首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The action of cyanide (500 μM ), 2,4-dinitrophenol (50 μM ) and atractyloside (100 μM ) on glycogen catabolism and oxygen uptake was investigated in the bivascularly perfused liver of fed rats. Cyanide, 2,4-dinitrophenol and atractyloside were infused at identical rates into the hepatic artery in either the anterograde or retrograde perfusion. The accessible aqueous cell spaces were determined by means of the multiple-indicator dilution technique. Glucose release, oxygen uptake and glycolysis were measured as metabolic parameters. Oxygen uptake changes per unit cell space caused by atractyloside (inhibition) and 2,4-dinitrophenol (stimulation) were equal in the retrograde perfusion (periportal cells) and the anterograde perfusion (space enriched in perivenous cells); the decreases caused by cyanide were higher in the retrograde perfusion. Glucose release from periportal cells was not increased upon inhibition of oxidative phosphorylation, a phenomenon which was independent of the mechanism of action of the inhibitor. There were nearly identical changes in glycolysis in the periportal and perivenous cells. It was concluded that: (1) oxygen concentration in the perfused rat liver, if maintained above 100 μM , had little influence on the zonation of the respiratory activity; (2) in spite of the lower activities of the key enzymes of glycolysis in the periportal hepatocytes, as assayed under standard conditions, these cells were as effective as the perivenous ones in generating ATP in the cytosol when oxidative phosphorylation was impaired; (3) the key enzymes of glycogenolysis and glycolysis in periportal and perivenous cells responded differently to changes in the energy charge.  相似文献   

2.
Ethanol stimulated the uptake of l-alanine into isolated membrane vesicles of a marine pseudomonad at a rate and to an extent comparable with that obtained with reduced nicotinamide adenine dinucleotide (NADH) or the artificial electron donor ascorbate-N, N, N', N'-tetramethyl-p-phenylenediamine (ascorbate-TMPD). Methanol and branched-chain alcohols had little or no capacity to energize transport. No quantitative relationship was found between the ability of a compound to induce oxygen uptake and to energize transport, since with ethanol initial rates of oxygen uptake were approximately 4% of that obtained with NADH or ascorbate-TMPD. Cytochrome analysis revealed that NADH and ethanol reduced cytochromes b and c, whereas ascorbate-TMPD coupled primarily at the level of cytochrome c. Approximately 25% of the cytochromes reduced by dithionite were reducible by ethanol. Ethanol reduction of both cytochromes b and c was prevented by 2-heptyl-4-hydroxyquinoline-N-oxide, p-chloromercuribenzoate, N-ethylmaleimide, and iodoacetate. The ethanol- and NADH-energized transport systems for l-alanine were subject to quantitatively similar inhibition by cyanide, 2-heptyl-4-hydroxyquinoline-N-oxide, 2, 4-dinitrophenol, and the sulfhydryl reagents p-chloromercuribenzoate, N-ethylmaleimide, and iodoacetate. In contrast, for ascorbate-TMPD-driven transport, only cyanide and 2, 4-dinitrophenol remained fully effective as inhibitors, p-chloromercuribenzoate was only half as effective, and the other compounds stimulated transport. Inhibition of ethanol oxidation strikingly paralleled the inhibition of ethanol-driven transport for each of the inhibitors, including 2, 4-dinitrophenol. Marked differences between inhibition of oxygen uptake and inhibition of transport were observed when NADH or ascorbate-TMPD were the electron donors. The data indicate that only a small proportion of the respiratory chain complexes in the membrane vesicles are involved in transport and these are efficiently coupled to ethanol oxidation. The results also suggest that when 2, 4-dinitrophenol inhibits transport it is not acting as an uncoupling agent.  相似文献   

