首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cyclooxygenase (COX) superfamily of prostaglandin synthase genes encode a constitutively expressed COX-1, an inducible, highly regulated COX-2, and a COX-3 isoform whose RNA is derived through the retention of a highly structured, G + C-rich intron 1 of the COX-1 gene. As generators of oxygen radicals, lipid mediators, and the pharmacological targets of nonsteroidal anti-inflammatory drugs (NSAIDs), COX enzymes potentiate inflammatory neuropathology in Alzheimer's disease (AD) brain. Because COX-2 is elevated in AD and COX-3 is enriched in the mammalian CNS, these studies were undertaken to examine the expression of COX-3 in AD and in [IL-1beta + Abeta42]-triggered human neural (HN) cells in primary culture. The results indicate that while COX-2 remains a major player in propagating inflammmation in AD and in stressed HN cells, COX-3 may play ancillary roles in membrane-based COX signaling or when basal levels of COX-1 or COX-2 expression persist.  相似文献   

2.
The main component of Alzheimer's disease (AD) senile plaques is amyloid-beta peptide (Abeta), a proteolytic fragment of the amyloid precursor protein (APP). Platelets contain both APP and Abeta and may contribute to the perivascular amyloid deposition seen in AD. However, no data are available concerning the biochemical mechanism(s) involved in their formation and release by these cells. We found that human platelets released APP and Abeta following activation with collagen or arachidonic acid. Inhibition of platelet cyclooxygenase (COX) reduced APP but not Abeta release following those stimuli. In contrast, activation of platelets by thrombin and calcium ionophore caused release of both APP and Abeta in a COX-independent fashion. Ex vivo studies showed that, despite suppression of COX activity, administration of aspirin did not modify Abeta or APP levels in serum or plasma, suggesting that this enzyme plays only a minor role in vivo. We examined the regulation of APP cleavage and release from activated platelets and found that cleavage requires protein kinase C (PKC) activity and is regulated by the intracellular second messengers phosphatidylinositol 2-phosphate and Ca(2+). Our data provide the first evidence that in human platelets COX is a minor component of APP secretion whereas PKC plays a major role in the secretory cleavage of APP. By contrast, Abeta release may represent secretion of preformed peptide and is totally independent of both COX and PKC activity.  相似文献   

3.
4.
Alzheimer disease (AD) is characterized by cerebral deposits of beta-amyloid (Abeta) peptides, which are surrounded by neuroinflammatory cells. Epidemiological studies have shown that prolonged use of non-steroidal anti-inflammatory drugs (NSAIDs) reduces the risk of developing AD. In addition, biological data indicate that certain NSAIDs specifically lower Abeta42 levels in cultures of peripheral cells independently of cyclooxygenase (COX) activity and reduce cerebral Abeta levels in AD transgenic mice. Whether other NSAIDs, including COX-selective compounds, modulate Abeta levels in neuronal cells remains unexploited. Here, we investigated the effects of compounds from every chemical class of NSAIDs on Abeta40 and Abeta42 secretion using both Neuro-2a cells and rat primary cortical neurons. Among non-selective NSAIDs, flurbiprofen and sulindac sulfide concentration-dependently reduced the secretion not only of Abeta42 but also of Abeta40. Surprisingly, both COX-2 (celecoxib; sc-125) or COX-1 (sc-560) selective compounds significantly increased Abeta42 secretion, and either did not alter (sc-560; sc-125) or reduced (celecoxib) Abeta40 levels. The levels of betaAPP C-terminal fragments and Notch cleavage were not altered by any of the NSAIDs, indicating that gamma-secretase activity was not overall changed by these drugs. The present findings show that only a few non-selective NSAIDs possess Abeta-lowering properties and therefore have a profile potentially relevant to their clinical use in AD.  相似文献   

5.
Prostaglandin H Synthase (PGHS) is a bi-functional enzyme with a cyclooxygenase (COX) activity and a functionally linked peroxidase (POX) activity that exists in two isoforms (COX-1, COX-2). Non-steroidal anti-inflammatory drugs (NSAIDs), including the selective COX-2 inhibitors, block COX activity while leaving POX activity unscathed. Recently, some selective COX-2 inhibitors were withdrawn from the market due to elevated cardiovascular risk in placebo-controlled trials. Mice deficient for PGHS2 were developed in 1995 and through numerous subsequent studies have revealed significant roles in renal development, ductus arteriosus patency/closure, skin carcinogenesis and cardiovascular function. In this short review, we compare a novel genetic COX-2 selective inhibition mouse model with the originally described COX-2 null mice in these different physiological functions.  相似文献   

