首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A new fluorescent intracellular pH indicator is described ("quene 1") which is related to the tetracarboxylate Ca2+ indicator based on the quinoline fluorophor ("quin 2"). Quene 1 has excitation and emission maxima at 390 and 530 nm, respectively, and shows a 30-fold increase in fluorescence between pH 5 and 9 with a pK alpha of 7.3. The fluorescence is insensitive to Ca2+ and Mg2+ at free concentrations up to 10(-4) M and to the proportions of Na+ and K+ at total concentrations of Na+ and K+ from 100 to 200 mM. The indicator is loaded into thymocytes using the tetraacetoxymethyl ester derivative which is hydrolyzed in the cells to give the tetracarboxylate anion. Intracellular pH can be measured at intracellular quene 1 concentrations of approximately 0.1 mM and quene 1 does not perturb glycolysis or the ATP level in resting cells at concentrations up to 0.8 mM. The intracellular pH of mouse thymocytes indicated by quene 1 is 7.15 +/- 0.04 and it is insensitive to the concentration of Ca2+ or Mg2+ in the extracellular medium. The intracellular pH decreased when the pH of the medium was lowered by addition of HCl, but was insensitive to NaOH at extracellular pH values up to 8.0. Rapid transient changes in intracellular pH are induced by NH4Cl, NaCO2CH3, or HCO3-/CO2. The thymocytes showed no early changes (within 30 min) in intracellular pH in response to mitogenic concentrations of lectins or 4 beta-phorbol-12-myristate-13-acetate.  相似文献   

3.
The cytoplasmic pH of Lactococcus lactis was studied with the fluorescent pH indicator 2',7'-bis-(2-carboxyethyl)-5 (and-6)-carboxyfluorescein (BCECF). A novel method was applied for loading bacterial cells with BCECF, which consists of briefly treating a dense cell suspension with acid in the presence of the probe. This results in a pH gradient, which drives accumulation of the probe in the cytoplasm. After neutralization the probe was well retained in cells stored on ice. BCECF-loaded cells were metabolically active, and were able to generate a pH gradient upon energization. The probe leaks out slowly at elevated temperatures. Efflux is stimulated upon energization of the cells, and is most likely catalyzed by an active transport system. It is a first-order process, and the rate constant could be deduced from the decrease of the fluorescence signal in periods of constant intracellular pH. This allowed a correction of the fluorescence signal for efflux of the probe. After calibration the cytoplasmic pH could be calculated from efflux-corrected fluorescence traces.  相似文献   

4.
Intracellular pH in single motile cells   总被引:14,自引:11,他引:3  
Cytoplasmic pH in single living specimens of Chaos carolinensis is determined microfluorometrically by measuring the ratio of fluorescence intensity of microinjected fluorescein-thiocarbamyl (FTC)-ovalbumin at two different excitation wavelengths. The probe is evenly distributed throughout, and confined to, the cytoplasm, and the fluorescence intensity ratio depends only upon pH. It is independent of pathlength, concentration of probe, divalent cations, and ionic strength. Ratios are calibrated with a standard curve generated in situ by adjusting internal pH of FTC-ovalbumin-containing amebae with weak acid and weak base or by injection of strong buffers. With this technique, the average cytoplasmic pH of freely moving ameba is found to be 6.75 (SD +/- 0.3). The pH of a given spot relative to the morphology of a moving ameba remains fairly constant (+/- 0.05 U), whereas the pH of two different spots in the same cell may differ by as much as 0.4 U, and average pH in different amebae ranges from 6.3 to 7.4, with a suggestion of clustering about pH 6.5 and 6.8. During wound healing, there is a local, transient drop in pH (as great as 0.35 U) at the wound site upon puncture, proportional in extent to the degree of damage. Comparison of tails and advancing pseudopod tips reveals no significant difference in cytoplasmic pH at this level of spatial (50 microns diameter spot) and temporal (1.3 s) resolution. Fluctuations in intracellular pH and/or intracellular free Ca++ may be involved in regulation of cytoplasmic structure and contractility.  相似文献   

5.
Cell polarization along the axis of movement is required for migration. The localization of proteins and regulators of the migratory machinery to either the cell front or its rear results in a spatial asymmetry enabling cells to simultaneously coordinate cell protrusion and retraction. Protons might function as such unevenly distributed regulators as they modulate the interaction of focal adhesion proteins and components of the cytoskeleton in vitro. However, an intracellular pH (pH(i)) gradient reflecting a spatial asymmetry of protons has not been shown so far. One major regulator of pH(i), the Na(+)/H(+) exchanger NHE1, is essential for cell migration and accumulates at the cell front. Here, we test the hypothesis that the uneven distribution of NHE1 activity creates a pH(i) gradient in migrating cells. Using the pH-sensitive fluorescent dye BCECF, pH(i) was measured in five cell lines (MV3, B16V, NIH3T3, MDCK-F1, EA.hy926) along the axis of movement. Differences in pH(i) between the front and the rear end (ΔpH(i) front-rear) were present in all cell lines, and inhibition of NHE1 either with HOE642 or by absence of extracellular Na(+) caused the pH(i) gradient to flatten or disappear. In conclusion, pH(i) gradients established by NHE1 activity exist along the axis of movement.  相似文献   

