首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pyrococcus furiosus is a strictly anaerobic hyperthermophilic archaebacterium with an optimal growth temperature of about 100 degrees C. When this organism was grown in the presence of certain complex carbohydrates, the production of several amylolytic enzymes was noted. These enzymes included an alpha-glucosidase that was located in the cell cytoplasm. This alpha-glucosidase has been purified 310-fold and corresponded to a protein band of 125 kilodaltons as resolved by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme exhibited optimum activity at pH 5.0 to 6.0 and over a temperature range of 105 to 115 degrees C. Kinetic analysis conducted at 108 degrees C revealed hydrolysis of the substrates p-nitrophenyl-alpha-D-glucopyranoside (PNPG), methyl-alpha-D-glucopyranoside, maltose, and isomaltose. Trace activity was detected towards p-nitrophenyl-beta-D-glucopyranoside, and no activity could be detected towards starch or sucrose. Inhibition studies conducted at 108 degrees C with PNPG as the substrate and maltose as the inhibitor yielded a Ki for maltose of 14.3 mM. Preincubation for 30 min at 98 degrees C in 100 mM dithiothreitol and 1.0 M urea had little effect on enzyme activity, whereas preincubation in 1.0% sodium dodecyl sulfate and 1.0 M guanidine hydrochloride resulted in significant loss of enzyme activity. Purified alpha-glucosidase from P. furiosus exhibited remarkable thermostability; incubation of the enzyme at 98 degrees C resulted in a half life of nearly 48 h.  相似文献   

2.
Recombinant barley high pI alpha-glucosidase was produced by high cell-density fermentation of Pichia pastoris expressing the cloned full-length gene. The gene was amplified from a genomic clone and exons (coding regions) were assembled by overlap PCR. The resulting cDNA was expressed under control of the alcohol oxidase 1 promoter using methanol induction of P. pastoris fermentation in a Biostat B 5 L reactor. Forty-two milligrams alpha-glucosidase was purified from 3.5 L culture in four steps applying an N-terminal hexa-histidine tag. The apparent molecular mass of the recombinant alpha-glucosidase was 100 kDa compared to 92 kDa of the native barley enzyme. The secreted recombinant enzyme was highly stabile during the 5-day fermentation and had significantly superior specific activity of the enzyme purified previously from barley malt. The kinetic parameters Km, Vmax, and kcat were determined to 1.7 mM, 139 nM x s(-1), and 85 s(-1) using maltose as substrate. This work presents the first production of fully active recombinant alpha-glucosidase of glycoside hydrolase family 31 from higher plants.  相似文献   

3.
Starch is one of the most abundant resources on earth and is suited to serve as a cost-effective feedstock for biological hydrogen production. However, producing hydrogen from direct fermentation of starch is usually inefficient, as the starch hydrolysis is often the rate-limiting step. Therefore, in the present work, enzymatic starch hydrolysis was conducted to enhance the feasibility of using starch feedstock for H2 production. The amylase (with a molecular weight of ca. 112 kDa) used for starch hydrolysis was produced from a recombinant E. coli harboring an amylase gene originating from Caldimonas taiwanensis On1. Using statistical experimental design, the optimal pH and temperature for starch hydrolysis with the recombinant amylase was pH 6.86 and 52.4 degrees C, respectively, at an initial starch concentration of 7 g/L. The hydrolyzed products contained mainly glucose, maltotriose, and maltotetrose, while a tiny amount of maltose was also detected. The enzymatically hydrolyzed products of soluble starch and cassava starch were used as the substrate for dark hydrogen fermentation using Clostridium butyricum CGS2 and Clostridium pasteurianum CH4. The highest H2 production rate (vH2) and yield (YH2) of C. butyricum CGS2 was 124.0 mL/h/L and 6.32 mmol H2/g COD, respectively, both obtained with the hydrolysate of cassava starch. The best H2 production rate (63.0 mL/h/L) of C. pasteurianum CH4 occurred when using hydrolyzed cassava starch as the substrate, whereas the highest yield (9.95 mmol H2/g COD) was obtained with the hydrolyzed soluble starch.  相似文献   

