首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of rapid motility apparently is one of the first steps of sperm capacitation and can be studied in vitro. Previously we found that 2-chloro-2'-deoxyadenosine or the catecholamine isoproterenol activates mouse sperm motility in vitro via a pathway mediated by cAMP that requires extracellular Ca2+, the atypical sperm adenylyl cyclase, and sperm-specific protein kinase A. We now show that several other adenosine analogs and catecholamines accelerate the flagellar beat of mouse and human sperm. Unexpectedly, the potent adenosine receptor agonist CGS21680 does not accelerate the beat, and the adenosine receptor antagonist DPCPX does not diminish the accelerating action of 2-chloro-2'-deoxyadenosine. The pharmacological profile for activation by catecholamines is also unusual. Both agonists and antagonists of beta-adrenergic receptors elevate the beat frequency. Moreover, both l-(-) and d-+ isomers of epinephrine, norepinephrine, and isoproterenol produce similar acceleration of the beat. In contrast, inhibitors of equilibrative nucleoside transporters effectively slow the onset of the accelerating action of adenosine analogs. Replacement of external Na+ with Li+ also diminishes the accumulation of cAMP and slows the resultant accelerating action of 2-chloro-2'-deoxyadenosine, suggesting the involvement of a Na+-dependent concentrative nucleoside transporter. Our results show that adenosine and catecholamine agonists act in a novel signaling pathway that does not involve G protein-coupled cell-surface receptors that link to conventional adenylyl cyclases. Instead, adenosine and analogs may be transported into sperm via equilibrative and concentrative nucleoside transporters to act on unknown intracellular targets.  相似文献   

2.
Adenosine relaxes the coronary arteries of various species through A2 receptors. The aim of the present investigation was to evaluate the relaxing effects of adenosine in relation to the role of calcium in bovine coronary arteries by studying the vasodilatory effect of adenosine in normal and calcium-free medium and on calcium-45 efflux into calcium-free medium. Acetylcholine (ACh) and norepinephrine (NE) were used to induce tone in coronary artery rings. Adenosine, 5'-(N-ethylcarboxamido)adenosine (NECA), and N6-(L-phenylisopropyl)adenosine (L-PIA) produced concentration-dependent relaxations of the coronary artery rings. Both in normal and calcium-free medium, the order of potency for adenosine analogs (NECA greater than L-PIA greater than adenosine) was similar and 8-phenyltheophylline antagonized the relaxation responses to adenosine and its analogs. Removal of extracellular calcium shifted the concentration-response curves to the right in a parallel fashion, slowed the rate of relaxation, and in NE contracted rings reduced the maximum responses for adenosine and its analogs. In calcium-free medium, adenosine was without an effect on calcium-45 efflux in the presence of ACh. However, adenosine inhibited the stimulated calcium-45 efflux induced by NE. The data suggest that the vasodilatory action of adenosine in bovine coronary smooth muscle has both extracellular calcium-dependent and -independent components.  相似文献   

3.
Adenosine is present in the mouse follicular fluid and has been shown to interfere with oocyte maturation in vitro. To clarify the mechanism of adenosine action on meiotic arrest, we have characterized the synergistic action of this purine with forskolin on the meiotic resumption of mouse denuded oocytes. Forskolin delays meiotic resumption by approximately 1 hour; adenosine at concentrations ranging between 30–750 μM has no significant effect. Conversely, adenosine treatment together with forskolin produces a further delay in the resumption of meiosis. This adenosine effect is dose-dependent and mimicked by adenosine analogs like N6-phenylisopropyl adenosine (PIA), 2-chloroadensoine (2-CLA), 5′-N-ethylcarboxamide (NECA). Dipyridamole, which inhibits adenosine transport, does not prevent the meiosis-arresting synergistic effect of adenosine with forskolin. Adenosine causes a 50% increase of adenosine triphosphate (ATP) content in the oocyte. However, this increase is not directly responsible for the observed delay in the oocyte maturation for the following reasons: (1) the dose response of inhibition of meiotic resumption does not correlate with the doses of adenosine producing an increase in ATP; (2) dipyridamole blocks the increase in intracellular ATP, but it has no effect on the adenosine inhibition of maturation; (3) adenosine analogs inhibit oocyte maturation but do not affect intracellular ATP levels. These results suggest that the synergism of adenosine with forskolin on meiotic arrest does not require uptake of the nucleoside nor its conversion to ATP and that the adenosine effects are exerted at the level of the oocyte plasma membrane.  相似文献   