6.
Saccharomyces cerevisiae cells can be stained with the pH dependent fluorochrome BCECF, to monitor shifts in intracellular pH in individual cells using flow cytometry. Cells stained in the presence of ethanol were found to be stained as much as 100 times more intensely as cells without ethanol. Cells that have been starved for the carbon source showed a significant shift in intracellular pH upon refeeding with a metabolizable carbon source within 3 minutes.  相似文献   

7.
8.
Intracellular pH distribution and transmembrane pH profile of yeast cells   总被引:1,自引:0,他引:1  
The pH-dependent fluorescence excitation of fluorescein located intracellularly and in the vicinity of cells of the yeast Saccharomyces cerevisiae and Endomyces magnusii was used to obtain local pH values at a linear resolution 0.2 micron. Cells suspended in water or in a diluted (5 mM) acidic buffer had a relatively alkaline interior (about 7.0-7.5) with pH decreasing gradually toward the periphery and further out through the cell wall to the value of the bulk solution. In slightly alkaline weak buffers the cells also showed an alkaline center and a slightly acidic ring-shaped area, but the peripheral region close to the membrane was again alkaline with pH increasing toward the bulk solution. The heterogeneity of intracellular pH was reduced or nearly abolished in starved or antimycin-treated cell. Suspension of cells in strong (200 mM) buffer resulted within 15-20 min in a nearly homogeneous pH pattern throughout the cell, attaining pH values of 5.5-7.5, depending on the pH of the buffer. Addition of glucose with concomitant pH decrease of the extracellular medium did not change appreciably the intracellular pattern for 20-30 min, except with diethylstilbestrol (inhibitor of proton-extruding ATPase) when the cell became more acidic. It appears that the delta pH measurements between the cell as a whole and the bulk solution (as are used for the calculation of the electrochemical potential of protons in proton-driven transports) are not substantiated, the probable pH difference across the plasma membrane being substantially smaller than previously supposed.  相似文献   

9.
We report on the development of the F64L/S65T/T203Y/L231H GFP mutant (E2GFP) as an effective ratiometric pH indicator for intracellular studies. E2GFP shows two distinct spectral forms that are convertible upon pH changes both in excitation and in emission with pK close to 7.0. The excitation of the protein at 488 and 458 nm represents the best choice in terms of signal dynamic range and ratiometric deviation from the thermodynamic pK. This makes E2GFP ideally suited for imaging setups equipped with the most widespread light sources and filter settings. We used E2GFP to determine the average intracellular pH (pH(i)) and spatial pH(i) maps in two different cell lines, CHO and U-2 OS, under physiological conditions. In CHO, we monitored the evolution of the pH(i) during mitosis. We also showed the possibility to target specific subcellular compartments such as nucleoli (by fusing E2GFP with the transactivator protein of HIV, (Tat) and nuclear promyelocytic leukemia bodies (by coexpression of promyelocytic leukemia protein).  相似文献   

10.
Intracellular site of prolactin synthesis in rat pituitary cells in culture   总被引:1,自引:0,他引:1  
Free and membrane-bound polyribosomes were isolated from control and thyrotropin releasing hormone-treated GH3 cells. The two polysome fractions were used to direct {3H}leucine incorporation into prolactin in both heterologous and homologous cell-free protein-synthesizing systems. Prolactin was measured by immunoprecipitation and SDS-disc gel electrophoresis of the reaction products. Only membrane-bound polysomes directed incorporation of {3H}leucine into labeled prolactin. In additon, intact cells were pulselabeled with {3H}leucine, free and membrane-bound polysomes were isolated, and newly synthesized prolactin associated with each polysome fraction was measured. In control cells, {3H}prolactin represented about 0.4 and 4.2% of total acid-insoluble radioactivity in free and membrane-bound polysomes, respectively; whereas, in thyrotropin releasing hormone-treated cells, these values were about 1 and 20%, respectively. Added {3H}prolactin did not associate nonspecifically with membrane-bound polysomes. We conclude that prolactin is synthesized predominantly on membrane-bound polysomes in GH3 cells.  相似文献   

