首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two Schistosoma mansoni cDNA clones 30S and 1H were identified by immunoscreening of sporocyst lambdagt11 library and by random sequencing of clones from lambdaZap libraries, respectively. Clone 30S was one of 30 clones identified by an antibody raised against tegument of 3-h schistosomules. The clone was found to encode an 81 amino-acid protein fragment. It was expressed in Escherichia coli as a fusion protein of calculated molecular mass of about 35 kDa with C-terminus of Schistosoma japonicum glutathione-S-transferase (Sj26; about 26 kDa). The recombinant fusion protein was specifically recognized by serum of rabbits immunized with irradiated cercariae. Clone 1H is one of 76 expressed sequence tags derived from an adult worm library. It encodes the complete sequence of a tegumental membrane protein, Sm13. The 104 amino-acid open reading frame encodes a protein with a calculated molecular mass of about 11.9 kDa. Clone 1H was expressed in E. coli as an insoluble fusion protein with Sj26 of about 40 kDa. In Western blots, the fusion protein was recognized by serum from rabbits vaccinated with irradiated cercariae but not by preimmune rabbit sera. The cloning, characterization and expression of those proteins are therefore potentially usefull for vaccine development.  相似文献   

2.
Complementary DNA clones encoding acidic and basic isoforms of tomato chitinases were isolated fromCladosporium fulvum-infected leaves. The clones were sequenced and found to encode the 30 kDa basic intracellular and the 26 and 27 kDa acidic extracellular tomato chitinases previously purified (M.H.A.J. Joostenet al., in preparation). A fourth truncated cDNA which appears to encode an extracellular chitinase with 82% amino acid similarity to the 30 kDa intracellular chitinase was also isolated. Characterization of the clones revealed that the 30 kDa basic intracellular protein is a class I chitinase and that the 26 and 27 kDa acidic extracellular proteins which have 85% peptide sequence similarity are class II chitinases. The characterized cDNA clones represent four from a family of at least six tomato chitinases. Southern blot analysis indicated that, with the exception of the 30 kDa basic intracellular chitinase, the tomato chitinases are encoded by one or two genes. Northern blot analysis showed that the mRNA encoding the 26 kDa acidic extracellular chitinase is induced more rapidly during an incompatibleC. fulvum-tomato interaction than during a compatible interaction. This difference in timing of mRNA induction was not observed for the 30 kDa basic intracellular chitinase.  相似文献   

3.
Drosophila alpha-spectrin cDNA sequences were isolated from a lambda gt11 expression library. These cDNA clones encode fusion proteins that include portions of the Drosophila alpha-spectrin polypeptide as shown by a number of structural and functional criteria. The fusion proteins elicited antibodies that reacted strongly with Drosophila and vertebrate alpha-spectrins and a comparison of cyanogen bromide peptide maps demonstrated a clear structural correspondence between one fusion protein and purified Drosophila alpha-spectrin. Alpha-spectrin fusion protein also displayed calcium-dependent calmodulin-binding activity in blot overlay experiments and one fusion protein bound specifically to both Drosophila and bovine brain beta-spectrin subunits on protein blots. A region of the Drosophila cDNA cross-hybridized at lowered stringency with an avian alpha-spectrin cDNA. Together these data show that the composition, structure, and binding properties of the spectrin family of proteins have been remarkably well conserved between arthropods and vertebrates. Drosophila cDNA hybridized to an mRNA of greater than or equal to 9 kb on blots of total Drosophila poly A+ RNA; and hybridized in situ to a single site in polytene region 62B, 1-7. This result and Southern blot analysis of genomic DNA indicate that the sequences are likely to be single copy in the Drosophila genome.  相似文献   