6.
Senile plaques are neuropathological manifestations in Alzheimer's disease (AD) and are composed mainly of extracellular deposits of amyloid beta-peptide (Abeta). Various data suggest that the accumulation of Abeta may contribute to neuronal degeneration and that Abeta neurotoxicity could be mediated by oxygen free radicals. Removal of free radicals by antioxidant scavengers or enzymes was found to protect neuronal cells in culture from Abeta toxicity. However, the nature of the free radicals involved is still unclear. In this study, we investigated whether the neuronal overexpression of glutathione peroxidase (GPx), the major hydrogen peroxide (H2O2)-de-grading enzyme in neurons, could increase their survival in a cellular model of Abeta-induced neurotoxicity. We infected pheochromocytoma (PC12) cells and rat embryonic cultured cortical neurons with an adenoviral vector encoding GPx (Ad-GPx) prior to exposure to toxic concentrations of Abeta(25-35) or (1-40). Both PC12 and cortical Ad-GPx-infected cells were significantly more resistant to Abeta-induced injury. These data strengthen the hypothesis of a role of H2O2 in the mechanism of Abeta toxicity and highlight the potential of Ad-GPx to reduce Abeta-induced damage to neurons. These findings may have applications in gene therapy for AD.  相似文献   

7.
Resveratrol (3,4',5-trihydroxy-trans-stilbene) is a phytoalexin found in grapes that has anti-inflammatory, cardiovascular protective, and cancer chemopreventive properties. It has been shown to target prostaglandin H(2) synthase (COX)-1 and COX-2, which catalyze the first committed step in the synthesis of prostaglandins via sequential cyclooxygenase and peroxidase reactions. Resveratrol discriminates between both COX isoforms. It is a potent inhibitor of both catalytic activities of COX-1, the desired drug target for the prevention of cardiovascular disease, but only a weak inhibitor of the peroxidase activity of COX-2, the isoform target for nonsteroidal anti-inflammatory drugs. We have investigated the unique inhibitory properties of resveratrol. We find that it is a potent peroxidase-mediated mechanism-based inactivator of COX-1 only (k(inact) = 0.069 +/- 0.004 s(-1), K(i(inact)) = 1.52 +/- 0.15 microm), with a calculated partition ratio of 22. Inactivation of COX-1 was time- and concentration-dependent, it had an absolute requirement for a peroxide substrate, and it was accompanied by a concomitant oxidation of resveratrol. Resveratrol-inactivated COX-1 was devoid of both the cyclooxygenase and peroxidase activities, neither of which could be restored upon gel-filtration chromatography. Inactivation of COX-1 by [(3)H]resveratrol was not accompanied by stable covalent modification as evident by both SDS-PAGE and reverse phase-high performance liquid chromatography analysis. Structure activity relationships on methoxy-resveratrol analogs showed that the m-hydroquinone moiety was essential for irreversible inactivation of COX-1. We propose that resveratrol inactivates COX-1 by a "hit-and-run" mechanism, and offers a basis for the design of selective COX-1 inactivators that work through a mechanism-based event at the peroxidase active site.  相似文献   

8.
In some cancers cyclooxygenase (COX) inhibition appears to be anti-mitogenic and anti-angiogenic, but the actions of COX-derived prostaglandins in pancreatic cancer (PaCa) are unknown. In this study COX-2 was detected in three of six PaCa cell lines while COX-1 was identified in all cell lines. COX-2 expression correlated with basal and arachidonic acid (AA) stimulated PGE(2) production. PGE(2) production was inhibited by the COX-2 inhibitor nimesulide. In COX-2 expressing cells, exogenous AA and PGE(2) increased VEGF synthesis via the EP(2) receptor. Whereas PGE(2) stimulated intracellular cAMP formation in COX-2 positive and negative cells, 8-bromo cAMP stimulated VEGF production only in COX-2 expressing cells. Stimulating COX-2 expressing PaCa cell lines with AA enhanced migration of endothelial cells, an effect which was inhibited by a COX-2 inhibitor and EP(2) receptor antagonist. These data identify a subset of human PaCa cell lines that express functional COX-2 enzyme. PGE(2) generated by specific COX-2 activity increases VEGF secretion in human PaCa cells through an autocrine mechanism.  相似文献   