4.
Adenosine analogs inhibit fighting in isolated male mice   总被引:1,自引:0,他引:1  
The potent adenosine analogs N-ethylcarboxamide adenosine (NECA) and phenylisopropyladenosine (PIA) inhibit fighting and associated agonistic behaviors in isolated male mice. These effects are reversed by methylxanthines; moderate doses of NECA which inhibit fighting have minimal effects on spontaneous locomotor activity. At very low doses, both NECA and PIA increase fighting in parallel with previously reported increases of motor activity. Brain levels of [3H]-NECA and [3H]-PIA achieved at behaviorally effective doses suggest an involvement of adenosine receptors. The biochemical mechanism of adenosine receptor action with respect to fighting is unknown, but may include neuromodulatory effects on the release of other, more classical neurotransmitters.  相似文献   

5.
Spinach chloroplasts were able to photophosphorylate the ADP analog alpha,beta-methylene adenosine 5'-diphosphate (AOPCP). Phosphorylation of AOPCP was catalyzed by chloroplasts that were washed or dialyzed to remove free endogenous nucleotides. In the presence of glucose, hexokinase, AOPCP and 32Pi, the 32P label was incorporated into alpha,beta-methylene adenosine 5'-triphosphate (AOPCPOP). In contrast to photophosphorylation of AOPCP, the ATP analog AOPCPOP was a poor substrate for the ATP-Pi exchange reaction and its hydrolysis was neither stimulated by light and dithiothreitol nor inhibited by Dio-9. Photophosphorylation of AOPCP was inhibited by the alpha,beta- and beta,gamma-substituted methylene analogs of ATP, while phosphorylation of ADP was unaffected by them. The ATP-Pi exchange was also unaffected by both ATP analogs, while the weak AOPCPOP-Pi exchange was inhibited by the beta,gamma-methylene analog of ATP. Direct interaction of methylene analogs with the chloroplast coupling factor ATPase was indicated by the enzymatic hydrolysis of AOPCPOP on polyacrylamide gels.  相似文献   

6.
Adenosylhomocysteine hydrolase from human lymphoblasts binds 2'-deoxy[3H]adenosine tightly. Binding is associated with time-dependent, saturable, irreversible inactivation of catalytic activity which occurs with first order kinetics, suggesting "suicide" inactivation. Adenine arabinoside produces similar inactivation but is more potent. These results suggest a basis for a heretofore unrecognized mechanism of action for these and other analogs of adenosine, in which toxicity results from actions of the nucleosides themselves, rather than from nucleotides to which they may be converted.  相似文献   

7.
In isolated rat hepatocytes adenosine and inosine showed a dose-dependent increase in the rate of glucose synthesis from lactate with a Ka of 7.5 x 10(-8) and 9 x 10(-8) M, respectively. Absence of this action was recorded with: IMP, xanthosine, adenine, hypoxanthine, and uric acid. A reciprocal inhibition of individual gluconeogenic stimulation was found in cells incubated with glucagon or epinephrine and adenosine, but not with inosine. 5'-(N-ethyl) carboxamido adenosine was more potent than adenosine, whereas N6-(L-2-phenylisopropyl)-adenosine antagonized the stimulation of gluconeogenesis by adenosine. Neither of the analogs used modified the stimulatory role of inosine on the studied pathway. Adenosine and inosine may be involved in the short term regulation of gluconeogenesis.  相似文献   