3.
Metabolic inhibitors were applied after the transport system was fully developed in concentrations sufficient to block cleavage. 0.5–1.0 × 10?4 M cyanide and anaerobiosis caused from negligible to moderate (40%) inhibition of phosphate uptake. The inhibition occurred late in the breeding season, and the inhibitory action of cyanide on uptake was associated with irreversible developmental effects. Azide (3 × 10?3 M) did not inhibit uptake when the chamber method was used, but the aliquot and Hopkins' tube methods gave considerable inhibition. Purified preparations of 2,4-dinitrophenol (1 × 10?4 M) did not inhibit uptake. Sodium iodoacetate (up to 0.05 M) and phlorizin (0.005 M) exerted no effect. Calculations of the minimal work requirement for the transport process reveal that this amounts to only a small fraction (0.24% at an external phosphate concentration of 2 μM) of the total available metabolic energy. Exposure of eggs at five minutes after insemination (lag phase) to cyanide (5 × 10?5 M), anaerobic conditions, or azide (3 × 10?3 M) blocked the expected increase of phosphate uptake. Removal of the inhibitors led to resumption of development and the appearance of the phosphate transport system in an essentially normal pattern. Exposure of eggs to 1.4–2.0 × 10?4 M p-chloromercuribenzoate (p-CMB) during the accumulation phase severely depressed phosphate uptake, but cleavage was not inhibited nor delayed; recovery from the inhibition was accelerated by 1 × 10?3 M cysteine. Exposure to p-CMB during the lag phase blocked the appearance of the transport system; cleavage proceeded normally. After the removal of p-CMB little reversal occurred until the addtion of 1 × 10?3 M cysteine, when the phosphate transport system developed in an essentially normal manner. Trypsin (0.001–0.01%) neither activates the transport system in unfertilized eggs, nor inactivates it in denuded fertilized eggs by removal of surface proteins. The data are consistent with the conclusion that (1) the phosphate transport system is newly synthesized at fertilization in energy dependent reactions, and (2) phosphate transport is a carrier mediated process not directly dependent on metabolic energy.  相似文献   

4.
Active transport of proline by Coxiella burnetii   总被引:10,自引:0,他引:10  
The obligate intracellular rickettsia, Coxiella burnetii, was shown to possess an energy dependent proline transport system which displayed a high degree of specificity and was highly dependent on pH. Transport was maximal at pH 3.0 to 4.5, a pH range approximately that of the host cell phagolysosome where the agent replicates. Transport was inhibited by the uncouplers carbonyl cyanide m-chlorophenylhydrazone and dinitrophenol, but not by sodium arsenite. In the presence of glutamate, a preferred energy source, proline uptake was enhanced more than two-fold. This enhancement of proline uptake was greatly decreased in the presence of sodium arsenite. The addition of glutamate decreased the apparent Km for proline transport from 45 microM to 15 microM, with the Vmax increasing from 3.6 pmol s-1 (mg dry wt)-1 to 4.8 pmol s-1 (mg dry wt)-1. Two proline analogues, furoic acid and azetidine-2-carboxylic acid, were effective inhibitors of proline transport. D-Proline, 4-hydroxyproline, glycine and proline amide inhibited transport minimally, while no inhibition was seen with succinate, pyruvate or glutamate.  相似文献   

5.
Ion and oxygen uptake were studied on aging bean stem slices. Oxygen uptake was high immediately after slicing, decreased to a minimum at 100 minutes, and then increased again. Ion uptake per unit of O2 uptake data suggested that metabolic energy was utilized almost exclusively for sodium transport in fresh tissue but was diverted to potassium transport as the slices aged. Oxygen and ion uptake in fresh slices was less sensitive to 2,4-dinitrophenol as compared to the aged slices, indicating major metabolic and physiological changes occurred during aging. This was further substantiated by the tissue response to cyanide and antimycin A. Oxygen uptake was decreased by cyanide (22% by 1 mm) and antimycin A (14% by 1 microgram per milliliter) in fresh slices but not in aged slices. Potassium uptake that developed during aging was sensitive to cyanide and antimycin A. The results are pertinent to understanding the role of the stem in regulating ion transport in plants.  相似文献   

6.
The suitability of [3H]-2-deoxyglucose from measuring initial rates of glucose uptake in isolated rat adipocytes was assessed using three approaches. Basal and insulin-stimulated rates of glucose uptake were directly compared in 2 sec and 5 min assays using [14C]-3-O-methylglucose, [3H]-2-deoxyglucose, and [3H]-D-glucose. Equilibrium kinetics of 2-deoxyglucose uptake were compared with those of 3-O-methylglucose through impairment of hexokinase activity by depleting cellular energy with 2,4-dinitrophenol. The equivalence of these glucose analogues in a dynamic system was assessed by measuring the lag time preceding insulin stimulation of glucose uptake, insulin activation rates, and the T 1/2 of insulin activation. Our results demonstrate that no fundamental difference exists in the initial transport of 3-O-methylglucose, 2-deoxyglucose, and D-glucose.  相似文献   

