首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Wild tall wheatgrass (Lophopyrum elongatum L., 2x = 14) is an important resource for improving bread wheat (Titicum aestivum L.), including HMW-GS and LMW-GS relevant to end-use quality of the wheat flour. A set of 14 distinct sequences were amplified from the genomic DNA of the tall wheatgrass, using degenerate primers targeted at Glu-3, the locus containing the genes encoding the low-molecular weight glutenin subunits (LMW-GS). Three sequences contained an internal stop codon and were classified as pseudogenes. The other 11 all consisted of a single intron-less intact open-reading frame. An alignment of deduced protein sequences showed that the primary structure of all 11 sequences was similar to that of wheat and other wheat-related grass Glu-3 genes. All 11 sequences carried the 14 amino acid residue N-terminal motif MESNIIISFLK/RPWL, and were classified as LMW-m genes, based on the identity of the first amino acid of the mature protein. All but one of the sequences contained seven cysteine residues (the exception had 6). Their repetitive domain differs significantly from that present in Glu-3 genes isolated from the close relative intermediate wheatgrass (Thinopyrum Intermedium, 6x). A phylogenetic analysis showed that the tall wheatgrass sequences were closely related to those of the intermediate wheatgrass, but only distantly so to those from decaploid tall wheatgrass. One of the 11 LMW-GS peptides with a free-cysteine residue was heterologously expressed in E. coli and purified in sufficient scale to perform a flour supplementation test. This showed that the dough strength of bread wheat flour was significantly increased by the presence of the tall wheatgrass LMW-GS.  相似文献   

3.
Identification of LMW glutenin-like genes from Secale sylvestre host   总被引:2,自引:0,他引:2  
Shang HY  Wei YM  Long H  Yan ZH  Zheng YL 《Genetika》2005,41(12):1656-1664
Three low-molecular-weight (LMW) glutenin-like genes (designated as Ssy1, Ssy2 and Ssy3) from Secale sylvestre Host were isolated and characterized. The three genes consist of a predicted highly conservative signal peptide with 20 amino acids, a short N-terminal region with 13 amino acids, a highly variable repetitive domain and a less variable C-terminal domain. The deduced amino acid sequences of the three genes were the LMW-m type due to a methionine residue at the N-terminus. The phylogenic analysis indicated that the prolamin genes could be perfectly clustered into five groups, including HMW-GS, LMW-GS, alpha/beta-, gamma- and omega-prolamin. The LMW glutenin-like genes of S. sylvestre were more orthologous with the LMW-GS genes of wheat and B hordein genes of barley, which also had been confirmed by the homology analysis with the LMW-GS of wheat at Glu-A3, Glu-B3 and Glu-D3 loci. These results indicated that a chromosome locus (designated as Glu-R3) might be located on the R genome of S. sylvestre with the functions similar to the Glu-3 locus in wheat and its related species.  相似文献   

4.
In order to exploit the evolution and find novel low-molecular-weight glutenin subunit(LMW-GS)for improvement of common wheat quality,thirteen variants from a somatic hybrid introgression line Ⅱ-12 between Triticum aestivum cv.Jinan 177(JN177)and Agropyron elongatum were characterized via genomic PCR.Four clones were pseudogenes because they contained an internal stop codon.The remaining nine variants contained intact open reading frames(ORFs).Sequence alignment indicates that the proteins deduced from the nine ORFs have similar primary structure with LMW-GS cloned from its parents previously.However,they have some unique modifications in the structures.For example,EU292737 contains not only an extra Cys residue in the C-terminal domain but also a long repetitive domain.Both EU159511 and EU292738 start their first Cys residue in the N-terminal repetitive domain,but not in the N-conserved domain traditionally.These structural alterations may have positive contributions to wheat flour quality.The results of phylogeny showed that most LMW-GS variances from Ⅱ-12 were homologous to those from parent JN 177 and other wheat lines.The reason for quick evolution of LMW-GS in Ⅱ-12 was discussed.  相似文献   