8.
The effects of adenosine (A) and the nonmetabolizable adenosine analogs, N-ethylcarboxamidoadenosine (NECA), L-phenylisopropyladenosine (L-PIA), D-PIA and 2-chloroadenosine (2CHA) were examined on the IgE-dependent mediator release from RBL-2H3 cells, a model for mast-cell function. Adenosine and the adenosine analogs failed to influence mediator release from cells, previously sensitized with monoclonal anti-TNP mouse immunoglobulin E (anti-TNP IgE), when added alone. When added prior to conjugated trinitrophenol-ovalbumin (TNP-OVA), adenosine and the adenosine analogs (10(-8)-10(-4) M) significantly potentiated the release of both histamine (marker for degranulation) and peptidoleukotrienes (LT) (marker for de novo synthesized mediators). The effects were concentration-dependent with the potency order being L-PIA greater than NECA greater than A greater than D-PIA, 2CHA. The stimulatory effect on both histamine and LT release were reversed by prior treatment of the cells with pertussis toxin but not by the purinoceptor antagonists, theophylline and 8-phenyltheophylline, nor adenosine uptake blockers. At higher concentrations (above 10(-5) M), adenosine and adenosine analogs were also inhibitory on LT but not on histamine release. This inhibition was more evident on pertussis-toxin-treated cells in which there was no effect of adenosine or adenosine analogs on histamine release, but a concentration-dependent inhibition of IgE-dependent LT release. These findings demonstrate that adenosine analogs have two distinct mechanisms on mediator release from RBL-2H3 cells; a stimulatory effect on both histamine and LT release, mediated via a pertussis-toxin-sensitive G protein and an inhibitory effect on LT release via a pertussis-toxin-insensitive pathway. An abstract of this work has been published.  相似文献   

9.
The use of nucleotides and their analogs in the pharmacological studies of nucleotide receptors (P2 class) should be preceded by detailed studies on their degradation connected with ecto-enzymes of a given cell type. In the present studies we have analyzed stability of some phosphorothioate and phosphonate analogs of ATP and ADP in the HeLa epitheloid carcinoma and endothelial HUVEC cells cultures. Our studies have revealed that ecto-nucleotide pyrophosphatase (E-NPP) is one of the main enzymes involved in the extracellular degradation of ATP and other nucleotides in the HeLa cells. On the other hand, the ecto-ATPDase is responsible for the hydrolysis of extracellular nucleotides in human endothelial cell cultures, while the E-NPP-like enzymes of the HUVEC cells are not essential to this degradation. The concerted action of the aforementioned ecto-enzymes and nucleotide pyrophosphatase, 5'-nucleotidase and adenosine deaminase present in fetal bovine serum (FBS) supplied to the culture medium, results in partial or complete degradation of the phosphorothioate (ATPgammaS) and phosphonate analogs of adenosine nucleotides (alpha,beta-methylene-ATP and beta,gamma-methylene-ATP) in the cell cultures. Only ADPbetaS appears to be resistant to these enzymes. The influence of some nucleotides and their analogs on the proliferation of the HeLa cells in presence or absence of FBS is also discussed.  相似文献   

10.
S R Barry 《Life sciences》1990,46(19):1389-1397
Adenosine (1 microM to 1 mM) depressed spontaneous transmitter release from frog motor nerve terminals without producing any observable postsynaptic effects. Since this action of adenosine was blocked by 20 microM theophylline and 1 microM 8-phenyltheophylline, adenosine probably acts at a specific receptor on motor nerve terminals to reduce spontaneous transmitter output. The effects of the adenosine analogs, L-N6-phenylisopropyladenosine (L-PIA, 100 pM to 1 microM), D-PIA (100 nM to 100 microM), and 5'-N-ethylcarboxamidoadenosine (NECA, 10nM to 100 microM), were tested on spontaneous transmitter release at the frog neuromuscular junction. L-PIA depressed mepp frequency at a threshold concentration of about 1 nM, was thirteen times more potent than NECA, and was 294 times more effective than D-PIA. The rank-order potency of these analogs indicates that adenosine acts at an A1-like receptor to depress spontaneous transmitter release. Inhibitory actions of maximally effective concentrations of adenosine and L-PIA were also blocked by the A1-specific antagonist, 1-3-dipropyl-8-cyclopentylxanthine (DPCPX) at a concentration of 100 nM. Micromolar concentrations of NECA, an agonist with approximately equal affinity for the A1 and A2 receptors, produced biphasic effects on mepp frequency. Thus, a second adenosine receptor, perhaps of the A2 subtype, may be present on motor nerve terminals and may mediate an increase in spontaneous transmitter release.  相似文献   

11.
Insulin antagonized the lipolytic actions of epinephrine in rat epididymal adipocytes when the phosphodiesterase inhibitor, Ro 20-1724, was present. Adipocytes were depleted of functional cAMP by inhibiting adenylate cyclase with N6-phenylisopropyladenosine in the presence of adenosine deaminase such that Ro 20-1724 no longer stimulated lipolysis. The cAMP analogs 8-thioisopropyl-cAMP or 8-thiomethyl-cAMP, which are resistant to phosphodiesterase hydrolysis, were subsequently added to bypass adenylate cyclase and phosphodiesterase action. Under these conditions, insulin antagonized the lipolytic effects of these analogs, even in the presence of Ro 20-1724.  相似文献   