4.
Several clones encoding serine protease inhibitors were isolated from larval and adult flea cDNA expression libraries by immunoscreening and PCR amplification. Each cDNA contained an open reading frame encoding a protein of approximately 45 kDa, which had significant sequence similarity with the serpin family of serine protease inhibitors. The thirteen cDNA clones isolated to date encode serpin proteins, which share a primary structure that includes a nearly identical constant region of about 360 amino acids, followed by a C-terminal variable region of about 40-60 amino acids. The variable C-terminal sequences encode most of the reactive site loop (RSL) and are generated by mutually exclusive alternative exon splicing, which may confer unique protease selectivity to each serpin. Utilization of an alternative exon splicing mechanism has been verified by sequence analysis of a flea serpin genomic clone and adjacent genomic sequences. RNA expression patterns of the cloned genes have been examined by Northern blot analysis using variable region-specific probes. Several putative serpins have been overexpressed using the cDNA clones in Escherichia coli and baculovirus expression systems. Two purified baculovirus-expressed recombinant proteins have N-terminal amino acid sequences identical to the respective purified native mature flea serpins indicating that appropriate N-terminal processing occurred in the virus-infected insect cells.  相似文献   

5.
在胰岛细胞株 H I T 细胞中,用瞬时转染法观察高 K+ 导致的膜去极化与c A M P对 C B P C端片段转录活性的影响.发现二者均可诱导 C B P C端片段的转录活性增强,并有协同效应; C B P C端片段的突变体( Ser 1 772 突变为 Ala)表现相同的诱导特性,但其基本转录活性降低.说明膜去极化和 c A M P对 C B P C 端片段转录活性的诱导作用与 P K A 磷酸化位点 Ser 1 772 无关,而该位点的磷酸化对调节 C B P C 端片段的基本转录活性起重要作用.蛋白激酶 C 通路对 C B P Ti的转录活性无影响.  相似文献   

6.
7.
Kawai H  Ota T  Suzuki F  Tatsuka M 《Gene》2000,242(1-2):321-330
We screened clones for thioredoxin reductase genes with a degenerate PCR-based strategy and have isolated two novel cDNA clones from a mouse thymocyte cDNA library. These encode two distinct thioredoxin reductases (TrxR1 and TrxR2) with 499 and 527 amino acid (aa) residues and calculated molecular masses of 54.5 kDa and 56.8 kDa respectively. These proteins share 90% and 50% aa sequence identity with those of previously cloned human TrxR, containing the redox-active cysteines, FAD binding domain, and the selenocysteine (SeCys) insertion sequence, which is composed of a putative stem-loop sequence located in the 3'-untranslated region (UTR). TrxR2 showing less homology to human TrxR has a mitochondrial translocation signal and a mitochondrial prepeptide protease cleavage site in the N-terminal domain. Transient expression experiments of each gene as fusion proteins with Xpress-tagged protein in NIH 3T3 cells indicated that TrxR1 was localized in the nucleus and cytoplasm and TrxR2 in the mitochondria. Furthermore, we mapped the TrxR1 gene to chromosome 10 (placed 1.71 cR from D10Mit42, lod>3.0) and the TrxR2 gene to chromosome 16 (placed 22.56 cR from D16Mit34, lod>3.0). Thus, the mouse has at least two distinct nuclear genes for TrxR that have different translocation sites in the cell.  相似文献   

8.
9.
《Journal of molecular biology》2014,426(24):4030-4048
The oncoprotein E7 from human papillomavirus (HPV) strains that confer high cancer risk mediates cell transformation by deregulating host cellular processes and activating viral gene expression through recruitment of cellular proteins such as the retinoblastoma protein (pRb) and the cyclic-AMP response element binding binding protein (CBP) and its paralog p300. Here we show that the intrinsically disordered N-terminal region of E7 from high-risk HPV16 binds the TAZ2 domain of CBP with greater affinity than E7 from low-risk HPV6b. HPV E7 and the tumor suppressor p53 compete for binding to TAZ2. The TAZ2 binding site in E7 overlaps the LxCxE motif that is crucial for interaction with pRb. While TAZ2 and pRb compete for binding to a monomeric E7 polypeptide, the full-length E7 dimer mediates an interaction between TAZ2 and pRb by promoting formation of a ternary complex. Cell-based assays show that expression of full-length HPV16 E7 promotes increased pRb acetylation and that this response depends both on the presence of CBP/p300 and on the ability of E7 to form a dimer. These observations suggest a model for the oncogenic effect of high-risk HPV16 E7. The disordered region of one E7 molecule in the homodimer interacts with the pocket domain of pRb, while the same region of the other E7 molecule binds the TAZ2 domain of CBP/p300. Through its ability to dimerize, E7 recruits CBP/p300 and pRb into a ternary complex, bringing the histone acetyltransferase domain of CBP/p300 into proximity to pRb and promoting acetylation, leading to disruption of cell cycle control.  相似文献   