9.
The chemical mandates for arachidonic acid conversion to prostaglandin G(2) within the cyclooxygenase (COX) active site predict that the substrate will orient in a kinked or L-shaped conformation. Molecular modeling of arachidonic acid in sheep COX-1 confirms that this L-shaped conformation is possible, with the carboxylate moiety binding to Arg-120 and the omega-end positioned above Ser-530 in a region termed the top channel. Mutations of Gly-533 to valine or leucine in the top channel of mCOX-2 abolished the conversion of arachidonic acid to prostaglandin G(2), presumably because of a steric clash between the omega-end of the substrate and the introduced side chains. A smaller G533A mutant retained partial COX activity. The loss of COX activity with these mutants was not the result of reduced peroxidase activity, because the activity of all mutants was equivalent to the wild-type enzyme and the addition of exogenous peroxide did not restore full COX activity to any of the mutants. However, the Gly-533 mutants were able to oxidize the carbon 18 fatty acid substrates linolenic acid and stearidonic acid, which contain an allylic carbon at the omega-5 position. In contrast, linoleic acid, which is like arachidonic acid in that its most omega-proximal allylic carbon is at the omega-8 position, was not oxidized by the Gly-533 mutants. Finally, the ability of Gly-533 mutants to efficiently process omega-5 allylic substrates suggests that the top channel does not serve as a product exit route indicating that oxygenated substrate diffuses from the cyclooxygenase active site in a membrane proximal direction.  相似文献   

10.
Prostaglandins (PGs) have numerous cardiovascular and inflammatory effects. Cyclooxygenase (COX), which exists as COX-1 and COX-2 isoforms, is the first enzyme in the pathway in which arachidonic acid is converted to PGs. Prostaglandin E2 (PGE2) exerts a variety of biological activities for the maintenance of local homeostasis in the body. Elucidation of PGE2 involvement in the signalling molecules such as COX could lead to potential therapeutic interventions. Here, we have investigated the effects of PGE2 on the induction of COX-2 in human umbilical vein endothelial cells (HUVEC) treated with interleukin-1beta (IL-1beta 1 ng/ml). COX activity was measured by the production of 6-keto-PGF1alpha, PGE2, PGF2alpha and thromboxane B2 (TXB2) in the presence of exogenous arachidonic acids (10 microM for 10 min) using enzyme immunoassay (EIA). COX-1 and COX-2 protein was measured by immunoblotting using specific antibody. Untreated HUVEC contained only COX-1 protein while IL-1beta treated HUVEC contained COX-1 and COX-2 protein. PGE2 (3 microM for 24h) did not affect on COX activity and protein in untreated HUVEC. Interestingly, PGE2 (3 microM for 24h) can inhibit COX-2 protein, but not COX-1 protein, expressed in HUVEC treated with IL-1beta. This inhibition was reversed by coincubation with forskolin (100 microM). The increased COX activity in HUVEC treated with IL-1beta was also inhibited by PGE2 (0.03, 0.3 and 3 microM for 24h) in a dose-dependent manner. Similarly, forskolin (10, 50 or 100 microM) can also reverse the inhibition of PGE2 on increased COX activity in IL-1beta treated HUVEC. The results suggested that (i) PGE2 can initiate negative feedback regulation in the induction of COX-2 elicited by IL-1beta in endothelial cells, (ii) the inhibition of PGE2 on COX-2 protein and activity in IL-1beta treated HUVEC is mediated by cAMP and (iii) the therapeutic use of PGE2 in the condition which COX-2 has been involved may have different roles.  相似文献   

11.
Distinct functional coupling between cyclooxygenases (COXs) and specific terminal prostanoid synthases leads to phase-specific production of particular prostaglandins (PGs). In this study, we examined the coupling between COX isozymes and PGF synthase (PGFS). Co-transfection of COXs with PGFS-I belonging to the aldo-keto reductase family into HEK293 cells resulted in increased production of PGF(2alpha) only when a high concentration of exogenous arachidonic acid (AA) was supplied. However, this enzyme failed to produce PGF(2alpha) from endogenous AA, even though significant increase in PGF(2alpha) production occurred in cells transfected with COX-2 alone. This poor COX/PGFS-I coupling was likely to arise from their distinct subcellular localization. Measurement of PGF(2alpha)-synthetic enzyme activity in homogenates of several cells revealed another type of PGFS activity that was membrane-bound, glutathione (GSH)-activated, and stimulus-inducible. In vivo, membrane-bound PGFS activity was elevated in the lung of lipopolysaccharide-treated mice. Taken together, our results suggest the presence of a novel, membrane-associated form of PGFS that is stimulus-inducible and is likely to be preferentially coupled with COX-2.  相似文献   