7.
Isolation of vitamin B 12 transport mutants of Escherichia coli   总被引:13,自引:10,他引:3  
Escherichia coli KBT001, a methionine-vitamin B(12) auxotroph, was found to require a minimum of 20 molecules of vitamin B(12) (CN-B(12)) per cell for aerobic growth in the absence of methionine. After mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine and penicillin selection, two kinds of B(12) transport mutant were isolated from this strain. Mutants of class I, such as KBT069, were defective in the initial rapid binding of CN-B(12) to the cell and were unable to grow in the absence of methionine even with CN-B(12) concentrations as high as 100 ng/ml. The class II mutants possessed intact initial phases of CN-B(12) uptake but were defective in the secondary energy-dependent phase. These strains were also unable to convert the CN-B(12) taken up into other cobalamins. In the absence of methionine, some of these strains (e.g., KBT103) were able to grow on media containing 1 ng of CN-B(12)/ml, whereas others (e.g., KBT041) were unable to grow with any of the CN-B(12) concentrations used. Osmotic shock treatment did not affect the initial rate of uptake of CN-B(12) but gave a substantial decrease in the secondary rate. Trace amounts of B(12)-binding macromolecules were released from the cells by the osmotic shock, but only from strains such as KBT001 and KBT041 which possessed an active initial phase of CN-B(12) uptake. These results are interpreted as being consistent with the view that the initial CN-B(12) binding site which functions in this transport system is probably bound to the cell membrane.  相似文献   

8.
The uptake of vitamin B12 was measured in cells of Escherichia coli whose growth had been inhibited by any of a variety of treatments. In all cases, the secondary, energy-dependent phase of B12 uptake was depressed in proportion to the decrease in growth rate, but uptake was constant in cells growing logarithmically at different rates. The depression of B12 uptake activity was independent of the site of cell metabolism affected by the inhibitor or by its effect on cell viability, and was both more rapid and of greater degree than the effects on the uptake of any of the six amino acids tested. The decline was not affected by inhibitors of either cell division or proteolysis and was manifested without any apparent decrease in the surface B12 binding activity. Transport activity was rapidly regained upon reversal of the inhibition of protein synthesis. Prompted by this response, the uptake of B12 was contrasted to the apparent uptake of the E colicins, which share the same outer membrane receptor. Sensitivity to colicin E1, measured by its inhibition of proline uptake, was not affected by growth inhibition by antibiotic treatment. Finally, there was no specific depression of B12 uptake in cells rendered colicin tolerant either by mutation or as a consequence of phage f1 infection.  相似文献   

9.
The first step in the transport of cyanocobalamin (CN-B(12)) by cells of Escherichia coli was shown previously to consist of binding of the B(12) to specific receptor sites located on the outer membrane of the cell envelope. In this paper, evidence is presented that these B(12) receptor sites also function as the receptors for the E colicins, and that there is competition between B(12) and the E colicins for occupancy of these sites. The cell strains used were E. coli KBT001, a methionine/B(12) auxotroph, and B(12) transport mutants derived from strain KBT001. Colicins E1 and E3 inhibited binding of B(12) to the outer membrane B(12) receptor sites, and CN-B(12) protected cells against these colicins. Half-maximal protection was given by CN-B(12) concentrations in the range of 1 to 6 nM, depending upon the colicin concentration used. Colicin E1 competitively inhibited the binding of (57)Co-labeled CN-B(12) to isolated outer membrane particles. Functional colicin E receptor sites were found in cell envelopes from cells of only those strains that possessed intact B(12) receptors. Colicin K did not inhibit the binding of B(12) to the outer membrane receptor sites, and no evidence was found for any identity between the B(12) and colicin K receptors. However, both colicin K and colicin E1 inhibited the secondary phase of B(12) transport, which is believed to consist of the energy-coupled movement of B(12) across the inner membrane.  相似文献   