4.
The thermal stability of alpha-glucosidase is important because the conversion of starch to fermentable sugars during industrial production of ethanol (e.g. brewing, fuel ethanol production) typically takes place at temperatures of 65-73 degrees C. In this study we investigate the thermostability of alpha-glucosidases from four plant species, compare their deduced amino acid sequences, and test the effect of substituting a proline for the residue present in the wild-type enzyme on the thermostability of alpha-glucosidase. The alpha-glucosidase from barley (Hordeum vulgare) was significantly less thermostable than the other three alpha-glucosidases. A comparison of the published deduced amino acid sequences of these four alpha-glucosidases revealed conserved proline residues in the three most thermostable alpha-glucosidases that were not found in the barley enzyme. Site-directed mutagenesis was done on recombinant barley alpha-glucosidase to create proteins with prolines at these conserved positions. The thermostability (T(50)) of one of these mutant enzymes, T340P, was 10 degrees C higher than the non-mutated enzyme.  相似文献   

5.
The thermophilic fungus Thermoascus aurantiacus 179-5 produced large quantities of a glucosidase which preferentially hydrolyzed maltose over starch. Enzyme production was high in submerged fermentation, with a maximal activity of 30 U/ml after 336 h of fermentation. In solid-state fermentation, the activity of the enzyme was 22 U/ml at 144 h in medium containing wheat bran and 5.8 U/ml at 48 h when cassava pulp was used as the culture medium. The enzyme was specific for maltose, very slowly hydrolyzed starch, dextrins (2-7G) and the synthetic substrate (alpha-PNPG), and did not hydrolyze sucrose. These properties suggest that the enzyme is a type II alpha-glucosidase. The optimum temperature of the enzyme was 70 degrees . In addition, the enzyme was highly thermostable (100% stability for 10 h at 60 degrees and a half-life of 15 min at 80 degrees), and stable within a wide pH range.  相似文献   

6.
The aglB and aglA genes from the starch/maltodextrin utilization gene cluster of Thermotoga neapolitana were subcloned into pQE vectors for expression in Escherichia coli. The recombinant proteins AglB and AglA were purified to homogeneity and characterized. Both enzymes are hyperthermostable, the highest activity was observed at 85 degrees C. AglB is an oligomer of identical 55-kDa subunits capable of aggregation. This protein hydrolyses cyclodextrins and linear maltodextrins to glucose and maltose by liberating glucose from the reducing end of the molecules, and it is a cyclodextrinase with alpha-glucosidase activity. The pseudo-tetrasaccharide acarbose, a potent alpha-amylase and alpha-glucosidase inhibitor, does not inhibit AglB but, on the contrary, acarbose is degraded quantitatively by AglB. Recombinant AglB is activated in the presence of CaCl2, KCl, and EDTA, as well as after heating of the enzyme. AglA is a dimer of two identical 54-kDa subunits, and it hydrolyses the alpha-glycoside bonds of disaccharides and short maltooligosaccharides, acting on the substrate from the non-reducing end of the chain. It is a cofactor-dependent alpha-glucosidase with a wide action range, hydrolysing both oligoglucosides and galactosides with alpha-link. Thereby, the enzyme is not specific with respect to the configuration at the C4 position of its substrate. For the enzyme to be active, the presence of NAD+, DTT, and Mn2+ is required. Enzymes AglB and AglA supplement one another in substrate specificity and ensure complete hydrolysis to glucose for the intermediate products of starch degradation.  相似文献   