5.
A new class of low molecular weight glutenin subunit (LMW-GS) genes was isolated and characterized from Aegilops comosa (2n?=?2x?=?14, MM). Although their DNA structure displayed high similarity to LMW-i type genes, there are some key differences. The deduced amino acid sequences of their mature proteins showed that the first amino acid residue of each gene was leucine and therefore they were designated as LMW-l type subunits. An extra cysteine residue was present in the signal peptide and the first cysteine residue of mature proteins located at the end of repetitive domain. Additionally, a long insertion of 10?C22 residues (LGQQPQ5?C17) occurred in the end of the C-terminal II. Comparative analysis demonstrated that LMW-l type glutenin genes possessed a great number of single-nucleotide polymorphisms and insertions/deletions. A new classification system was proposed according to the gene structure and phylogenetic analysis. In this new system, LMW-GS is classified into two major classes, LMW-M and LMW-I, with each including two subclasses. The former included LMW-m and LMW-s types while the latter contained LMW-l and LMW-i types. Analysis of their evolutionary origin showed that the LMW-l genes diverged from the group 2 of LMW-m type genes at about 12?C14?million years ago (MYA) while LMW-i type evolved from LMW-l type at approximately 8?C12 MYA. The LMW-s type was a variant form of group 1 of LMW-m type and their divergence occurred about 4?C6 MYA. In addition to homologous recombination, non-homologous illegitimate recombination could be an important molecular mechanism for the origin and evolution of LMW-GS gene family. The secondary structure prediction suggested that the novel LMW-l type subunits, such as AcLMW-L1 and AcLMW-L2, may have positive effects on dough properties.  相似文献   

6.
Wang S  Li X  Wang K  Wang X  Li S  Zhang Y  Guo G  Zeller FJ  Hsam SL  Yan Y 《Génome》2011,54(4):273-284
Phylogenetic relationships between the C, U, N, and M genomes of Aegilops species and the genomes of common wheat and other related species were investigated by using three types of low-molecular-weight glutenin subunit (LMW-GS) genes at Glu-3 loci. A total of 20 LMW-GS genes from Aegilops and Triticum species were isolated, including 11 LMW-m type and 9 LMW-i type genes. Particularly, four LMW-m type and three LMW-i type subunits encoded by the genes on the C, N, and U genomes possessed an extra cysteine residue at conserved positions, which could provide useful information for understanding phylogenetic relationships among Aegilops and Triticum genomes. Phylogenetic trees constructed by using either LMW-i or the combination of LMW-m and LMW-s, as well as analysis of all the three types of LMW-GS genes together, demonstrated that the C and U genomes were closely related to the A genome, whereas the N and M genomes were closely related to the D genome. Our results support previous findings that the A genome was derived from Triticum uratu, the B genome was from Aegilops speltoides, and the D genome was from Aegilops tauschii. In addition, phylogenetic relationships among different genomes analysed in this study support the concept that Aegilops is not monophyletic.  相似文献   

7.
Extensive genetic variations of low-molecular-weight glutenin subunits (LMW-GS) and their coding genes were found in the wild diploid A- and D-genome donors of common wheat. In this study, we reported the isolation and characterization of 8 novel LMW-GS genes fromAe.longissima Schweinf. & Muschl., a species of the sectionSitopsis of the genusAegilops, which is closely related to the B genome of common wheat. Based on the N-terminal domain sequences, the 8 genes were divided into 3 groups. A consensus alignment of the extremely conserved domains with known gene groups and the subsequent cluster analysis showed that 2 out of the 3 groups of LMW-GS genes were closely related to those from the B genome, and the remaining was related to those from A and D genomes of wheat andAe. tauschii. Using 3 sets of gene-group-specific primers, PCRs in diploid, tetraploid and hexaploid wheats andAe. tauschii failed to obtain the expected products, indicating that the 3 groups of LMW-GS genes obtained in this study were new members of LMW-GS multi-gene families. These results suggested that theSitopsis species of the genusAegilops with novel gene variations could be used as valuable gene resources of LMW-GS. The 3 sets of group-specific primers could be utilized as molecular markers to investigate the introgression of novel alien LMW-GS genes fromAe. longissima into wheat.  相似文献   

8.
Low-molecular-weight glutenin subunits (LMW-GSs) are encoded by a multi-gene family and are essential for determining the quality of wheat flour products, such as bread and noodles. However, the exact role or contribution of individual LMW-GS genes to wheat quality remains unclear. This is, at least in part, due to the difficulty in characterizing complete sequences of all LMW-GS gene family members in bread wheat. To identify full-length LMW-GS genes, a polymerase chain reaction (PCR)-based method was established, consisting of newly designed conserved primers and the previously developed LMW-GS gene molecular marker system. Using the PCR-based method, 17 LMW-GS genes were identified and characterized in Xiaoyan 54, of which 12 contained full-length sequences. Sequence alignments showed that 13 LMW-GS genes were identical to those found in Xiaoyan 54 using the genomic DNA library screening, and the other four full-length LMW-GS genes were first isolated from Xiaoyan 54. In Chinese Spring, 16 unique LMW-GS genes were isolated, and 13 of them contained full-length coding sequences. Additionally, 16 and 17 LMW-GS genes in Dongnong 101 and Lvhan 328 (chosen from the micro-core collections of Chinese germplasm), respectively, were also identified. Sequence alignments revealed that at least 15 LMW-GS genes were common in the four wheat varieties, and allelic variants of each gene shared high sequence identities (>95%) but exhibited length polymorphism in repetitive regions. This study provides a PCR-based method for efficiently identifying LMW-GS genes in bread wheat, which will improve the characterization of complex members of the LMW-GS gene family and facilitate the understanding of their contributions to wheat quality.  相似文献   

