首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在对1800、3000和4500株hm-23种密度杉木林生长调查及生物量测定的基础上,测定3种密度杉木林各组分养分含量和养分积累量,研究其地上部分养分积累量的垂直空间分配,为杉木林高效培育提供科学依据.结果 表明:1800、3000和4500株·hm-2杉木林养分积累总量分别为1311.57、2531.55和2307....  相似文献   

2.
大气CO2浓度升高和N沉降以及二者之间的耦合作用对陆地森林生态系统的影响是当前国际生态学界关注的热点之一。该实验运用大型开顶箱(open-top chamber, OTC)研究: 1)高CO2浓度(700 μmol×mol-1) +高N沉降(100 kg N×hm-2×a-1) (CN); 2)高CO2浓度(700 μmol×mol-1)和背景N沉降(CC); 3)高N沉降(100 kg N×hm-2×a-1)和背景CO2浓度(NN); 4)背景CO2和背景N沉降(CK) 4种处理对南亚热带主要乡土树种木荷(Schima superba)、红锥(Castanopsis hystrix)、肖蒲桃(Acmena acuminatissima)、红鳞蒲桃(Syzygium hancei)、海南红豆(Ormosia pinnata)叶片元素含量的影响。研究结果表明, 大气CO2浓度升高对5种乡土树种叶片元素含量有较大的影响, 除海南红豆叶片的Ca含量外, 其他树种的叶片元素含量在高CO2浓度处理下都显著升高(p < 0.05); 而在N沉降处理下, 5个树种的叶片K和Ca含量都降低。大气CO2浓度升高与N沉降处理对5种乡土树种植物叶片元素含量影响的交互作用不是很明显, 仅仅木荷和红鳞蒲桃的叶片Ca和Mn以及海南红豆的叶片Mn含量在大气CO2浓度上升和N沉降交互处理下显著下降, 而肖蒲桃的叶片P含量在大气CO2浓度上升和N沉降交互处理下显著上升。  相似文献   

3.
陈东升  孙晓梅  张守攻 《生态学杂志》2016,27(12):3759-3768
以7、17、30和40年生4个发育阶段(幼龄、中龄、近熟和成熟阶段)的日本落叶松人工林为对象,研究了林龄对生物量、碳储量和养分特征的影响.结果表明: 在单木水平上,不同发育阶段干、枝、皮、叶、根生物量和养分浓度差异显著.随年龄增加,各器官生物量呈增大趋势,N、P、K浓度呈下降趋势,Mg浓度先降后升,Ca浓度持续升高.优势木、平均木和劣势木的各器官生物量之间差异显著,但养分浓度差异不显著,表明竞争对各器官养分浓度影响不大.在林分水平上,总生物量、碳储量和养分储量随林龄增加呈增大趋势,与幼龄林相比,成熟林分别增加217.9%、218.4%和56.4%,表明日本落叶松林生长后期能以较少的养分生产较多的干物质,养分利用效率较高.5种元素的积累量除P和K在近熟林(30年生)略有降低外,其他元素都随林龄增加而增加.N集中在叶中,Ca集中在树干,K和Mg主要集中在根,P在不同器官中的分配较均匀.日本落叶松林分年均生物量积累率、固碳率和养分积累率均随林龄的增加而降低,从幼龄林每年7.16 t·hm-2、3.40 t·hm-2、104.64 kg·hm-2降低到成熟林的3.99 t·hm-2、1.89 t·hm-2、28.64 kg·hm-2,表明日本落叶松林幼、中龄阶段固碳潜力大,但养分消耗也高.  相似文献   

4.
The influence of alternate bearing on nutrient utilization and total tree nutrient content was investigated in mature pistachio (Pistacia vera L. cv Kerman trees). Removal of N, P and Zn in fruit and abscised leaves of cropping (‘on’) trees averaged 5, 6, and 2 times, respectively, the removal in abscised leaflets of the non-fruiting, ‘off’ year trees. One hundred and thirty-five kg N, 131 kg K, 86 kg Ca, 39 kg Mg and 18 kg P per hectare were removed in fruits and abscised leaves in ‘on’ year trees. Tree nutrient contents and, presumably, the size of nutrient storage pools in dormant trees varied between ‘on’ and ‘off’ years. There was 22% and 14% more N and P, respectively, in dormant trees following ‘off’ than ‘on’ years. The greater N and P accumulation in ‘off’ year trees is depleted in support of the large fruit demand for N and P during ‘on’ years. In contrast to N and P, there was greater K and Ca accumulation in perennial tree parts during ‘on’ years than during ‘off’ years. The greater K accumulation in perennial tree parts and approximately 30% greater removal of K in annual organs during ‘on’ than ‘off’ years suggests that K uptake could be 4 times higher in ‘on’ year trees than in (non-cropping), ‘off’ year trees.  相似文献   