11.
The molecular mechanisms responsible for intracellular pH regulation in the U2-OS osteosarcoma cell line were investigated by loading with 2',7'-bis(2-carboxyethyl)-5(6) carboxyfluorescein ester and manipulation of Cl(-) and Na(+) gradients, both in HEPES- and HCO(3)(-)/CO(2)-buffered media. Both acidification and alkalinisation were poorly sensitive to 4,4'-diisothiocyanate dihydrostilbene-2,2'-disulfonic acid, inhibitor of the anion exchanger, but sensitive to amiloride, inhibitor of the Na(+)/H(+) exchanger. In addition to the amiloride-sensitive Na(+)/H(+) exchanger, another H(+) extruding mechanism was detected in U-2 OS cells, the Na(+)-dependent HCO(3)(-)/Cl(-) exchanger. No significant difference in resting pH(i) and in the rate of acidification or alkalinisation was observed in clones obtained from U-2 OS cells by transfection with the MDR1 gene and overexpressing P-glycoprotein. However, both V(max) and K' values for intracellular [H(+)] of the Na(+)/H(+) exchanger were significantly reduced in MDR1-transfected clones, in the absence and/or presence of drug selection, in comparison to vector-transfected or parental cell line. NHE1, NHE5 and at a lower extent NHE2 mRNA were detected in similar amount in all U2-OS clones. It is concluded that, although overexpression of P-glycoprotein did not impair pH(i) regulation in U-2 OS cells, the kinetic parameters of the Na(+)/H(+) exchanger were altered, suggesting a functional relationship between the two membrane proteins.  相似文献   

12.
13.
14.
Summary Intracellular pH (pH i ) of the acinar cells of the isolated, superfused mouse lacrimal gland has been measured using pH-sensitive microelectrodes. Under nonstimulated condition pH i was 7.25, which was about 0.5 unit higher than the equilibrium pH. Alterations of the external pH by ±0.4 unit shifted pH i only by ±0.08 unit. The intracellular buffering value determined by applications of 25mm NH 4 + and bicarbonate buffer solution gassed with 5% CO2/95% O2 was 26 and 46mm/pH, respectively Stimulation with 1 m acetylcholine (ACh) caused a transient, small decrease and then a sustained increase in pH i . In the presence of amiloride (0.1mm) or the absence of Na+, application of ACh caused a significant decrease in pH i and removal of amiloride or replacement with Na+-containing saline, respectively, rapidly increased the pH i . Pretreatment with DIDS (0.2mm) did not change the pH i of the nonstimulated conditions; however, it significantly enhanced the increase in pH i induced by ACh. The present results showed that (i) there is an active acid extrusion mechanism that is stimulated by ACh; (ii) stimulation with ACh enhances the rate of acid production in the acinar cells; and (iii) the acid extrusion mechanism is inhibited by amiloride addition to and Na+ removal from the bath solution. We suggest that both Na+/H+ and HCO 3 /Cl exchange transport mechanisms are taking roles in the intracellular pH regulation in the lacrimal gland acinar cells.  相似文献   

15.
Resting or basal intracellular pH (pHi) measured in cultured human syncytiotrophoblast cells was 7.26 ± 0.04 (without HCO3) or 7.24 ± 0.03 (with HCO3). Ion substitution and inhibitor experiments were performed to determine whether common H+-transporting species were operating to maintain basal pHi. Removal of extracellular Na+ or Cl or addition of amiloride or dihydro-4,4'-diisothiocyanatostilbene-2,2'-disulfonate (H2DIDS) had no effect. Acidification with the K+/H+ exchanger nigericin reduced pHi to 6.25 ± 0.15 (without HCO3) or 6.53 ± 0.10 (with HCO3). In the presence of extracellular Na+, recovery to basal pHi was prompt and occurred at similar rates in the absence and presence of HCO3. Ion substitution and inhibition experiments were also used to identify the species mediating the return to basal pHi after acidification. Recovery was inhibited by removal of Na+ or addition of amiloride, whereas removal of Cl and addition of H2DIDS were ineffective. Addition of the Na+/H+ exchanger monensin to cells that had returned to basal pHi elicited a further increase in pHi to 7.48 ± 0.07. Analysis of recovery data showed that there was a progressive decrease in pH per minute as pHi approached the basal level, despite the continued presence of a driving force for H+ extrusion. These data show that in cultured syncytial cells, in the absence of perturbation, basal pHi is preserved despite the absence of active, mediated pH maintenance. They also demonstrate that an Na+/H+ antiporter acts to defend the cells against acidification and that it is the sole transporter necessary for recovery from an intracellular acid load. sodium/hydrogen antiporter; pH regulation; fluorescence; 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein  相似文献   