10.
Both nickel-specific transport and nickel transport by a magnesium transporter have been described previously for a variety of nickel-utilizing bacteria. The derepression of hydrogenase activity in Bradyzhizobium japonicum JH and in a gene-directed mutant of strain JH (in an intracellular Ni metabolism locus), strain JHK7, was inhibited by MgSO4. For both strains, Ni2+ uptake was also markedly inhibited by Mg2+, and the Mg(2+)-mediated inhibition could be overcome by high levels of Ni2+ provided in the assay buffer. The results indicate that both B. japonicum strains transport Ni2+ via a high-affinity magnesium transport system. Dixon plots (1/V versus inhibitor) showed that the divalent cations Co2+, Mn2+, and Zn2+, like Mg2+, were competitive inhibitors of Ni2+ uptake. The KiS for nickel uptake inhibition by Mg2+, Co2+, Mn2+, and Zn2+ were 48, 22, 12, and 8 microM, respectively. Cu2+ strongly inhibited Ni2+ uptake, and molybdate inhibited it slightly. Respiratory inhibitors cyanide and azide, the uncoupler carbonyl cyanide m-chlorophenylhydrazone, the ATPase inhibitor N,N'-dicyclohexylcarbodiimide, and ionophores nigericin and valinomycin significantly inhibited short-term (5 min) Ni2+ uptake, showing that Ni2+ uptake in strain JH is energy dependent. Most of these conclusions are quite different from those reported previously for a different B. japonicum strain belonging to a different serogroup.  相似文献   

11.
C L Fu  R J Maier 《Applied microbiology》1991,57(12):3511-3516
Both nickel-specific transport and nickel transport by a magnesium transporter have been described previously for a variety of nickel-utilizing bacteria. The derepression of hydrogenase activity in Bradyzhizobium japonicum JH and in a gene-directed mutant of strain JH (in an intracellular Ni metabolism locus), strain JHK7, was inhibited by MgSO4. For both strains, Ni2+ uptake was also markedly inhibited by Mg2+, and the Mg(2+)-mediated inhibition could be overcome by high levels of Ni2+ provided in the assay buffer. The results indicate that both B. japonicum strains transport Ni2+ via a high-affinity magnesium transport system. Dixon plots (1/V versus inhibitor) showed that the divalent cations Co2+, Mn2+, and Zn2+, like Mg2+, were competitive inhibitors of Ni2+ uptake. The KiS for nickel uptake inhibition by Mg2+, Co2+, Mn2+, and Zn2+ were 48, 22, 12, and 8 microM, respectively. Cu2+ strongly inhibited Ni2+ uptake, and molybdate inhibited it slightly. Respiratory inhibitors cyanide and azide, the uncoupler carbonyl cyanide m-chlorophenylhydrazone, the ATPase inhibitor N,N'-dicyclohexylcarbodiimide, and ionophores nigericin and valinomycin significantly inhibited short-term (5 min) Ni2+ uptake, showing that Ni2+ uptake in strain JH is energy dependent. Most of these conclusions are quite different from those reported previously for a different B. japonicum strain belonging to a different serogroup.  相似文献   

12.
Bacon Ke  Thomas H. Chaney  Dan W. Reed 《BBA》1970,216(2):373-383
1. By means of Q-switched ruby-laser flash excitation, the photooxidation of P870 in the reaction-center complex isolated from Rhodopseudomonas spheroides takes place within 1 μsec. The reduction of photooxidized P870 in the dark follows a first-order kinetics, with a pseudo first-order rate constant of 1.85×108 l×mole-1×sec-1 and an activation energy of 6 kcal/mole.

2. Through an electrostatic interaction of the bacteriochlorophyll reaction-center complex and mammalian cytochrome c, an intimate contact between the two components resulted, and a collision-independent electron-transfer with a halftime of 25 μsec can be attained by laser-flash excitation. The absorbance changes at 870 and 550 nm indicated a good stoichiometry of the reaction. The oxidation of the c-type cytochrome in cells of Rps. spheroides (R-26 mutant) has a halftime of 12 μsec.