12.
The structure-activity relationships of 63 adenosine analogs as agonists for the A1 adenosine receptors that mediate inhibition of adenylate cyclase activity in rat fat cells and for the A2 adenosine receptors that mediate stimulation of adenylate cyclase in rat pheochromocytoma PC12 cells and human platelets were determined. The lack of correspondence between the structure-activity relationships of these analogs at the A1 and A2 receptors appear definitive in terms of establishing the existence of A1 and A2 subclasses of adenosine receptors. However, significant differences in the agonist profiles at A2 receptors of platelet and PC12 indicate a certain degree of structural heterogeneity within the members of the A2 adenosine receptor subclass. Whether such differences are due to different species or different cell types is not known. A set of adenosine analogs, such as N6-cyclohexyl-, N6-R-, and S-1-phenyl-2- propyladenosines, 5'-N-ethylcarboxamidoadenosine and its N6-cyclohexyl derivative, 2-chloroadenosine, and 2-phenylaminoadenosine, appear to represent a series of analogs useful for pharmacological characterization of A1 and A2 classes of adenosine receptors.  相似文献   

13.
In this study we have examined the meiosis-inducing influence of adenosine analogs in mouse oocytes. When a varied group of nucleosides and nucleotides were tested on overnight cultures of hypoxanthine-arrested, cumulus cell-enclosed oocytes (CEO), halogenated adenosine nucleosides, but not native adenosine, exhibited a significant meiosis-inducing capability. When tested under a variety of conditions, meiotic induction by 8-bromo-adenosine (8-Br-Ado) and a second adenosine analog, methylmercaptopurine riboside (MMPR), was especially potent in denuded oocytes (DO) compared to CEO and was not dependent on the type of inhibitor chosen to maintain meiotic arrest. Germinal vesicle breakdown (GVB) was stimulated with rapid kinetics and was preceded by an increase in AMP-activated protein kinase (AMPK) activity. Moreover, compound C, an inhibitor of AMPK, blocked the meiosis-inducing activities of both adenosine analogs. When tested for an effect on meiotic progression to metaphase II (MII) in spontaneously maturing CEO, 8-Br-Ado and the AMPK activator, 5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside (AICAR), increased the percentage of MII-stage oocytes, but MMPR decreased this number. Adenosine and inhibitors of de novo purine synthesis had no effect on the completion of maturation, while compound C suppressed this process. These results support the proposition that oocyte AMPK mediates the positive influence of AICAR and 8-Br-Ado on both the initiation and completion of meiotic maturation. The role of AMPK in MMPR action is less clear.  相似文献   

14.
1. Adenosine and its analogs depress the firing of neurons in various brain regions. The primary mode of action of adenosine in exerting this effect appears to be the depression of transmitter release from presynaptic nerve terminals. This is a result of reduced calcium mobilization. 2. Adenosine uptake inhibitors and deaminase inhibitors depress the firing of central neurons. Adenosine antagonists, caffeine and theophylline, excite central neurons. Adenosine is therefore likely to be released in sufficient quantities to exert an ongoing modulation of synaptic transmission in the intact brain. 3. A number of groups of centrally active drugs inhibit adenosine uptake by brain synaptosomal preparations. These include the benzodiazepines, phenothiazines, various other sedatives and hypnotics, tricyclic antidepressants, non-steroidal anti-inflammatory analgesics, some steroids, diphenylhydantoin, puromycin and toyocamycin. 4. It is proposed that many agents with anxiolytic, sedative, analgesic or anti-convulsant actions may achieve their effects by inhibiting adenosine uptake and thus potentiating extracellular adenosine levels. 5. Morphine also elevates extracellular adenosine levels but achieves this by enhancing adenosine release.  相似文献   