12.
In vitro evaluations of the selectivity of COX inhibitors are based on a great variety of experimental protocols. As a result, data available on cyclooxygenase (COX)-1/COX-2/5- lipoxygenase (LOX) selectivity of COX inhibitors lack consistency. We, therefore, performed a systematic analysis of the COX-1/COX-2/5-LOX selectivity of 14 compounds with selective COX inhibitory activity (Coxibs). The compounds belonged to different structural classes and were analyzed employing the well-recognized whole-blood assay. 5-LOX activity was also tested on isolated human polymorphonuclear leukocytes. Among COX inhibitors, celecoxib and ML-3000 (licofelone) inhibited 5-LOX in human neutrophils at micromolar ranges. Surprisingly, ML-3000 had no effect on 5-LOX product synthesis in whole-blood assay. In addition, we could show that inhibition of COX pathways did not increase the transformation of arachidonic acid by the 5-LOX pathway.  相似文献   

13.
14.
Vitreoscilla is a gram-negative bacterium that contains a unique bacterial hemoglobin that is relatively autoxidizable. It also contains a catalase whose primary function may be to remove hydrogen peroxide produced by this autoxidation. This enzyme was purified and partially characterized. It is a protein of 272,000 Da with a probable A2B2 subunit structure, in which the estimated molecular size of A is 68,000 Da and that of B, 64,000 Da, and an average of 1.6 molecules of protoheme IX per tetramer. The turnover number for its catalase activity was 27,000 s-1 and the Km for hydrogen peroxide was 16 mM. The peroxidase activity measured using o-dianisidine was 0.6% that of the catalase activity. Cyanide, which inhibited both catalase and peroxidase activities, bound the heme in a noncooperative manner. Azide inhibited the catalase activity but stimulated the peroxidase activity. An apparent compound II was formed by the reaction of the enzyme with ethyl hydrogen peroxide. The enzyme was reducible by dithionite, and the ferrous enzyme reacted with CO. The cellular content of Vitreoscilla hemoglobin varies during the growth cycle and in cells grown under different conditions, but the ratio of hemoglobin to catalase activity remained relatively constant, indicating possible coordinated biosynthesis and supporting the putative role of Vitreoscilla catalase as a scavenger of peroxide generated by Vitreoscilla hemoglobin.  相似文献   

15.
Cyclooxygenase (COX), existing as the COX-1 and COX-2 isoforms, converts arachidonic acid to prostaglandin H2, which is then further metabolized to various prostaglandins. Vascular endothelial growth factor (VEGF) has been shown to play important roles in inflammation and is upregulated by the prostaglandin E series through COX-2 in several cell types. Here, we have investigated the effects of VEGF on the COX isoform expressed in human umbilical vein endothelial cells (HUVEC). The signalling mechanism of the COX isoform expressed in endothelial cells activated with VEGF will be also investigated using the tyrosine kinase inhibitor, genistein, and protein kinase C inhibitor, staurosporine. The activity of COX-2 was assessed by measuring the production of 6-keto-prostaglandin F1alpha in the presence of exogenous arachidonic acids (10 microM, 10 min) by enzyme immunoassay. The expression of COX isoform protein was detected by immunoblot using specific antibodies. Untreated HUVEC contained no COX-2 protein. In HUVEC treated with VEGF (0.01-50 ng/ml), COX-2 protein, but not COX-1, and COX activity were increased in a dose-dependent manner. Interestingly, the increased COX-2 protein and activity in response to VEGF (10 ng/ml) was inhibited by the tyrosine kinase inhibitor, genistein (0.05-5 microg/ml), but not by the protein kinase C inhibitor, staurosporine (0.1-10 ng/ml). Thus, the induction of COX-2 by VEGF in endothelial cells was mediated through protein tyrosine kinase, and the uses of specific COX-2 inhibitors in these conditions, in which VEGF was involved, might have a role.  相似文献   