3. The portion of P870 which recovered rapidly was closely related to the mole ratio of cytochrome/P870. Complete recovery with a halftime of 25 μsec occurred when the cytochrome/P870 ratio was above approx. 10. At cytochrome/P870 ratios lower than 10, only the fraction of the reaction-center complex which have cytochromes bound at the active site can recover with the rapid decay time. Ultrafiltration measurements showed that each particle of the reaction-center complex can bind approx. 24 cytochrome molecules.

4. An electro static interaction is expected simply from the large difference between the isoelectric points of cytochrome c ( 10) and that of the reaction-center complex (4.1 measured by electro-focusing). The electro static interaction was further evidenced by the effects of pH, ionic strength, and by polylysine displacement of binding sites on the coupled oxidation of ferrocytochrome c by P870. From the limiting polylysine concentration giving complete blocking of cytochrome coupling, it was calculated that each reaction-center complex with a particle weight of 6.5×105 contained approx. 500 negative charges.

5. Arrhenius plot of the first-order rate constants vs. the reciprocal absolute temperature yielded an activation energy of 12 kcal/mole for the cytochrome/P870 reaction, which is presumably the energy needed for cytochrome to achieve the most favorable orientation for the rapid electron transfer. Below the freezing temperature of the sample, the cytochrome reaction appeared to be uncoupled. The temperature dependence is consistent with the effect of viscosity on the reaction rate.

6. Double flash excitations spaced 200 μsec apart showed that at a cytochrome/P870 ratio of 24, the first flash caused maximum oxidation, indicating that all the reaction-center particles have at least one cytochrome attached to the active site. However, only 60% of the particles have a second cytochrome closely attached and capable of undergoing the rapid electron transport.  相似文献   


13.
The formation of kanamyein is markedly inhibited by mercuric chloride, sodium iodoacetate, 2,4-dinitrophenol, sodium arsenite and sodium azide particularly when these are added at the start of fermentation. Less inhibition of kanamyein synthesis is observed in case of sodium 5,5-diethylbarbiturate, malonic acid, sodium arsenate and sodium fluoride. Inhibition of kanamycin synthesis is associated with growth inhibition in case of 2,4-dinitrophenol, sodium arsenite and sodium azide. Bacitracin and D-cycloserine have a stimulatory effect on kanamycin synthesis with slight inhibition of cellular growth. This stimulation might be due to accumulation of cell wall intermediates — aminosugar and sugar — which are shunted to the pathway of kanamycin synthesis. Penicillin lowers kanamycin synthesis by 65 percent as compared with 19 percent reduction of cellular growth. Chloramphenicol has a stimulatory effect at lower concentration (20 μg/ml), when it is added at 24 h of fermentation. At higher concentration (60 (μg/ml) chloramphenicol shows marked inhibition of both cellular growth and antibiotic biosynthesis.  相似文献   

14.
Transport of vitamin B12 in Escherichia coli: energy dependence.   总被引:9,自引:9,他引:0       下载免费PDF全文
This paper presents some evidence that the osmotic shock-sensitive, energy-dependent transfer of vitamin B12 from outer membrane receptor sites into the interior of cells of Escherichia coli requires an energized inner membrane, without obligatory intermediation of adenosine 5'-triphosphate (ATP). The experiments measured the effects of glucose, D-lactate, anaerobiosis, arsenate, cyanide, and 2,4-dinitrophenol upon the rates of B12 transport by starved cells of E. coli KBT001, which possesses a functional Ca2+, Mg2+-stimulated adenosine triphosphatase (Ca,MgATPase), and of E. coli AN120, which lacks this enzyme. Both strains were able to utilize glucose and D-lactate aerobically to potentiate B12 transport, indicating that the Ca,MgATPase was not essential for this process. When respiratory electron transport was blocked, either by cyanide or by anaerobic conditions, and the primary source of energy for the cells was presumably ATP from glucose fermentation, the rate of B12 transport was much reduced in E. coli AN120 but not in E.coli KBT001. These results support the view that the CaMgATPase can play a role in B12 transport but only when the energy for this process must be derived from ATP. The results of experiments with arsenate also supported the conclusion that the generation of phosphate bond energy was not absolutely required for B12 transport.  相似文献   

