首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Localization of the polymorphic human calcitonin gene on chromosome 11   总被引:7,自引:0,他引:7  
Summary A molecular probe containing a 584 base pairs sequence corresponding to part of the human calcitonin mRNA was used for the chromosomal assignment of the calcitonin gene. Restriction endonuclease analysis of DNA from human-Chinese hamster and human-mouse somatic cell hybrids, including some containing a translocation of human chromosomes, placed the calcitonin gene in the p14qter region of chromosome 11.Analysis of human DNA showed that the calcitonin gene has a polymorphic site for restriction endonuclease TaqI.  相似文献   

3.
Using a series of human-hamster hybrid cell lines, a gene coding for glycinamide ribonucleotide transformylase was mapped to human chromosome 21. The availability of hybrids containing only portions of chromosome 21 allowed the gene to be assigned to the region between the q11.2 and the q22.2 bands, inclusive. Differentiation of human and hamster glycinamide ribonucleotide transformylase was accomplished via an immunoprecipitation assay that employed a polyclonal antibody raised against the human enzyme.  相似文献   

4.
5.
A human serum amyloid A (SAA) cDNA was used as a probe in chromosome mapping studies to detect human SAA gene sequences in DNA isolated from human/mouse somatic cell hybrids. Southern analysis of DNA from 20 hybrid cell lines, including some with translocations of human chromosomes, placed the SAA gene(s) in the p11----pter region of chromosome 11. Screening of human DNA from unrelated individuals by Southern analysis using the SAA cDNA probe revealed restriction fragment polymorphisms for HindIII and PstI. An analysis of the segregation of these polymorphisms with other markers on the short arm of chromosome 11 should more precisely map the SAA gene(s).  相似文献   

6.
Olivier M  Wang X  Cole R  Gau B  Kim J  Rubin EM  Pennacchio LA 《Genomics》2004,83(5):912-923
Members of the apolipoprotein gene cluster (APOA1/C3/A4/A5) on human chromosome 11q23 play an important role in lipid metabolism. Polymorphisms in both APOA5 and APOC3 are strongly associated with plasma triglyceride concentrations. The close genomic locations of these two genes as well as their functional similarity have hindered efforts to define whether each gene independently influences human triglyceride concentrations. In this study, we examined the linkage disequilibrium and haplotype structure of 49 SNPs in a 150-kb region spanning the gene cluster. We identified a total of five common APOA5 haplotypes with a frequency of greater than 8% in samples of northern European origin. The APOA5 haplotype block did not extend past the 7 SNPs in the gene and was separated from the other apolipoprotein gene in the cluster by a region of significantly increased recombination. Furthermore, one previously identified triglyceride risk haplotype of APOA5 (APOA5*3) showed no association with three APOC3 SNPs previously associated with triglyceride concentrations, in contrast to the other risk haplotype (APOA5*2), which was associated with all three minor APOC3 SNP alleles. These results highlight the complex genetic relationship between APOA5 and APOC3 and support the notion that APOA5 represents an independent risk gene affecting plasma triglyceride concentrations in humans.  相似文献   

7.
Summary Mapping of human aldolase A (ALDOA) gene was performed by molecular hybridization techniques using a panel of human-mouse cell hybrids and sorted fractions of human metaphase chromosomes besides in situ hybridization. For the purpose, three kinds of DNA probes derived from the coding region (probe-1), the 3 noncoding region (probe-2), and the coding and 3 noncoding regions (probe-3) of human aldolase A cDNA clone, pHAAL116-3, were selectively employed. The results of RNA and DNA blot analyses indicated that the human ALDOA gene is located on chromosome 16. The in situ hybridization experiment also indicated that the ALDOA gene was localized to 16q22–q24.  相似文献   

8.
The gene for human chromogranin A (CgA) is located on chromosome 14   总被引:7,自引:0,他引:7  
Chromogranin A (CgA) is a protein that is present in most neuroendocrine tissues and is co-secreted with their resident hormones. We have assigned the CgA gene to human chromosome 14 by hybridization of a CgA cDNA probe cloned from a cDNA library of human medullary thyroid carcinoma cells to spots of individual human chromosomes flow-sorted onto nitrocellulose filters. Southern analysis of human genomic DNA with the same probe revealed only 1-3 restriction bands. These studies indicate that the CgA gene is probably single copy and not a member of a dispersed, multigene family. The CgA gene is not co-localized with the genes of any of the CgA-associated hormones.  相似文献   

9.
The HED (hidrotic ectodermal dysplasia) or Clouston syndrome gene (named ED2) has been mapped to the pericentromeric region of chromosome 13 (13q11) to a 2.4-cM interval flanked by markers D13S1828 and D13S1830. We have developed a BAC/PAC-based contig map of this region. This contig, comprising 23 clones and spanning 1.5 Mb, was established by mapping of 27 BAC/PAC end-derived STSs, 11 known polymorphic markers, 2 previously mapped genes, and 14 ESTs. The genomic clone overlaps were confirmed by restriction fragment fingerprint analysis. This contig provides the basis for genomic sequencing and gene identification in the ED2 critical region. Of the 14 ESTs mapped to the contig, 6 show homology to human genes and 8 appear to be novel. Expression patterns of the genes/ESTs were tested by Northern blot and RT-PCR. Full characterization of some of these genes, as well as the novel ESTs, will be useful in assessing their involvement in the HED/Clouston syndrome.  相似文献   