15.
This study was carried out to evaluate the possible role of adenosine uptake and metabolism in mediating the inhibitory actions of this nucleoside on spontaneous mouse oocyte maturation. Uridine blocked 3H‐adenosine uptake by oocyte–cumulus cell complexes (OCCs) and cumulus cell–enclosed oocytes (CEOs) by 82–85%, whereas uptake by denuded oocytes (DOs) was suppressed by 97%. Uridine had no effect on germinal vesicle breakdown (GVB) in CEOs when meiotic arrest was maintained with hypoxanthine or hypoxanthine plus adenosine but reversed the combined inhibitory action of these purines in DOs. Five of six adenosine analogs that bind to purinoceptors demonstrated meiosis‐arresting activity but not in relation to their relative affinities for inhibitory or stimulatory adenosine receptors and only at high concentrations. Moreover, in DOs, uridine reversed the inhibitory effect of 2‐chloroadenosine and 5′‐N‐ethylcarboxamidoadenosine, two receptor agonists that are poor substrates for adenosine‐metabolizing enzymes. Results of experiments with adenosine kinase inhibitors showed that methylmercaptopurine riboside (MMPR) and tubercidin, but not 5′‐amino‐5′‐deoxyadenosine, reversed meiotic arrest maintained by hypoxanthine ± adenosine, but this required an additional inhibitory action on de novo purine synthesis. Inhibition of de novo purine synthesis alone was not sufficient because azaserine failed to reverse meiotic arrest. MMPR was a very potent meiosis‐inducing agent, completely reversing meiotic arrest in CEOs and DOs in the presence of a variety of meiotic inhibitors. The adenosine deaminase inhibitor deoxycoformycin had opposite effects on oocyte maturation depending on the presence or absence of adenosine: the inhibitory action of hypoxanthine alone was bolstered, but the meiosis‐arresting action of adenosine was reversed. These data therefore indicate that at low adenosine concentrations phosphorylation predominates, but at higher adenosine concentrations deaminated products contribute to the meiotic inhibition. This idea was borne out by the ability of inosine to mimic the synergistic interaction of adenosine with hypoxanthine. The action of adenosine is not due to deamination to inosine and conversion to nucleotides through the hypoxanthine salvage pathway because adenosine‐mediated inhibition was not compromised in oocytes from mutant mice unable to salvage hypoxanthine. Mol. Reprod. Dev. 53:208–221, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

16.
Adenosine has profound depressant effects upon the electrophysiological activity of the brain, but the adenosine receptor subtypes which mediate these responses are uncertain. In order to resolve this question, we have characterized the effects of two adenosine analogs which differ in their relative potencies at adenosine A1 and A2 receptors. The effects of these adenosine analogs were examined on spontaneous firing rate of Purkinje neurons in the rat cerebellum in situ, in cerebellar brain slices in vitro, and on synaptic transmission in the rat hippocampus in vitro. Although the A2 agonist appeared to be more potent with local drug application techniques in situ, our in vitro results suggest that the A1 receptor subtype is involved in the electrophysiological actions of these drugs in both rat cerebellum and hippocampus. Furthermore, these data indicate that the physical properties of some adenosine analogs may reduce apparent drug potencies when they are studied with local application techniques.  相似文献   

17.
I B Finn  S G Holtzman 《Life sciences》1988,42(24):2475-2482
Rats treated chronically with caffeine become tolerant to caffeine-induced stimulation of locomotor activity and cross-tolerant to theophylline. This study was performed to determine if the cross-tolerance between these two methylxanthine drugs is symmetrical. Symmetrical cross-tolerance produced by two different drugs implies a common underlying mechanism of action. Separate groups of rats were given scheduled access to drinking bottles containing either drug-free tap water or 1.0 mg/ml theophylline solution. Daily theophylline intake averaged 59 mg/kg. Dose-effect curves were determined in both control and theophylline-treated groups for 5 drugs: the methylxanthines theophylline and caffeine, a nonxanthine psychomotor stimulant, d-amphetamine, and the adenosine analogs R(-)-N6-2-(phenylisopropyl)adenosine and 5'-(N-ethyl)carboxamidoadenosine. All drugs were injected i.p. and locomotor activity was measured for 30 min beginning 35 min later. Rats that were maintained chronically on theophylline were completely tolerant to the locomotor activity stimulant effects of acutely administered theophylline and cross-tolerant to caffeine-induced stimulation of locomotor activity. In contrast, both control and treated groups were fully responsive to the stimulant effects of d-amphetamine. Low doses of the adenosine analogs produced stimulation of locomotor activity in both groups of rats. Higher doses produced a dose-dependent depression of locomotor activity in control rats; curves for the theophylline-treated rats were shifted to the right of the control curves. Thus, adenosine antagonist activity of theophylline remained evident at a time of complete tolerance to the stimulant effect of the drug on locomotor activity.  相似文献   