15.
1. The initial rate, v, of glycine uptake by ascites-tumour cells respiring their endogenous nutrient reserves was studied as a function of the respective extracellular concentrations of glycine, Na(+) and K(+). With the extracellular concentration of Na(+)+K(+) constant at 158m-equiv./l. and that of glycine either 4 or 12mm, v tended to zero as the extracellular concentration of Na(+) approached zero. Glycine appeared to enter the cells as a ternary complex with a carrier and Na(+). K(+) competed with Na(+) for one of the carrier sites, whereas glycine was bound at a second site. The values of the five relevant binding constants showed that the two sites interacted. 2. The glycine uptake rate at various extracellular concentrations of glycine and Na(+) was scarcely affected by starving the cells for 30min. in the presence of 2mm-sodium cyanide provided that cellular Na(+) and K(+) contents were kept at the normal values. When the cells took up Na(+), however, v decreased approximately threefold. 3. When their Na(+) content was relatively small and the extracellular concentration of Na(+) was large, the starved cells accumulated glycine in the presence of cyanide for about 15min. Glycine then tended to leave the cells. An average of about 5mumoles of glycine/ml. of cell water was taken up from a 1mm solution, representing about 20% of the accumulation observed during respiration. Studies with fluoride, 2,4-dinitrophenol and other metabolic inhibitors supported the view that ATP and similar compounds were not implicated. The relation between the transient accumulation of glycine that occurred in these circumstances and the normal mode of active transport was not established.  相似文献   

16.
Bacillus subtilis 168 has been found to possess a high-affinity transport system for N-acetyl-D-glucosamine (GlcNAC). The Km for uptake was approximately 3.7 microM GlcNAc, regardless of the nutritional background of the cells. Apparent increases in Vmax were noted when the bacteria were grown in the presence of GlcNAc. The uptake of GlcNAc by B. subtilis was highly stereoselective; D-glucose, D-glucosamine, N-acetyl-D-galactosamine, D-galactose, D-mannose, and N-acetylmuramic acid did not inhibit GlcNAc uptake. In contrast, glycerol was an effective inhibitor of [3H]GlcNAc transport and incorporation. Partial inhibition of GlcNAc uptake was observed with azide, fluoride, and cyanide anions, carbonyl cyanide-m-chlorophenyl hydrazone, methyltriphenylphosphonium bromide, N,N'-dicyclohexylcarbodiimide, gramicidin, valinomycin, monensin, and nigericin. Two anions, arsenite and iodoacetate, were potent inhibitors of the uptake of GlcNAc in B. subtilis. Results from paper chromatography showed that there was no intracellular pool of free GlcNAc and that the acetylamino sugar was probably phosphorylated during transport. A modification of the Park-Hancock cell fractionation scheme indicated that cells grown on glycerol or D-glucose incorporated [3H]GlcNAc primarily into the cell wall fraction. When GlcNAc was used as the sole carbon source, label could be demonstrated in fractions susceptible to protease and nuclease, as well as lysozyme, showing that the N-acetylamino sugar was utilized in macromolecular synthesis and energy metabolism.  相似文献   

17.
Studies of copper ion-induced mitochondrial swelling in vitro   总被引:3,自引:1,他引:2       下载免费PDF全文
1. A study of the mode and mechanism of Cu(2+)-induced mitochondrial swelling was carried out. 2. Mitochondrial swelling curves (E(520) turbidity changes) were obtained as a function of [Cu(2+)], pH, temperature and mitochondrial protein concentration. ED(50) was approx. 70mmumoles of Cu(2+). Calculation of the activation energy from the Arrhenius equation gave a value of 22900cal./mole per degree with Q(10) 4.02. 3. No lipid peroxides were formed during swelling. 4. Changes in oxygen consumption (Clark-type electrode) were dependent on the substrate used, but revealed no increased uptake in presence of Cu(2+). 5. Cu(2+)-induced swelling was inhibited by EDTA, 8-hydroxyquinoline, cyanide, citrate, bovine serum albumin, ATP, glutamate, GSH, dithiothreitol and sucrose. Azide, Amytal, antimycin A and oligomycin had no significant effect. Potentiation of swelling was seen with ascorbate, 2,4-dinitrophenol and succinate. 6. The occurrence of different types of mitochondrial swelling and the suggestion that Cu(2+)-induced swelling is mediated through a stoicheiometric interaction with a thiol-containing membrane receptor are discussed.  相似文献   