10.
A human DNA repair gene, ERCC2 (Excision Repair Cross Complementing 2), was assigned to human chromosome 19 using hybrid clone panels in two different procedures. One set of cell hybrids was constructed by selecting for functional complementation of the DNA repair defect in mutant CHO UV5 after fusion with human lymphocytes. In the second analysis, DNAs from an independent hybrid panel were digested with restriction enzymes and analyzed by Southern blot hybridization using DNA probes for the three DNA repair genes that are located on human chromosome 19: ERCC1, ERCC2, and X-Ray Repair Cross Complementing 1 (XRCC1). The results from hybrids retaining different portions of this chromosome showed that ERCC2 is distal to XRCC1 and in the same region of the chromosome 19 long arm (q13.2-q13.3) as ERCC1, but on different MluI macrorestriction fragments. Similar experiments using a hybrid clone panel containing segregating Chinese hamster chromosomes revealed the hamster homologs of the three repair genes to be part of a highly conserved linkage group on Chinese hamster chromosome number 9. The known hemizygosity of hamster chromosome 9 in CHO cells can account for the high frequency at which genetically recessive mutations are recovered in these three genes in CHO cells. Thus, the conservation of linkage of the repair genes explains the seemingly disproportionate number of repair genes identified on human chromosome 19.  相似文献   

11.
12.
Human parathyroid hormone gene (PTH) is on short arm of chromosome 11   总被引:2,自引:0,他引:2  
The human gene for parathyroid hormone (PTH) was chromosomally mapped using human-rodent hybrids and Southern filter hybridization of cell hybrid DNA. A recombinant DNA probe containing human PTH cDNA insert (pPTHm122) hybridized to a 3.7-kb fragment in human DNA cleaved with the restriction enzyme EcoRI. By correlating the presence of this fragment in somatic cell hybrid DNA with the human chromosomal content of the hybrid cells, the PTH gene was mapped to the short arm of the chromosome 11.  相似文献   

13.
Assignment of the alpha B-crystallin gene to human chromosome 11   总被引:2,自引:0,他引:2  
Using a human alpha B-crystallin genomic probe and human-mouse somatic cell hybrids, the human alpha B-gene was assigned to chromosome 11 and further corroborated by in situ hybridization to normal metaphase chromosomes. This assignment confirmed and regionally mapped the locus to q22.3-23.1.  相似文献   

14.
Summary A panel of human-mouse and human-Chinese hamster cell hybrid DNA's was screened for hybridisation with a fragment of the human parathyroid hormone chromosomal gene. A 7-kilobasepair Msp I restriction fragment homologous to this probe was found to segregate with the human chromosome 11.  相似文献   

15.
The second human calcitonin/CGRP gene is located on chromosome 11   总被引:6,自引:0,他引:6  
Summary A second human calcitonin/calcitonin gene related peptide (hCT/CGRP) gene has been identified. This second hCT/CGRP gene has been shown to contain sequences highly homologous to exons 3, 5 (CGRP-encoding), and 6 of the first hCT/CGRP gene, but sequences closely related to exon 4 (CT-encoding) could not be demonstrated. Southern blot hybridization analysis of DNA from human-rodent somatic cell hybrids showed that the second hCT/CGRP gene is located in the q12-pter region of chromosome 11. The first hCT/CGRP gene has previously been assigned to the p13–p15 region of chromosome 11.  相似文献   

16.
17.
18.
A rat cDNA clone encoding a portion of phosphate-activated glutaminase was used to identify DNA restriction fragment length polymorphisms (RFLPs) in sets of somatic cell hybrids and between wild-derived and inbred strains of mice. Segregation of rat and mouse chromosomes among somatic cell hybrids indicated assignment to rat chromosome 9 and mouse chromosome 1. Analysis of chromosome 1 alleles for several genes in an interspecific cross between Mus spretus and C3H/HeJ-gld/gld mice indicates that glutaminase can be positioned within 5.5 +/- 2.0 cM proximal to Ctla-4. Similarly, human-hamster somatic cell hybrids were examined for RFLPs, and four human EcoRI restriction fragments were found to hybridize with the rat glutaminase probe. Two of these restriction fragments cosegregated and mapped to human chromosome 2 in a region that is syntenic with mouse chromosome 1 and rat chromosome 9.  相似文献   

19.
To improve the physical and comparative map of chicken chromosome 24 (GGA24; former linkage group E49C20W21) bacterial artificial chromosome (BAC) contigs were constructed around loci previously mapped on this chromosome by linkage analysis. The BAC clones were used for both sample sequencing and BAC end sequencing. Sequence tagged site (STS) markers derived from the BAC end sequences were used for chromosome walking. In total 191 BAC clones were isolated, covering almost 30% of GGA24, and 76 STS were developed (65 STS derived from BAC end sequences and 11 STS derived within genes). The partial sequences of the chicken BAC clones were compared with sequences present in the EMBL/GenBank databases, and revealed matches to 19 genes, expressed sequence tags (ESTs) and genomic clones located on human chromosome 11q22-q24 and mouse chromosome 9. Furthermore, 11 chicken orthologues of human genes located on HSA11q22-q24 were directly mapped within BAC contigs of GGA24. These results provide a better alignment of GGA24 with the corresponding regions in human and mouse and identify several intrachromosomal rearrangements between chicken and mammals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号