18.
The potencies and intrinsic activities of adenosine analogs for stimulating cyclic AMP accumulation in slices of rat cerebral cortex were examined. 5'-N-Ethylcarboxamidoadenosine (NECA) caused the greatest increase in cyclic AMP accumulation (19.2-fold). 2-Chloroadenosine (2-CAD) induced a similar increase, but adenosine and six other analogs caused much smaller increases. All agonists tested had similar potencies in activating this response. Inhibition of adenosine uptake with 10 microM dipyridamole did not affect the maximal response to any agonist, although the potency of adenosine was increased approximately threefold. Each analog was also able to block partially the stimulation of cyclic AMP accumulation caused by NECA. Levels of cyclic AMP accumulation in the presence of NECA plus another analog were similar to those observed when the analog alone was present, as expected for partial agonists. Furthermore, the EC50 value for R-(-)-N6(2-phenylisopropyl)adenosine in increasing cyclic AMP accumulation was similar to the KI value for inhibiting the response to NECA. The EC50 value for adenosine was substantially higher than the KI value for inhibiting the response to NECA; however, in the presence of dipyridamole, the two values were more closely correlated. The response to NECA was blocked by 8-phenyltheophylline, 1,3-diethyl-8-phenylxanthine, and 8-p-sulfophenyltheophylline, with KI values from 1 to 10 microM. The results suggest that adenosine analogs stimulate cyclic AMP accumulation in cerebral cortex through low-affinity receptors, but that some analogs only partially activate these receptors. Adenosine itself may also be a partial agonist, or its actions may be obscured by simultaneous activation of another receptor.  相似文献   

19.
Structure-activity studies with a number of adenosine derivatives and analogs, measuring their relaxant effects in a variety of smooth muscle systems, were conducted in the hope of obtaining indications of the possible involvement of adenylate cyclase in their mechanism of action. While it was confirmed that a C6 aminofunction is of importance for agonist activity, several compounds, in particular the relatively potent N6-hydroxylaminopurine ribonucleoside, were not antagonized by 8-p-sulfophenyltheophylline, indicating that some nucleosides cause smooth muscle relaxation by a mechanism other than adenosine receptor stimulation. Nucleosides not bearing a C6 aminofunction were essentially inactive in rabbit intestine but showed weak relaxant effects in bovine coronary artery; this may indicate a difference between the adenosine receptor systems in these tissues and the intracellular mechanisms of relaxation. Comparing the relative potencies of compounds such as adenosine, 2-chloroadenosine, 5'-(N-ethylcarboxamido)adenosine, and (-)N6-(R-phenylisopropyl)adenosine, which have been used widely to classify adenylate cyclase-coupled adenosine receptors, no uniform pattern became apparent among different smooth muscle systems used in this study and reported in the recent literature. Thus, we conclude that a classification of smooth muscle adenosine receptors according to criteria established for cyclase-coupled receptors may be inappropriate or misleading, particularly with respect to implications of adenylate cyclase involvement in the relaxant effects of adenosine and related nucleosides.  相似文献   

20.
The fluorescence properties of two adenosine analogs, 2-(3-phenylpropyl)adenosine [A-3CPh] and 2-(4-phenylbutyl)adenosine [A-4CPh], are reported. As monomers, the quantum yields and the mean lifetimes are 0.011 and 6.22 ns for A-3CPh and 0.007 and 7.13 ns for A-4CPh, respectively. Surprisingly, the quantum yields of the two probes are enhanced 11- to 82-fold upon incorporation into RNA, while the mean lifetimes decrease 23–40%. The data suggest that a subpopulation of molecules is responsible for the fluorescence characteristics and that the distribution of emitting and non-emitting structures is altered upon incorporation of the probes into RNA. Thus, although both adenosine analogs have low quantum yields as monomers, their fluorescence signals are significantly enhanced in RNA. Thermodenaturation experiments and CD spectroscopy indicate that incorporation of the adenosine analogs into three different RNAs does not alter their global structure or stability. Therefore, these probes should be useful for probing events occurring close to the site of modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号