18.
The uptake and the washout of 45Ca2+ and 32Pi is described in free fat-cells and whole epididymal fat-pads from fed rats. 2. In isolated fat-cells, the uptake of 45Ca2+ proceeds with an initial rapid phase of about 1 min duration, followed by a slower subsequent accumulation. In contrast with the rapid phase, the slow phase is inhibited by 2,4-dinitrophenol, warfarin, oligomycin and verapamil, shows saturation, and presumably represents transport across the plasma membrane. 3. The washout of 45Ca2+ from preloaded cells consists of a rapid (1 min) initial phase and a slow phase which is non-monoexponential, suggesting that the radioactive isotope is released from several cellular pools. 4. When Pi is omitted from the incubation medium, the slow phase of 45Ca uptake is almost abolished, and the washout of 45Ca from preloaded fat-cells is markedly accelerated. At elevated extracellular concentrations of Pi (2,4-6.2mM), the uptake of 45Ca is stimulated by 2-10-fold, and the release of the radioactive isotope from preloaded cells is inhibited. In whole epididymal fat-pads, variations in the extracellular concentration of Pi have no detectable effect on the uptake or the washout of 45Ca. 5. In isolated fat-cells, the accumulation of 32Pi is inhibited by 2,4-dinitrophenol or the omission of glucose from the incubation medium. In a Ca2+-depleted buffer, the uptake of 32Pi is diminished, and hyperosmolarity, which stimulates 45Ca uptake, also accelerates the accumulation of 32Pi. 6. It is concluded that in free fat-cells, the uptake and release of Ca2+ and Pi take place by closely interrelated processes, which are dependent on mitochondrial energy production.  相似文献   

19.
Cells of Escherichia coli pump cobalamin (vitamin B12) across their outer membranes into the periplasmic space, and it was concluded previously that this process is potentiated by the proton motive force of the inner membrane. The novelty of such an energy coupling mechanism and its relevance to other outer membrane transport processes have required confirmation of this conclusion by studies with cells in which cobalamin transport is limited to the outer membrane. Accordingly, I have examined the effects of cyanide and of 2,4-dinitrophenol on cobalamin uptake in btuC and atp mutants, which lack inner membrane cobalamin transport and the membrane-bound ATP synthase, respectively. Dinitrophenol eliminated cobalamin transport in all strains, but cyanide inhibited this process only in atp and btuC atp mutant cells, providing conclusive evidence that cobalamin transport across the outer membrane requires specifically the proton motive force of the inner membrane. The coupling of metabolic energy to outer membrane cobalamin transport requires the TonB protein and is stimulated by the ExbB protein. I show here that the tolQ gene product can partly replace the function of the ExbB protein. Cells with mutations in both exbB and tolQ had no measurable cobalamin transport and thus had a phenotype that was essentially the same as TonB-. I conclude that the ExbB protein is a normal component of the energy coupling system for the transport of cobalamin across the outer membrane.  相似文献   

20.
Rickettsia prowazeki possesses an active transport system for lysine with a Kt of influx of 1 muM. Extraction and chromatographic analysis of the accumulated labeled material show the material to be lysine rather than a derivative. This intracellular lysine pool can be exchanged with external unlabeled substrates for at least 10 min; The lysine analogues L-aminoethyl cysteine, N-methyl lysine, hydroxylysine, and D-lysine competitively inhibit uptake of L-lysine, but cadaverine, diaminopimelate, arginine, ornithine, and epsilon-aminocaproate do not. Accumulation of lysine can be inhibited by the energy poisons potassium cyanide, triphenylmethyl phosphonium bromide, and 2,4-dinitrophenol. The effect of potassium cyanide, but not 2,4-dinitrophenol or triphenylmethyl phosphonium bromide, can be overcome by adenosine 5'-triphosphate. Both energy-dependent influx and energy-independent efflux are inhibited by the sulfhydryl reagents N-ethyl maleimide and p-chloromercuriphenyl sulfonic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号