10.
11.
12.
The bioavailability and action of the insulin-like growth factors (IGFs) are determined by specific IGF-binding proteins (IGFBP) to which they are complexed. Complementary DNA clones have been isolated that encode three related IGFBPs: human IGFBP-1 (hIGFBP-1), human IGFBP-3 (hIGFBP-3), and rat IGFBP-2 (rIGFBP-2). IGFBP-1 and IGFBP-3 are regulated differently in human plasma, suggesting that they have different functions. In order to study the molecular basis of the regulation of the different IGFBPs, we have identified a panel of rat cell lines that express a single predominant binding protein and developed an assay strategy to distinguish the different binding proteins. Proteins in conditioned medium were examined by ligand blotting, and by immunoprecipitation and immunoblotting using antibodies to rIGFBP-2 and hIGFBP-1; RNAs were hybridized to cDNA probes for rIGFBP-2 and hIGFBP-1. 1) C6 glial cells and B104 neuroblastoma cells express an approximately 40 kilodalton (kDa) glycosylated binding protein that most likely represents rIGFBP-3, the binding subunit of the 150 kDa IGF: binding protein complex in adult rat serum. The C6 and B104 binding proteins do not react with antibodies to rIGFBP-2, and RNAs from C6 and B104 cells do not hybridize to cDNA probes for rIGFBP-2 or hIGFBP-1. 2) BRL-3A, Clone 9, and TRL 12-15 cell lines derived from normal rat liver express rIGFBP-2, a 30 kDa nonglycosylated IGF-binding protein that is recognized by antibodies to rIGFBP-2 but not by antibodies to hIGFBP-1. RNAs from these cells hybridize to a rIGFBP-2 cDNA probe, but not to a hIGFBP-1 probe. 3) H35 rat hepatoma cells express a 30 kDa nonglycosylated IGFBP that is presumptively identified as rIGFBP-1. It does not react with antibodies to rIGFBP-2, but is recognized by polyclonal and monoclonal antibodies to hIGFBP-1. RNA from H35 cells hybridizes to a hIGFBP-1 cDNA probe, but not to a rIGFBP-2 probe. Expression of rIGFBP-1 by the H35 cell line has enabled us to establish and validate specific assays for this protein that allow us to study its regulation in intact rats. Identification of a panel of rat cell lines expressing specific IGFBPs should be useful in elucidating the molecular mechanisms of IGFBP regulation.  相似文献   

13.
14.
Subcellular targeting and the activity of facilitative glucose transporters are likely to be regulated by interactions with cellular proteins. This report describes the identification and characterization of a protein, GLUT1 C-terminal binding protein (GLUT1CBP), that binds via a PDZ domain to the C terminus of GLUT1. The interaction requires the C-terminal four amino acids of GLUT1 and is isoform specific because GLUT1CBP does not interact with the C terminus of GLUT3 or GLUT4. Most rat tissues examined contain both GLUT1CBP and GLUT1 mRNA, whereas only small intestine lacked detectable GLUT1CBP protein. GLUT1CBP is also expressed in primary cultures of neurons and astrocytes, as well as in Chinese hamster ovary, 3T3-L1, Madin-Darby canine kidney, Caco-2, and pheochromocytoma-12 cell lines. GLUT1CBP is able to bind to native GLUT1 extracted from cell membranes, self-associate, or interact with the cytoskeletal proteins myosin VI, alpha-actinin-1, and the kinesin superfamily protein KIF-1B. The presence of a PDZ domain places GLUT1CBP among a growing family of structural and regulatory proteins, many of which are localized to areas of membrane specialization. This and its ability to interact with GLUT1 and cytoskeletal proteins implicate GLUT1CBP in cellular mechanisms for targeting GLUT1 to specific subcellular sites either by tethering the transporter to cytoskeletal motor proteins or by anchoring the transporter to the actin cytoskeleton.  相似文献   