7.
Extracts of germinated barley (Hordeum vulgare L.) seeds of 41 different genotypes were analyzed for their activities of alpha-amylase, beta-amylase, alpha-glucosidase, and debranching enzyme and for their abilities to hydrolyze boiled soluble starch, nonboiled soluble starch, and starch granules extracted from barley seeds with water. Linear correlation analysis, used to quantitate the interactions between the seven parameters, revealed that boiled soluble starch was not a good substrate for predicting activities of enzymes functioning in in vivo starch hydrolysis as the extracts' abilities to hydrolyze boiled soluble starch was not correlated with their abilities to hydrolyze native starch granules. Activities of alpha-amylase and alpha-glucosidase were positively and significantly correlated with the seed extracts' abilities to hydrolyze all three starches. beta-Amylase was only significantly correlated with hydrolysis of boiled soluble starch. No significant correlations existed between debranching enzyme activity and hydrolysis of any of the three starches. Interactions between the four enzymes as they functioned together to hydrolyze the three types of starch were evaluated by path coefficient analysis. alpha-Amylase contributed to hydrolyses of all three starches primarily by its direct effect (noninteractive component). This direct contribution increased as the substrate progressed from the completely artificial boiled soluble starch, to the most physiologically significant substrate, native starch granules. alpha-Glucosidase contributed to the hydrolysis of boiled soluble starch primarily by its direct effect (noninteractive) yet contributed to starch granule hydrolysis primarily via its interaction with alpha-amylase (indirect effect). The contribution of beta-amylase to hydrolysis of boiled soluble starch was direct and it did not contribute significantly to hydrolysis of native starch granules.  相似文献   

8.
The fungal strain Mortierella alliacea YN-15 is an arachidonic acid producer that assimilates soluble starch despite having undetectable alpha-amylase activity. Here, a alpha-glucosidase responsible for the starch hydrolysis was purified from the culture broth through four-step column chromatography. Maltose and other oligosaccharides were less preferentially hydrolyzed and were used as a glucosyl donor for transglucosylation by the enzyme, demonstrating distinct substrate specificity as a fungal alpha-glucosidase. The purified enzyme consisted of two heterosubunits of 61 and 31 kDa that were not linked by a covalent bond but stably aggregated to each other even at a high salt concentration (0.5 M), and behaved like a single 92-kDa component in gel-filtration chromatography. The hydrolytic activity on maltose reached a maximum at 55 degrees C and in a pH range of 5.0-6.0, and in the presence of ethanol, the transglucosylation reaction to form ethyl-alpha-D-glucoside was optimal at pH 5.0 and a temperature range of 45-50 degrees C.  相似文献   

9.
Klebsiella oxytoca P2(pC46), an ethanol-producing recombinant, has been evaluated in fermentation of maltose and starch. The maximum ethanol produced by P2(pC46) was 0.34 g ethanol/g maltose and 0.38, 0.40, or 0.36 g ethanol/g starch in fermentation of 1, 2, or 4% starch, representing 68, 71, and 64% the theoretical yield. The pC46 plasmid transformed to cells of K. oxytoca P2 reduced the ethanol production from maltose and starch. In fermentation of starch after its digestion at 60 degrees C for 24 h, in two-step fermentation, the time for maximum ethanol production was reduced to 12-24 h and the theoretical yield was around 90%. The increase in starch concentration resulted in lower alpha-amylase activity but in higher pullulanase activity. The high activity and thermostability of the amylolytic enzymes from this transformant suggest that it has a potential for amylolytic enzymes source.  相似文献   