5.
Ma Q  Yu WT  Zhou H  Xu YG  Chen JN  Chen GJ  Liu SY  Deng L 《应用生态学报》2010,21(8):1933-1939
采用田间定位试验的方法,研究了追施氮肥对2年生桉树各器官生物量积累及养分浓度与贮量的影响.结果表明:与对照相比,追施氮肥使桉树生物量增加24.2%,其中树枝增幅最高,为38.2%,树叶最少.追施氮肥显著促进了桉树对养分的吸收,其增幅顺序为PKNMgCaSi;叶片中N、P、Mg、Si含量最高,K在树干中的贮量最大,树枝部位的养分浓度与贮量增加最为显著.桉树N、P、K养分以内循环为主,叶片凋落前分别有73.8%、79.1%和72.9%的N、P、K养分被转移到植株体内,其外循环量仅为全树贮量的14.8%、7.7%和8.6%;Ca、Mg、Si养分则以外循环方式为主,其中Ca最明显,树叶中89.2%的Ca随叶片凋落,其外循环通量占全树Ca总贮量的25.9%.  相似文献   

6.
The weathering of soil minerals in forest ecosystems increases nutrient availability for the trees. The rate of such weathering and its relative contribution to forest tree nutrition, is a major issue when evaluating present and potential forest stand productivity and sustainability. The current paper examines the weathering rate of plagioclase with and without Douglas-fir or Scots pine seedlings, in a laboratory experiment at pH 3–4 and 25 °C. All nutrients, with the exception of Ca, were supplied in sufficient amounts in a nutrient solution. The objective of the experiment was to evaluate the potential of trees to mobilise Ca from the mineral plagioclase that contained 12% of Ca. Amounts of nutrients supplied in the nutrient solution, amounts accumulated in the living tissue of the seedlings and amounts leached from the experimental vessels, were measured. A weathering balance, accounting for leached + accumulated − supplied amounts, was established. Bio-induced weathering, defined as the weathering increase in the presence of trees, relative to the weathering rate without trees (geochemical weathering; control vessels), under the present experimental conditions, explained on average, 40% of total weathering (biological + geochemical). These conditions appeared more beneficial to Scots pine (higher relative growth rate, higher Ca incorporation) than to Douglas-fir.  相似文献   

7.
Abstract

The effect of water and nutrient availability on the performance of Scots pine (Pinus sylvestris L.) against Ophiostoma ips (Rumb.), a bark beetle-associated phytopathogenic blue-stain fungus, was investigated. Field-grown trees were subjected for 18 months to water-stress and/or fertilization, and the effects of such treatments on the needle nutrient status, tree vegetative growth and vigour were examined. At the end of the experimental period, the trees were mass-inoculated (800 inocula m?2) with the fungus, and the relationship between resource availability and tree performance against pathogen attack was also tested. Predawn shoot water potential (ΨPD) of irrigated trees was significantly higher than that of water-stressed trees, and fertilized trees had a significantly lower C/N ratio. The ΨPD values and needle nitrogen content suggest that resource-limited trees were under moderate stress. Improved nutrient availability significantly increased tree growth and tree vigour. However, no evidence for an effect of improved nutrient availability on tree fungal resistance was found in our study.  相似文献   

8.
Beier  C.  Gundersen  P.  Hansen  K.  Rasmussen  L. 《Plant and Soil》1995,(1):613-622
Water and nutrient supply to forest trees are major factors controlling tree growth and forest vitality. Therefore, changes in the supply of water and nutrients to the trees may be important contributing reasons to the forest damages observed in Europe. Such changes may be caused by several factors, e.g. air pollution, soil acidification and climate change. The present study investigates possible effects on tree growth, growth related parameters and nutrition related to changes in the water and nutrient supply. Water and nutrient supply to the forest soil was manipulated in three roof covered plots. The treatments consisted of 1) summer drought, 2) irrigation and 3) combined irrigation and fertilizer application (fertigation). The results from the roof covered treatment plots were compared to a control plot without roof. Increased supply of water during the spring and early summer increased the diameter growth, whereas application of nutrients in addition to irrigation had no additional effect on tree growth. Addition of nutrients increased the needle content of P, Mn, Ca and Mg. Extended summer drought for 2 months had no effect on the tree growth or other growth parameters, but drought reduced the root development in the upper soil layer. Furthermore, drought induced significant stress symptoms by increasing the cone shredding substantially.  相似文献   

9.
为探讨米老排(Mytilaria laosensis)叶片的潜在利用价值和开发前景,对其叶片的营养成分进行了测定.结果表明,9 a生植株的幼嫩叶片中粗蛋白、粗脂肪和水分含量显著低于成熟叶片;2 a生和10 a生米老排叶片的膳食纤维含量均超过50%,总糖含量为15.04%~16.25%;幼树叶片的维生素C含量[1651m...  相似文献   

10.