9.
Three low-molecular-weight (LMW) glutenin-like genes (designated as Ssy1, Ssy2, and Ssy3) from Secale sylvestre Host were isolated and characterized. The three genes consist of a predicted highly conservative signal peptide with 20 amino acids, a short N-terminal region with 13 amino acids, a highly variable repetitive domain and a less variable C-terminal domain. The deduced amino acid sequences of the three genes were the LMW-m type due to a methionine residue at the N-terminus. The phylogenetic analysis indicated that the prolamin genes could be perfectly clustered into five groups, including HMW-GS, LMW-GS, α/β-, γ-, and κ-prolamin. The LMW glutenin-like genes of S. sylvestre were more orthologous with the LMW-GS genes of wheat and B hordein genes of barley, which also had been confirmed by the homology analysis with the LMW-GS of wheat at Glu-A3, Glu-B3, and Glu-D3 loci. These results indicated that a chromosome locus (designated as Glu-R3) might be located on the R genome of S. sylvestre with the functions similar to the Glu-3 locus in wheat and its related species.  相似文献   

10.
To characterize the low-molecular-weight glutenin subunit (LMW-GS), we developed specific PCR primer sets to distinguish 12 groups of LMW-GS genes of Norin 61 and to decide their loci with nullisomic–tetrasomic lines of Chinese Spring. Three, two, and ten groups were assigned to Glu-A3, Glu-B3, and Glu-D3 loci, respectively. To identify the proteins containing the corresponding amino acid sequences, we determined the N-terminal amino acid sequence of 12 spots of LMW-GSs of Norin 61 separated by two-dimensional gel electrophoresis (2DE). The N-terminal sequences of the LMW-GS spots showed that 10 of 12 groups of LMW-GSs were expressed as protein products, which included LMW-i, LMW-m, and LMW-s types. Four spots were encoded by Glu-A3 (LMW-i). Three spots were encoded by Glu-B3 (LMW-m and LMW-s). Five spots were encoded by Glu-D3 (LMW-m and LMW-s). A minor spot of LMW-m seemed to be encoded by the same Glu-B3 gene as a major spot of LMW-s, but processed at a different site. Comparing among various cultivars, there were polymorphic and non-polymorphic LMW-GSs. Glu-A3 was highly polymorphic, i.e., the a, b, and c alleles showed one spot, the d allele showed four spots, and the e allele had no spot. Insignia used as one of the Glu-A3 null standard cultivars had a LMW-GS encoded by Glu-A3. We also found that Cheyenne had a new Glu-D3 allele. Classification of LMW-GS by a combination of PCR and 2DE will be useful to identify individual LMW-GSs and to study their contribution to flour quality.  相似文献   