10.
The substrate specificity of acid α-glucosidase from rabbit muscle   总被引:3,自引:2,他引:1       下载免费PDF全文
1. Acid alpha-glucosidase was purified 3500-fold from rabbit muscle. 2. The enzyme was activated by cations, the degree of activation varying with the substrate. Enzyme action on glycogen was most strongly activated and activation was apparently of a non-competitive type. With rabbit liver glycogen as substrate, the relative V(max.) increased 15-fold, accompanied by an increase in K(m) from 8.3 to 68.6mm-chain end over the cation range 2-200mm-Na(+) at pH4.5. Action on maltose was only moderately activated (1.3-fold, non-competitively) and action on maltotriose was marginally and competitively inhibited. 3. The pH optimum at 2mm-Na(+) was 4.5 (maltose) and 5.1 (glycogen). Cation activation of enzyme action on glycogen was markedly pH-dependent. At 200mm-Na(+), the pH optimum was 4.8 and activity was maximally stimulated in the range pH4.5-3.3. 4. Glucosidase action on maltosaccharides was associated with pronounced substrate inhibition at concentrations exceeding 5mm. Of the maltosaccharides tested, the enzyme showed a preference for p-nitrophenyl alpha-maltoside (K(m) 1.2mm) and maltotriose (K(m) 1.8mm). The extrapolated K(m) for enzyme action on maltose was 3.7mm. 5. The macromolecular polysaccharide substrate glycogen differed from linear maltosaccharide substrates in the kinetics of its interaction with the enzyme. Activity was markedly dependent on pH, cation concentration and polysaccharide structure. There was no substrate inhibition. 6. The enzyme exhibited constitutive alpha-1,6-glucanohydrolase activity. The K(m) for panose was 20mm. 7. The enzyme catalysed the total conversion of glycogen into glucose. The hydrolysis of alpha-1,6-linkages was apparently rate-limiting during the hydrolysis of glycogen. 8. Enzyme action on glycogen and maltose released the alpha-anomer of d-glucose. 9. The results are discussed in terms of the physiological role of acid alpha-glucosidase in lysosomal glycogen catabolism.  相似文献   

11.
The alpha-amylase (1, 4-alpha-d-glucanohydrolase; EC 3.2.1.1) and alpha-glucosidase (alpha-d-glucoside glucohydrolase; EC 3.2.1.20) secreted by Geobacillus thermodenitrificans HRO10 were purified to homogeneity (13.6-fold; 11.5% yield and 25.4-fold; 32.0% yield, respectively) through a series of steps. The molecular weight of alpha-amylase was 58kDa, as estimated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The alpha-amylase activity on potato starch was optimal at pH 5.5 and 80 degrees Celsius. In the presence of Ca(2+), the alpha-amylase had residual activity of more than 92% after 1h of incubation at 70 degrees Celsius. The alpha-amylase did not lose any activity in the presence of phytate (a selective alpha-amylase inhibitor) at concentrations as high as 10mM, rather it retained 90% maximal activity after 1h of incubation at 70 degrees Celsius. EGTA and EDTA were strong inhibitory substances of the enzyme. The alpha-amylase hydrolyzed soluble starch at 80 degrees Celsius, with a K(m) of 3.05mgml(-1) and a V(max) of 7.35Uml(-1). The molecular weight of alpha-glucosidase was approximately 45kDa, as determined by SDS-PAGE. The enzyme activity was optimal at pH 6.5-7.5 and 55 degrees Celsius. Phytate did not inhibit G. thermodenitrificans HRO10 alpha-glucosidase activity, whereas pCMB was a potent inhibitor of the enzyme. The alpha-glucosidase exhibited Michaelis-Menten kinetics with maltose at 55 degrees Celsius (K(m): 17mM; V(max): 23micromolmin(-1)mg(-1)). Thin-layer chromatography studies with G. thermodenitrificans HRO10 alpha-amylase and alpha-glucosidase showed an excellent synergistic action and did not reveal any transglycosylation catalyzed reaction by the alpha-glucosidase.  相似文献   