Background and Aims

The aim was to assess the amounts of macro- (N, P, K, Ca and Mg) and micro-elements (Fe, Mn, Cu and Zn) lost by peach trees (Prunus persica L. Batsch) in all the nutrient removal events (pruning, flower abscission, fruit thinning, fruit harvest and leaf fall), as well as those stored in the permanent structures of the tree (roots, trunk and main branches).

Methods

Three peach cultivars were used. The biomass and nutrient composition of materials lost by trees at the different events were measured during 3 years. The biomass and nutrient composition of permanent tree structures were also measured after full tree excavation.

Results

Winter pruning and leaf fall were the events where most nutrients were removed. Nutrient losses and total requirements are given as amounts of nutrients needed per tree and also as amounts necessary to produce a t of fresh fruit.

Conclusions

The allocation of all nutrients analyzed in the different plant parts was similar in different types of peach trees, with each element having a typical “fingerprint” allocation pattern. Peach tree materials removed at tree pruning and leaf fall include substantial amounts of nutrients that could be recycled to improve soil fertility and tree nutrition. Poorly known tree materials such as flowers and fruit stones contain measurable amounts of nutrients.  相似文献   

11.
Authors index   总被引:1,自引:0,他引:1  
Lehmann  Johannes  Weigl  Doris  Peter  Inka  Droppelmann  Klaus  Gebauer  Gerhard  Goldbach  Heiner  Zech  Wolfgang 《Plant and Soil》1999,210(2):249-262
In a runoff irrigation system in Northern Kenya, we studied the nutrient interactions of sole cropped and alley cropped Sorghum bicolor (L.) Moench and Acacia saligna (Labill.) H.L. Wendl. The trees were pruned once before the cropping season and the biomass was used as fodder for animals. The nutrient contents in leaf tissue, soil and soil solution were monitored and the uptake of applied tracers (15N, Sr) was followed. The grain yield of alley cropped sorghum was similar to or slightly higher than in monoculture and did not decrease near the tree-crop interface. Foliar N and Ca contents of the crop were higher in the agroforestry combination than in monoculture, corresponding to higher soil N and Ca contents. Soil solution and soil mineral N dynamics indicate an increase of N under the tree row and unused soil N at the topsoil in the alley of the sole cropped trees as well as below 60 cm depth in the crop monoculture. The N use efficiency of the tree+crop combination was higher than the sole cropped trees or crops. Competition was observed for Zn and Mn of both tree and crop whereas for Ca only the tree contents decreased. P, K, Mg and Fe dynamics were not affected by alley cropping at our site. The lower uptake of applied Sr by trees in alley cropping compared to those of the monoculture stand suggested a lower competitiveness of the acacia than sorghum, which did not show lower Sr contents when intercropped. The study showed the usefulness of combining soil and plant analyses together with tracer techniques identifying nutrient competition, nutrient transfer processes and the complementary use of soil nutrients, as the main features of the tree-crop combination. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Aims The purpose of this study is to investigate the characteristics of nutrient cycling in Cunninghamia lanceolata plantations with different ages, and to provide scientific basis for the management of high-yield plantations in China. Methods In this study, we used the ecological data of the past 25 years in Hunan Huitong Ecological Station and analyzed the nutrient cycling characteristics of the C. lanceolata plantation forests with different ages according to the law of tree growth and the dynamics of nutrient uptake. Important findings For most nutrients, their concentrations ranked in order as leaf > twig > bark > root > stem for all C. lanceolata trees with any ages. When the tree age was less than 12 years, nutrient concentrations increased with age, while they decreased with age when the tree was more than 12 years old. The changes in average annual nutrient uptake with age showed two peaks. Nutrient return gradually increases with age. For the same age, the nutrient use efficiency followed the order of phosphorus (P) > potassium (K) > nitrogen (N) > magnesium (Mg) > calcium (Ca). After the stand was closed, the nutrient utilization efficiency increases with the growth and development of trees. The cycling intensity of Ca and Mg was greater than that of N and P at the same stand age. The changes in nutrient cycling intensity with age varying curve with stand age acted as parabolic curve. Utilization of N, P and K was longer than displayed a parabolic shape for all elements. The utilization time of each element got shorter with increasing stand age. These results suggested that the nutrient uptake in different growth stages was not only controlled by the quantity of biomass, but also affected by the difference in nutrient concentration between previous and current stages. The nutrient cycling processes were jointly controlled by the mechanisms of nutrient redistribution and storage in Cunninghamia lanceolata, during the growth and development stages, and the nutrient use efficiency during different growth stages. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

13.