11.
In this study, we report on the molecular characterization and genomic organization of the low molecular weight glutenin subunit (LMW-GS) gene family in hexaploid wheat (Triticum aestivum L.). Eighty-two positive BAC clones were identified to contain LMW-GS genes from the hexaploid wheat ‘Glenlea’ BAC library via filter hybridization and PCR validation. Twelve unique LMW glutenin genes and seven pseudogenes were isolated from these positive BAC clones by primer-template mismatch PCR and subsequent primer walking using hemi-nested touchdown PCR. These genes were sequenced and each consisted of a single-open reading frame (ORF) and untranslated 5′ and 3′ flanking regions. All 12 LMW glutenin subunits contained eight cysteine residues. The LMW-m-type subunits are the most abundant in hexaploid wheat. Of the 12 LMW-GS, 1, 2 and 9 are i-type, s-type and m-type, respectively. The phylogenetic analysis suggested that the LMW-i type gene showed greater differences to LMW-s and LMW-m-type genes, which, in turn, were more closely related to one another. On the basis of their N-terminal sequences, they were classified into nine groups. Fingerprinting of the 82 BAC clones indicated 30 BAC clones assembled into eight contigs, while the remaining clones were singletons. BAC end sequencing of the 82 clones revealed that long terminal repeat (LTR) retrotransposons were abundant in the Glu-3 regions. The average physical distance between two adjacent LMW-GS genes was estimated to be 81 kb. Most of LMW-GS genes are located in the d-genome, suggesting that the Glu-D3 locus is much larger than the Glu-B3 locus and Glu-A3 locus. Alignments of sequences indicated that the same type (starting with the same N-terminal sequence) LMW-GS genes were highly conserved in the homologous genomes between hexaploid wheat and its donors such as durum wheat and T. tauschii. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Both high- and low-molecular-weight glutenin subunits (LMW-GS) play the major role in determining the viscoelastic properties of wheat (Triticum aestivum L.) flour. To date there has been no clear correspondence between the amino acid sequences of LMW-GS derived from DNA sequencing and those of actual LMW-GS present in the endosperm. We have characterized a particular LMW-GS from hexaploid bread wheat, a major component of the glutenin polymer, which we call the 42K LMW-GS, and have isolated and sequenced the putative corresponding gene. Extensive amino acid sequences obtained directly for this 42K LMW-GS indicate correspondence between this protein and the putative corresponding gene. This subunit did not show a cysteine (Cys) at position 5, in contrast to what has frequently been reported for nucleotide-based sequences of LMW-GS. This Cys has been replaced by one occurring in the repeated-sequence domain, leaving the total number of Cys residues in the molecule the same as in various other LMW-GS. On the basis of the deduced amino acid sequence and literature-based assignment of disulfide linkages, a computer-generated molecular model of the 42K subunit was constructed.  相似文献   

13.
Three low-molecular-weight glutenin subunit (LMW-GS) genes, designated LMW-Td1, LMW-Td2 and LMW-Td3, were isolated from wild emmer wheat (Triticum dicoccoides), which is the tetraploid progenitor of common wheat (T. aestivum). The complete nucleotide sequence lengths of LMW-Td1, LMW-Td2 and LMW-Td3 are 858, 900 and 1062 bp, respectively. LMW-Td1 and LMW-Td3 can encode proteins with 284 and 352 amino acid residues, respectively, whereas LMW-Td2 is a putative pseudogene due to the presence of 3 inframe stop codons in its C-terminal domain. The deduced protein sequences of the 3 genes share the same typical polypeptide structures with known LMW-GS genes containing 8 cysteines in the mature protein domains. LMW-Td1 was clearly distinguished from all known LMW-GS genes, and considered as a novel LMW-GS gene. Two hydrophobic motifs (i.e. PIIIL and PVIIL) were observed in the repetitive domain of LMW-Td3. Sequence comparison indicates that sequences of the 3 LMW-GS genes from this study are strongly similar to known LMW-GS genes. Our phylogenetic analysis suggests that LMW-Td1 and LMW-Td2 are homologous with genes on chromosome 1A, and LMW-Td3 is closely related to genes on chromosome 1B.  相似文献   

14.
Three novel low-molecular-weight glutenin subunit (LMW-GS) genes (designated as Ht1, Ht2, and Ht3) were isolated from the genomic DNA of Hordeum brevisubulatum ssp. turkestanicum by PCR amplification (accession no. Y0695). The coding regions of Ht1, Ht2, and Ht3 were 924, 924, and 903 bp, respectively. The deduced amino acid sequences were 306, 306, and 299 amino acid residues each with a signal peptide, a central repetitive region rich in proline and glutamine, and N-and C-terminal non-repetitive domains. A comparison was carried out of these genes with other known B hordein genes from cultivated barley and LMW glutenin genes from wheat. The results indicated that Ht1, Ht2, and Ht3 had a more similar structure and a higher level of homology with the LMW-GS genes than the B hordein genes. In order to investigate the evolutionary relationship of the novel genes with the prolamin genes from barley and wheat, the phylogenetic tree was constructed and the subfamilies of these prolamin genes were identified. The results suggested that the three novel genes were glutenin-like proteins designated as LMW-m type genes. The text was submitted by the authors in English.  相似文献   