12.
嗜热栖热菌HB8耐热α—葡萄糖苷酶的提纯和性质   总被引:4,自引:0,他引:4  
  相似文献   

13.
1. Albumin activates human liver acid alpha-glucosidase (alpha-D-glucoside hydrolase, EC 3.2.1.20). From the Arrhenius plot, pH-dependence and Lineweaver-Burk plots it can be concluded that this activation is not only due to stabilisation of the enzyme, but also influences the enzymatic activity. It is proposed that for optimal functioning human liver acid alpha-glucosidase needs a protein environment. 2. Glycogen has a competitive inhibitory effect on the hydrolysis of 4-methylumbelliferyl-alpha-D-glucopyranoside, in contrast to maltose which exhibits a non-competitive type of inhibition. It is concluded that two catalytic sites exist, one for glycogen and one for maltose, while both sites influence each other. With glycogen as substrate a break in the Arrhenius plot is found. This is not the case when maltose is used as substrate. 3. The effect of antibody raised against human liver acid alpha-glucosidase on the activity of human liver acid alpha-glucosidase is studied. No corss-reacting material could be demonstrated in the liver of a patient with glycogen storage disease Type II (M. Pompe, acid alpha-glucosidase deficiency).  相似文献   

14.
15.
An endophytic fungus, Fusicoccum sp. BCC4124, showed strong amylolytic activity when cultivated on multi-enzyme induction enriched medium and agro-industry substrates. alpha-Amylase and alpha-glucosidase activities were highly induced in the presence of maltose and starch. The purified target alpha-amylase, Amy-FC1, showed strong hydrolytic activity on soluble starch (kcat/Km=6.47 x 10(3) min(-1)(ml/mg)) and selective activity on gamma- and beta-cyclodextrins, but not on alpha-cyclodextrin. The enzyme worked optimally at 70 degrees C in a neutral pH range with t(1/2) of 240 min in the presence of Ca(2+) and starch. Maltose, matotriose, and maltotetraose were the major products from starch hydrolysis but prolonged reaction led to the production of glucose, maltose, and maltotriose from starch, cyclodextrins, and maltooligosaccharides (G3-G7). The amylase showed remarkable glucose tolerance up to 1 M, but was more sensitive to inhibition by maltose. The deduced protein primary structure from the putative gene revealed that the enzyme shared moderate homology between alpha-amylases from Aspergilli and Lipomyces sp. This thermotolerant, glucose tolerant maltooligosaccharide-forming alpha-amylase is potent for biotechnological application.  相似文献   

16.
Ma YF  Eglinton JK  Evans DE  Logue SJ  Langridge P 《Biochemistry》2000,39(44):13350-13355
Barley beta-amylase undergoes proteolytic cleavage in the C-terminal region after germination. The implication of the cleavage in the enzyme's characteristics is unclear. With purified native beta-amylases from both mature barley grain and germinated barley, we found that the beta-amylase from germinated barley had significantly higher thermostability and substrate binding affinity for starch than that from mature barley grain. To better understand the effect of the proteolytic cleavage on the enzyme's thermostability and substrate binding affinity for starch, recombinant barley beta-amylases with specific deletions at the C-terminal tail were generated. The complete deletion of the four C-terminal glycine-rich repeats significantly increased the enzyme's thermostability, but an incomplete deletion with one repeat remaining did not change the thermostability. Although different C-terminal deletions affect the thermostability differently, they all increased the enzyme's affinity for starch. The possible reasons for the increased thermostability and substrate binding affinity, due to the removal of the four C-terminal glycine-rich repeats, are discussed in terms of the three-dimensional structure of beta-amylase.  相似文献   

17.
We recently purified an alpha-glucosidase comprising 61-kDa and 31-kDa subunits from the fungus Mortierella alliacea and characterized its soluble starch-hydrolyzing activity. Here, the cDNA coding for this enzyme was cloned, revealing that it encodes a single polypeptide of 1,053 amino acids, with a calculated molecular mass of 117 kDa. Comparison between the deduced amino acid sequence and the partial sequences of the purified enzyme suggested that an immature protein can be converted into the two subunits of mature enzyme by post-translational processing at least three cleavage sites. Heterologous expression of recombinant alpha-glucosidase in yeast gave rise to a significant increase in hydrolytic activity toward maltose and soluble starch, in both intracellular and extracellular fractions. Immunoblot analysis using antiserum against the alpha-glucosidase revealed that the active enzyme expressed in yeast is also composed of two subunits. The yeast expression system provides a model suitable for investigating the polypeptide-processing event and structure-function relationship of the alpha-glucosidase with unique substrate specificity.  相似文献   