16.
Data are presented on the dynamics of intracellular pH (pHi) in the course of growth of BHK-21 cells in suspension and on solid substrate. Cell proliferation in suspension in the presence of bicarbonate occurs at a mean value of pHi 6.76 +/- 0.02, which is only by 0.06 higher than that for resting cells. Adhesion of cells to the substrate cause a short (12 to 24 h) increase in pHi to 7.0-7.2, then proliferation of spread cells continued at pHi 6.8 +/- 0.03. Thus, for proliferation of substrate-independent BHK-21 cells to occur, there is no need for an additional alkalization of the cytoplasm at the expense of cell adhesion to a solid substrate, so the cells grow at low pHi values and at weak alkalization provided by adding serum. Data are presented that the Cl- and HCO(3-)-transport into the cell as well as Na+/H+ exchange are involved in pHi regulation. The decrease in pHi and inhibition of cell proliferation were observed in the presence of amiloride in bicarbonate-containing medium.  相似文献   

17.
Dual emission carbon dots have a high potential for use as fluorescence‐based sensors with higher selectivity and sensitivity. This study demonstrated the possibility of conversion of a biological molecular system with a single emission peak to a double emission carbon dots system. This report is the first to describe the synthesis of dual emission carbon dots by tuning the electronic environment of a conjugated system. Here we prepared carbon dots from a natural extract, from which carotenoids were used as a new source for carbon dots. Formation of the carbon dots was confirmed by images obtained under a transmission electron microscope as well as from a dynamic light scattering study. The prepared carbon dots system was characterized and its optical property was monitored. The study showed that, after irradiation with microwaves, the fluorescence intensity of the whole system changed, without any change in the original peak position of the carotenoid but with the appearance of an additional peak. A Fourier transform infrared study confirmed breaking of the conjugated system. When using ethylene glycol as a surface passivating agent added to these carotenoid carbon dots, the dual emission spectra became more distinct.  相似文献   

18.
Intracellular pH control in Dictyostelium discoideum: a 31P-NMR analysis   总被引:2,自引:0,他引:2  
M Satre  G Klein  J B Martin 《Biochimie》1986,68(12):1253-1261
Phosphorus metabolites and intracellular pH have been examined in the slime mold Dictyostelium discoideum by non-destructive 31P-NMR measurements. In a spectrum from a suspension of aerobic amoebae, the major peaks are inorganic phosphate, nucleotide di- and triphosphates. In the corresponding perchloric acid extract, resonances originating from purine and pyrimidine nucleotides are resolved. Adenine nucleotides are the most abundant components, but the other nucleotides are present in significant amounts. In a spectrum from intact spores in a dormant state, only inorganic phosphate and polyphosphates are detected and nucleotides are no longer present in large amounts. Of particular importance is the ability to observe separately in aerobic amoebae the resonance of inorganic phosphate localized in two different cell compartments: the cytosol and the mitochondria. The cytosolic pH and mitochondrial pH have been measured as 6.7 and 7.7, respectively, on the basis of intracellular inorganic phosphate chemical shifts. They are essentially unaffected over a large range of external pH and they are not modified transiently or permanently during the initiation of the developmental program of the organism. A weak acid, such as propionate, which modifies the progression of differentiation by favoring prestalk cells, perturbs intracellular pH gradients by selectively decreasing mitochondrial pH without any effect on cytosolic pH.  相似文献   

19.
The dual emission, Ca2+ sensitive fluorescent dye, Indo-1, offers several potential advantages over its dual excitation analogue, Fura-2. Most notable among these advantages are increased speed of measurement using dual wavelength photometry and the absence of a requirement for special quartz optics. Despite these potential advantages, only a tiny fraction of the microscopic studies of intracellular free calcium ([Ca2+]i) on substrate-attached cells has employed Indo-1. Among the reasons for the infrequent use of Indo-1 are the fact that it exhibits somewhat different spectral properties in the cytosol than it does in extracellular buffers, and the notion that it is much more sensitive to photobleaching than Fura-2. We report here that under our experimental conditions, Indo-1 photobleaching is small and does not noticeably affect the measurement of free Ca2+, even after 30 minutes of continuous illumination. We also report a new method for creating in situ standard curves that is easy, reproducible, and yields values for [Ca2+]i that are identical to those obtained with Fura-2. In addition, we have found that Indo-1 is less subject than Fura-2 to compartmentalization within subcellular organelles. These results provide baseline data to take advantage of the significant improvement afforded by Indo-1 in the measurement of rapid [Ca2+]i responses and the avoidance of compartmentalization artifacts during experiments of long duration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号