Background and aim

Protocols for leaf sampling in deciduous tree crops are commonly executed too late in the season and do not adequately consider field variability to be effectively used to guide N management. The goal of this study was to develop improved sampling strategies to optimize nitrogen management in deciduous tree crops.

Method

Leaf nutrient concentration from individual trees in four mature commercial orchards was collected (n =1148) for three consecutive seasons to develop nitrogen prediction models and to estimate the distribution of N values in orchards in July. Spatial variance analysis was used to determine optimal sampling strategies.

Results

Leaf nitrogen concentration in summer can be predicted (r2?=?0.9) from the leaf N and B concentration in spring with the sum of K, Ca, and Mg equivalents. Mean field leaf nutrient concentration can be obtained by collecting one pooled sample per management zone composed of 30 trees each of which are at least 30 m apart. Using these methods the percentage of trees with leaf N above the recommended July critical value can be predicted accurately.

Conclusions

Optimized methods for sample collection and models to predict mid-season leaf N from early season samples can be used to improve N management in deciduous tree crops.  相似文献   

14.
In this study, we hypothesized that colonization of olive trees (Olea europaea L.) with the arbuscular mycorrhizal fungus Rhizophagus irregularis could modify the profiles of rhizosphere microbial communities with subsequent effects on nutrient uptake that directly affects olive tree physiology and performance. In this context, a greenhouse experiment was carried out in order to study the effects of mycorrhizal colonization by R. irregularis on photosynthesis, pigment content, carbohydrate profile, and nutrient uptake in olive tree. After six months of growth, photosynthetic rate in mycorrhizal (M) plants was significantly higher than that of nonmycorrhizal plants. A sugar content analysis showed enhanced concentrations of mannitol, fructose, sucrose, raffinose, and trehalose in M roots. We also observed a significant increase in P, K, Ca, Mg, Zn, Fe, and Mn contents in leaves of the M plants. These results are important, since nutrient deficiency often occurs in Mediterranean semiarid ecosystems, where olive trees occupy a major place.  相似文献   

15.
不同密度樟子松人工林土壤碳氮磷化学计量特征   总被引:4,自引:0,他引:4  
以科尔沁沙地不同密度(490、750、1550、1930、2560株·hm^-2)樟子松人工林(栽植于1980年)为研究对象,分析林分密度对土壤碳、氮、磷浓度及其计量比的影响,研究林分密度与土壤养分状况的关系。结果表明:随着樟子松林密度增加,各土层(0~10、10~20和20~40 cm)土壤有机碳、全氮、全磷浓度和C∶N呈先增加后降低趋势,而土壤有效磷浓度呈先降低后增加趋势。土壤有机碳浓度在490株·hm^-2密度小于其他密度,而有效磷浓度大于其他密度;土壤C∶P和N∶P在2560株·hm^-2密度显著大于其他密度。各密度樟子松林土壤有机碳、全氮、全磷和有效磷浓度在0~10 cm土层显著大于10~20和20~40cm土层,樟子松人工林土壤养分具有表聚性。通过典范对应分析发现,密度对樟子松林土壤养分影响的主要因子是土壤有机碳、全氮和全磷,且密度为1550株·hm^-2时土壤有机碳、全氮、全磷和碱解氮浓度较高,而C∶P和N∶P较低。因此,当樟子松人工林密度为1550株·hm^-2时,土壤养分浓度较高,林木生长较好,为最佳经营密度。  相似文献   

16.
Summary Fertility levels in soils beneathPinus caribaea trees were examined in the Mountain Pine Ridge savannas, Belize, where fire control has precipitated the development of pine woodland. Slight surface soil enrichment was recorded beneath pine canopies, but to levels well below those found beneath associated hardwoods. Estimates of total nutrient pools beneath trees showed modest cation accumulation beneath a 73 year old tree but some defecits in Ca and Mg beneath a 24 year old tree. A tap root cutting experiment on trees of the same species revealed no significant declines in foliar nutrient levels after 19 months. It is concluded that no pronounced long-term deterioration in soil fertility levels is developing beneath stands ofP. caribaea in the savanna, although some temporary nutrient declines may exist beneath young pine stands. Atmospheric inputs are the most likely source of nutrient accretion and it is suggested that the establishment of hardwood associates with pine may enhance the rates of nutrient capture from this source.  相似文献   