18.
Two isoforms of alpha-glucosidase were purified from the parasitic protist Trichomonas vaginalis. Both consisted of 103 kDa subunits, but differed in pH optimum and substrate specificity. Isoform 1 had a pH optimum around 4.5 and negligible activity on glucose oligomers other than maltose, while isoform 2 with a pH optimum of 5.5 hydrolyzed also such substrates at considerable rates. Neither had activity on glycogen or starch. Isoform 1 had a specific activity for hydrolysis of maltose of 30 U/mg protein and isoform 2 101 U/mg protein. The Km values were 0.4 mM and 2.0 mM, respectively. Isoform 2 probably corresponds to the activity detected on the cell surface.  相似文献   

19.
An extracellular alpha-amylase (1,4-alpha D-glucan glucan hydrolase; EC 3.2.1.1) was isolated from the cell free broth of Streptomyces megasporus SD12 grown in glucose, soluble starch and raw starch. The enzyme was purified 55-fold with a specific activity of 847.33 U mg-1 of protein and with a yield of 36% activity. The apparent molecular mass of the enzyme was 97 kDa, as estimated by SDS-PAGE. The pI of the enzyme was 5.4 and it was stable at a pH range of 5.5 to 8.5 with an optimum pH 6. The enzyme was stable upto 85 degrees C with a half life of 60 min. With soluble starch as substrate the enzyme exhibited a K(m) and kcat value of 4.4 mg ml-1 and 2335 U min-1 mg-1 of protein respectively. The major end products of starch hydrolysis were maltotriose and maltose depending on the incubation period. The production of the enzyme with agricultural wastes as substrates was 643 to 804 U min-1 mg-1 of protein in submerged fermentation whereas solid state fermentation could produce only 206 U min-1 mg-1 of protein.  相似文献   

20.
K B Li  K Y Chan 《Applied microbiology》1983,46(6):1380-1387
Lactobacillus acidophilus IFO 3532 was found to produce only intracellular alpha-glucosidase (alpha-D-glucoside glucohydrolase; EC 3.2.1.20). Maximum enzyme production was obtained in a medium containing 2% maltose as inducer at 37 degrees C and at an initial pH of 6.5. The enzyme was formed in the cytoplasm and accumulated as a large pool during the logarithmic growth phase. Enzyme production was strongly inhibited by 4 microM CuSO4, 40 microM CoCl2, and beef extract; MnSO4 and the presence of proteose peptone and yeast extract in the medium greatly enhanced enzyme production. A 16.6-fold purification of alpha-glucosidase was achieved by (NH4)2SO4 fractionation and DEAE-cellulose column chromatography. The enzyme showed high specificity for maltose. The Km for alpha-p-nitrophenyl-beta-D-glucopyranoside was 11.5 mM, and the Vmax for alpha-p-nitrophenyl-beta-D-glucopyranoside hydrolysis was 12.99 mumol/min per mg of protein. The optimal pH and temperature for enzyme activity were 5.0 and 37 degrees C, respectively. The enzyme activity was inhibited by Hg2+, Cu2+, Ni2+, Zn2+, Ca2+, Co2+, urea, rose bengal, and 2-iodoacetamide, whereas Mn2+, Mg2+, L-cysteine, L-histidine, Tris, and EDTA stimulated enzyme activity. Transglucosylase activity was present in the partially purified enzyme, and isomaltose was the only glucosyltransferase product. Amylase activity in the purified preparation was relatively weak, and no isomaltase activity was detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号