15.
Zhao H  Wang R  Guo A  Hu S  Sun G 《Hereditas》2004,141(3):193-198
Glutenins are multimeric aggregates of high molecular weight (HMW) and low molecular weight (LMW) subunits, which determine the quality in wheat. Development of locus-specific primers is an important step toward cloning specific LMW glutenin subunits (LMW-GS) by PCR method. Based on the publicly available, a pair of primer, namely primer 3 (5' TTGTAGAAACTGCCATCCTT 3') and primer 4 (5' GTCACCGCTGCAT CGACATA 3') was designed and verified to specific for LMW-GS genes located on chromosome 1D in this study. The LMW-GS gene located at the Glu-D3 locus in bread wheat cultivar Xiaoyan 6 was cloned using this pair of primer. The clone designated as XYGluD3-LMWGS1 (AY263369), contains the endosperm-specific-expression promoter and the entire coding region. Nucleotide sequence comparison of the XYGluD3-LMWGS1 with other reported LMW-GS genes located at different Glu-3 loci showed the degree of identity among them ranged from 59.57% to 99.78%. The LMW-GS genes at the same locus showed more similar to each other than to the gene at different locus. Comparison of the deduced amino acid sequence of the XYGluD3-LMWGS1 with the sequences of 12 group LMW-GSs of wheat cultivar Norin 61 showed that the deduced amino acid sequence was nearly the same to LMW-GS group 10 (identity 99.67%). The deduced LMW-GS contains nine cystine residues, which contained one more cystine residue in the C-terminal conserved domain than previous reported. This was the first LMW-GS gene encoding for a LMW-GS with 9 cystine residues that has been discovered so far.  相似文献   

16.
Characterization of two HMW glutenin subunit genes from Taenitherum Nevski   总被引:1,自引:0,他引:1  
Yan ZH  Wei YM  Wang JR  Liu DC  Dai SF  Zheng YL 《Genetica》2006,127(1-3):267-276
The compositions of high molecular weight (HMW) glutenin subunits from three species of Taenitherum Nevski (TaTa, 2n = 2x = 14), Ta. caput-medusae, Ta. crinitum and Ta. asperum, were investigated by SDS-PAGE analysis. The electrophoresis mobility of the x-type HMW glutenin subunits were slower or equal to that of wheat HMW glutenin subunit Dx2, and the electrophoresis mobility of the y-type subunits were faster than that of wheat HMW glutenin subunit Dy12. Two HMW glutenin genes, designated as Tax and Tay, were isolated from Ta. crinitum, and their complete nucleotide coding sequences were determined. Sequencing and multiple sequences alignment suggested that the HMW glutenin subunits derived from Ta. crinitum had the similar structures to the HMW glutenin subunits from wheat and related species with a signal peptide, and N- and C-conservative domains flanking by a repetitive domain consisted of the repeated short peptide motifs. However, the encoding sequences of Tax and Tay had some novel modification compared with the HMW glutenin genes reported so far: (1) A short peptide with the consensus sequences of KGGSFYP, which was observed in the N-terminal of all known HMW glutenin genes, was absent in Tax; (2) There is a specified short peptide tandem of tripeptide, hexapeptide and nonapeptide and three tandem of tripeptide in the repetitive domain of Tax; (3) The amino acid residues number is 105 (an extra Q presented) but not 104 in the N-terminal of Tay, which was similar to most of y-type HMW glutenin genes from Elytrigia elongata and Crithopsis delileana. Phylogenetic analysis indicated that Tax subunit was mostly related to Ax1, Cx, Ux and Dx5, and Tay was more related to Ay, Cy and Ry.  相似文献   

17.
Li X  Ma W  Gao L  Zhang Y  Wang A  Ji K  Wang K  Appels R  Yan Y 《Genetics》2008,180(1):93-101
Four LMW-m and one novel chimeric (between LMW-i and LMW-m types) low-molecular-weight glutenin subunit (LMW-GS) genes from Aegilops neglecta (UUMM), Ae. kotschyi (UUSS), and Ae. juvenalis (DDMMUU) were isolated and characterized. Sequence structures showed that the 4 LMW-m-type genes, assigned to the M genome of Ae. neglecta, displayed a high homology with those from hexaploid common wheat. The novel chimeric gene, designed as AjkLMW-i, was isolated from both Ae. kotschyi and Ae. juvenalis and shown to be located on the U genome. Phylogentic analysis demonstrated that it had higher identity to the LMW-m-type than the LMW-i-type genes. A total of 20 single nucleotide polymorphisms (SNPs) were detected among the 4 LMW-m genes, with 13 of these being nonsynonymous SNPs that resulted in amino acid substitutions in the deduced mature proteins. Phylogenetic analysis demonstrated that it had higher identity to the LMW-m-type than the LMW-i-type genes. The divergence time estimation showed that the M and D genomes were closely related and diverged at 5.42 million years ago (MYA) while the differentiation between the U and A genomes was 6.82 MYA. We propose that, in addition to homologous recombination, an illegitimate recombination event on the U genome may have occurred 6.38 MYA and resulted in the generation of the chimeric gene AjkLMW-i, which may be an important genetic mechanism for the origin and evolution of LMW-GS Glu-3 alleles as well as other prolamin genes.  相似文献   