17.
徐武美  宋彩云  李巧明 《生态学报》2015,35(23):7756-7762
生态位理论认为,养分空间异质性分布会减少种间竞争排斥而有助于物种共存;而中性理论则认为群落树种呈独立于环境特征的随机分布。为研究土壤养分异质性与乔木树种多样性的联系,在西双版纳热带季节雨林随机设置了16个1 hm~2样方,调查了各样方乔木树种多样性,计算了各样方土壤有效氮(AN)、有效磷(EP)、有效钾(EK)、有机质(OM)、p H、总氮(TN)、总磷(TP)、总钾(TK)的变异系数以代表各样方土壤养分空间异质性分布的相对水平。Pearson相关分析表明,TK变异系数与乔木树种丰富度、Shannon-wiener指数呈显著正相关(P0.05),表明该区域不同植物可能在钾资源的利用上存在明显的生态位分化,钾的异质性有助于树种共存;OM、AN变异系数与Pielou均匀度指数呈明显正相关(P0.1),在一定程度上说明了这些养分的空间异质性缓解了种间竞争压力,树种多度分布相对均匀,有助于树种共存。除TK外,其它土壤指标的变异系数与乔木树种多样性的正相关性均不显著(P0.05),表明这些养分的空间异质性分布对乔木树种多样性的影响相对较小,中性或其它生态学过程可能掩盖了这些养分的空间异质性分布对乔木树种多样性的影响。这说明,土壤养分空间异质性可能在一定程度上促进了树种共存,但同时应当重视中性过程等在西双版纳热带雨林群落构建中的作用。  相似文献   

18.
Safford  L. O. 《Plant and Soil》1976,44(2):439-444
Summary Modified air layers were established on lateral long roots of 9 yellow birch (Betula alleghniensis Britton) trees, and all replacement roots >. 5 cm long were harvested periodically during the 1971 and 1972 growing seasons. The first replacement roots grew 6 weeks after layer establishment. Root layers were inactive from 29 Oct. 71 to 5 May 72. Active root layers produced an average of 208 mg per tree during the first season and 198 mg per tree during the second season. Concentrations of N, P, K, Ca, Mg, Fe, Mn, Zn, and Al all varied within growing season, and average concentration of some elements—Ca in particular—varied between growing seasons. This technique shows promise for studying the nutrient status of root systems of forest trees.  相似文献   

19.
Large single-standing trees are rapidly declining in savannahs, ecosystems supporting a high diversity of large herbivorous mammals. Savannah trees are important as they support both a unique flora and fauna. The herbaceous layer in particular responds to the structural and functional properties of a tree. As shrubland expands stem thickening occurs and large trees are replaced by smaller trees. Here we examine whether small trees are as effective in providing advantages for grasses growing beneath their crowns as large trees are. The role of herbivory in this positive tree-grass interaction is also investigated. We assessed soil and grass nutrient content, structural properties, and herbaceous species composition beneath trees of three size classes and under two grazing regimes in a South African savannah. We found that grass leaf content (N and P) beneath the crowns of particularly large (ca. 3.5 m) and very large trees (ca. 9 m) was as much as 40% greater than the same grass species not growing under a tree canopy, whereas nutrient contents of grasses did not differ beneath small trees (<2.3 m). Moderate herbivory enhanced these effects slightly. Grass species composition differed beneath and beyond the tree canopy but not between tree size classes. As large trees significantly improve the grass nutrient quality for grazers in contrast to smaller trees, the decline of the former should be halted. The presence of trees further increases grass species diversity and patchiness by favouring shade-tolerant species. Both grazing wildlife and livestock will benefit from the presence of large trees because of their structural and functional importance for savannahs.  相似文献   

20.
林木营养与虫害——油松施氮肥的抗虫效应   总被引:12,自引:1,他引:11  
本文探讨了油松施氮肥后的抗虫效应。1981—1983年试验油松每年以两种方法施尿素5次。根施尿素每次用量为0.1和0.2公斤/株或采用重量比是1:200的尿素溶液进行叶面喷雾。实验结果如下:(1)枯梢率低于对照树;(2)松大蚜、松梢螟和红蜘蛛的虫口数量减少;(3)树皮和树叶中的总氮量、粗纤维素、粗灰分含量增加,而可溶性糖含量下降。经统计分析,上述结果和对照树相比有显著差异。结果表明,施氮肥不仅会增强树势,还会增强树的抗虫性而减轻虫害。我们认为,其主要作用机理是树木营养成分的明显改变影响了昆虫的生长发育和繁殖。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号