16.
17.
A glutathione peroxidase (GPX) protein was purified approximately 1000-fold from Southern bluefin tuna (Thunnus maccoyii) liver to a final specific activity of 256 micromol NADPH oxidised min(-1) mg(-1) protein. Gel filtration chromatography and denaturing protein gel electrophoresis of the purified preparation indicated that the protein has a native molecular mass of 85 kDa and is most likely a homotetramer with subunits of approximately 24 kDa. The Km values of the purified enzyme for hydrogen peroxide, cumene hydroperoxide, t-butyl hydroperoxide and glutathione were 12, 90, 90 and 5900 microM, respectively. The Km values for cumene hydroperoxide and t-butyl hydroperoxide were approximately 8-fold greater than the Km value for hydrogen peroxide. Thus, the SBT liver GPX has a considerably greater affinity for hydrogen peroxide than for the other two substrates. The pH optimum of the purified enzyme was pH 8.0. Immunoblotting experiments with polyclonal antibodies, raised against a recombinant human GPX, provided further evidence that the purified SBT enzyme is a genuine GPX.  相似文献   

18.
Protein gels formed by crosslinking bovine serum albumin and horseradish peroxidase with glutaraldehyde were used to measure effects on peroxidase activity of 400-MHz (CW) radiofrequency radiation (RFR) at an average specific absorption rate (SAR) of 1.45 W/kg. The enzyme activity was measured by luminol chemiluminescence recorded on photographic film after hydrogen peroxide activation. Activity was measured during RFR exposure of gels or after exposure of gels polymerized in the RFR field. During exposure, a significant (P less than .05) reversible increase occurred in overall mean peroxidase activity of gels activated with 0.88 M H2O2 but not in those activated with 8.8 M H2O2. Gels containing solubilized luminol and formed in the field showed no overall mean increase in peroxidase activity, but did display a highly significant (P less than .001) alteration in the distribution of local activities when compared to unexposed gels. These results are apparently due to changes in the rate of diffusion (concentration equilibration) of hydrogen peroxide in the gel.  相似文献   

19.
Mounting evidence has shown that dyshomeostasis of the redox-active biometals such as Cuand Fe can lead to oxidative stress,which plays a key role in the neuropathology of Alzheimer's disease(AD).Here we demonstrate that with the formation of Cu(Ⅱ)·Aβ1-40 complexes,copper markedly potentiatesthe neurotoxicity exhibited by β-amyloid peptide (Aβ).A greater amount of hydrogen peroxide was releasedwhen Cu(Ⅱ)·Aβ1-40 complexes was added to the xanthine oxidase/xanthine system detected by potassiumiodide spectrophotometry.Copper bound to Aβ1-40 was observed by electron paramagnetic resonance(EPR) spectroscopy.Circular dichroism (CD) studies indicated that copper chelation could cause a structuraltransition of Aβ.The addition of copper to Aβ introduced an increase on β-sheet as well as α-helix,whichmay be responsible for the aggregation of Aβ.We hypothesized that Aβ aggregation induced by copper maybe responsible for local injury in AD.The interaction between Cu~(2 ) and Aβ also provides a possible mechanismfor the enrichment of metal ions in amyloid plaques in the AD brain.  相似文献   

20.
Alzheimer's disease (AD) is characterised by the formation of amyloid deposits composed primarily of the amyloid beta-peptide (Abeta). This peptide has been shown to bind redox active metals ions such as copper and iron, leading to the production of reactive oxygen species (ROS) and formation of hydrogen peroxide (H(2)O(2)). The generation of H(2)O(2) has been linked with Abeta neurotoxicity and neurodegeneration in AD. Because of the relative stability of a tyrosyl radical, the tyrosine residue (Tyr-10) is believed to be critical to the neurotoxicity of Abeta. This residue has also been shown to be important to Abeta aggregation and amyloid formation. It is possible that the formation of an Abeta tyrosyl radical leads to increased aggregation via the formation of dityrosine as an early aggregation step, which is supported by the identification of dityrosine in amyloid plaque. The role of dityrosine formation in Abeta aggregation and neurotoxicity is as yet undetermined, partly because there are no facile methods for the synthesis of Abeta dimers containing dityrosine. Here we report the use of horseradish peroxidase and H(2)O(2) to dimerise N-acetyl-L-tyrosine ethyl ester and apply the optimised conditions for dityrosine formation to fully unprotected Abeta peptides. We also report a simple fluorescent plate reader method for monitoring Abeta dimerisation via dityrosine formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号