,小粒品种的增长幅度大于大粒品种。穗粒库容活性增强使得小粒品种灌浆中后期的植株光合速率提高,使两类品种分配到籽粒中的14C同化物比例增加。从而表明,无论是植株光合速率还是同化物的运转分配皆受穗粒库容活性的调控,调控方式和幅度因品种类型而不同。但提高其穗粒重的着眼点都应当是提高穗粒库容活性。  相似文献   

19.
This work was carried out to characterize starch accumulation and activities of key enzymes during grain filling in two wheat cultivars differing in starch content. The results showed that the starch accumulation rate (SAR) and activities of sucrose synthase, ADP-glucose pyrophosphorylase, soluble starch synthase, granule-bound starch synthase, and starch branching enzyme in the cultivar with a high starch content were significantly higher than those in the cultivar with a low starch content. The simulation with Richards’ equation showed that it was average starch accumulation rate but not active starch accumulation duration that determined starch accumulation. As compared with the cultivar with a low starch content, plants of the cultivar with a high starch content maintained the higher SAR and greater activities of related enzymes during mid and late grain filling stages. Consequently, the cultivar with a high starch content had advantages over that with a low starch content in terms of the amount of starch accumulation at mid and late grain filling stages.  相似文献   

20.
The influence of pre-sowing seed treatment with polyamines (2.5 mM putrescine, 5.0 mM spermidine and 2.5 mM spermine) on growth, photosynthetic capacity, and ion accumulation in two spring wheat (Triticum aestivum L.) cultivars MH-97 (intolerant) and Inqlab-91 (tolerant) was examined. The primed seeds of each treatment and non-primed seeds were sown in a field containing 15 dS m−1 NaCl. Although all three polyamines were effective in improving shoot growth and grain yield in both cultivars under saline conditions, the effect of spermine was very pronounced particularly in improving grain yield. Different priming agents did not affect the net CO2 assimilation rate and transpiration rate of either cultivar. However, pre-treatment with spermidine increased stomatal conductance (gs) in the tolerant cultivar, whereas with spermine stomatal conductance decreased in the intolerant cultivar under salt stress. Priming agents had different effects on the accumulation of different ions in wheat plant tissues. When spermidine and distilled water were used as priming agents, they were effective in reducing shoot [Na+] in the tolerant and intolerant cultivars, respectively under saline conditions. Although all priming agents caused an increase in shoot [K+], distilled water was more effective in improving shoot [K+] in both cultivars under salt stress. Pre-treatment with spermidine was very effective in reducing shoot [Cl] under saline conditions particularly in the tolerant cultivar. However, the pattern of accumulation of different ions in roots due to different seed priming treatments was not consistent in either cultivar except that root Na+ decreased due to priming with spermine and spermidine in the intolerant and tolerant cultivars under saline conditions. In conclusion, although all three priming agents, spermine, spermidine and putrescine, were effective in alleviating the adverse effect of salt stress on wheat plants, their effects on altering the concentration of different ions and growth were different in the two cultivars differing in salt tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号