18.
Identification of new low-molecular-weight glutenin subunit genes in wheat   总被引:22,自引:0,他引:22  
To clarify the composition of low-molecular-weight glutenin subunits (LMW-GSs) in a soft wheat cultivar, we cloned and characterized LMW-GS genes from a cDNA library and genomic DNA in Norin 61. Based on alignment of the conserved N- and C- terminal domains of the deduced amino-acid sequences, these genes are classified into 12 groups. One of these groups (group 5), the corresponding gene of which has not been reported previously, contains two additional hydrophobic amino-acid clusters interrupting the N-terminal repetitive domain. Other groups (groups 11 and 12), which were not identified in other cultivars as a protein product, showed all eight cysteines in the C-terminal conserved domain. With specific primer sets for these groups it was revealed that Glu-D3 and Glu-A3 encoded the former and the latter, respectively. Both groups of genes were expressed in immature seeds. The presence of these groups of LMW-GSs may affect the dough strength of soft wheat. Received: 26 March 2001 / Accepted: 16 July 2001  相似文献   

19.
Jiang C  Pei Y  Zhang Y  Li X  Yao D  Yan Y  Ma W  Hsam SL  Zeller FJ 《Hereditas》2008,145(2):92-98
This paper reports cloning and characterisation of four novel low-molecular-weight glutenin subunit (LMW-GS) genes (designated as TzLMW-m2, TzLMW-m1, TdLMW-m1 and AlLMW-m2) from the genomic DNA of Triticum dicoccoides, T. zhukovskyi and Aegilops longissima. The coding regions of TzLMW-m2, TzLMW-m1, TdLMW-m1 and AlLMW-m2 were 1056 bp, 903 bp, 1056 bp and 1050 bp in length, encoding 350, 300, 350 and 348 amino acid residues, respectively. The deduced amino acid sequences showed that the four novel genes were classified as LMW-m types and the comparison results indicated that the four genes had a more similar structure and a higher level of homology with the LMW-m genes than the LMW-s and -i types genes. However, the first cysteine residue's positions of TzLMW-m2, TdLMW-m1 and AlLMW-m2 were different from the others. Moreover, AlLMW-m2, TdLMW-m1 and TzLMW-m2 all possessed a longer repetitive domain, which was considered to be associated with good quality of wheat. The secondary structure prediction revealed that the content of beta-strand in AlLMW-m2 and TdLMW-m1 exceeded the positive control, suggesting that AlLMW-m2 and TdLMW-m1 should be considered as candidate genes that may have positive effect on dough quality. In order to investigate the evolutionary relationship of the novel genes with the other LMW-GSs, a phylogenetic tree was constructed. The results lead to a speculation that AlLMW-m2, TdLMW-m1 and TzLMW-m2 may be the middle types during the evolution of LMW-m and LMW-s.  相似文献   

20.
高冰草中一种新型高分子量麦谷蛋白亚基编码序列的研究   总被引:2,自引:1,他引:1  
高冰草(Agropyron elongatun)是普通小麦(Triticum aestivum)的近缘禾草,SDS-PAGE显示其所编码的麦谷蛋白亚基的类型较普通小麦更加丰富,是普通小麦品质改良的重要亲本之一。利用基因组PCR的方法从高冰草中克隆到一个新的高分子量麦谷蛋白亚基(HMW-GS)基因(AgeloG2)全编码序列,同源性分析表明:与普通小麦的1Dy12基因比较在少数位点发生了碱基替换和一处6碱基序列的缺失,同源性为99%;与普通小麦的1Dy10基因比较,该基因亦只有少数碱基的替换和两处18碱基序列的增加及一处6碱基序列的缺失,同源性为98%。从推导的编码序列分析,AgeloG2编码y型HMW—GS。综上分析,AgeloG2是一个新的高分子量麦谷蛋白y-型亚基基因。聚类分析结果显示,无论在基因序列还是推导的氨基酸序列上,小麦1Dy亚基与AgeloG2的同源性都高于与粗山羊来源的y型亚基的同源性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号