15.
The c-MYC oncoprotein regulates various aspects of cell behaviour by modulating gene expression. Here, we report the identification of the cAMP-response-element-binding protein (CBP) as a novel c-MYC binding partner. The two proteins interact both in vitro and in cells, and CBP binds to the carboxy-terminal region of c-MYC. Importantly, CBP, as well as p300, is associated with E-box-containing promoter regions of genes that are regulated by c-MYC. Furthermore, c-MYC and CBP/p300 function synergistically in the activation of reporter-gene constructs. Thus, CBP and p300 function as positive cofactors for c-MYC. In addition, c-MYC is acetylated in cells. This modification does not require MYC box II, suggesting that it is independent of TRRAP complexes. Instead, CBP acetylates c-MYC in vitro, and co-expression of CBP with c-MYC stimulates in vivo acetylation. Functionally, this results in a decrease in ubiquitination and stabilization of c-MYC proteins. Thus, CBP and p300 are novel functional binding partners of c-MYC.  相似文献   

16.
We have isolated and characterized a set of overlapping cDNA clones that encode the human centromere autoantigen centromere protein C (CENP-C). The identity of these clones has been established using several criteria. First, they were shown to encode a polypeptide that migrates at the expected position for CENP-C on SDS-polyacrylamide gel electrophoresis. Second, we have demonstrated that this polypeptide shares at least two epitopes with human CENP-C. Polyclonal antibodies were raised to fusion proteins encoded by nonoverlapping regions of the cDNA clones. These antibodies were shown to recognize a protein at a position appropriate for CENP-C on immunoblots of human chromosomal proteins. In addition, we used indirect immunofluorescence to demonstrate that these antibodies recognize centromeres of HeLa chromosomes in the expected pattern for CENP-C. Localization of CENP-C by immunoelectron microscopy reveals that this protein is a component of the inner kinetochore plate.  相似文献   

17.
To identify physiologically important human N-myristoylated proteins, 90 cDNA clones predicted to encode human N-myristoylated proteins were selected from a human cDNA resource (4,369 Kazusa ORFeome project human cDNA clones) by two bioinformatic N-myristoylation prediction systems, NMT-The MYR Predictor and Myristoylator. After database searches to exclude known human N-myristoylated proteins, 37 cDNA clones were selected as potential human N-myristoylated proteins. The susceptibility of these cDNA clones to protein N-myristoylation was first evaluated using fusion proteins in which the N-terminal ten amino acid residues were fused to an epitope-tagged model protein. Then, protein N-myristoylation of the gene products of full-length cDNAs was evaluated by metabolic labeling experiments both in an insect cell-free protein synthesis system and in transfected human cells. As a result, the products of 13 cDNA clones (FBXL7, PPM1B, SAMM50, PLEKHN, AIFM3, C22orf42, STK32A, FAM131C, DRICH1, MCC1, HID1, P2RX5, STK32B) were found to be human N-myristoylated proteins. Analysis of the role of protein N-myristoylation on the intracellular localization of SAMM50, a mitochondrial outer membrane protein, revealed that protein N-myristoylation was required for proper targeting of SAMM50 to mitochondria. Thus, the strategy used in this study is useful for the identification of physiologically important human N-myristoylated proteins from human cDNA resources.  相似文献   

18.
19.
20.
Hepatitis C virus (HCV) core protein is a multifunctional protein. We examined whether it can interact with cellular proteins, thus contributing to viral pathogenesis. Using the HCV core protein as a bait to screen a human liver cDNA library in a yeast two-hybrid screening system, we have isolated several positive clones encoding cellular proteins that interact with the HCV core protein. Interestingly, more than half of these clones encode the cytoplasmic domain of lymphotoxin-beta receptor (LT betaR), which is a member of the tumor necrosis factor receptor family. Their binding was confirmed by in vitro glutathione S-transferase fusion protein binding assay and protein-protein blotting assay to be direct and specific. The binding sites were mapped within a 58-amino-acid region of the cytoplasmic tail of LT betaR. The binding site in the HCV core protein was localized within amino acid residues 36 to 91 from the N terminus, corresponding to the hydrophilic region of the protein. In mammalian cells, the core protein was found to be associated with the membrane-bound LT betaR. Since the LT betaR is involved in germinal center formation and developmental regulation of peripheral lymphoid organs, lymph node development, and apoptotic signaling, the binding of HCV core protein to LT betaR suggests the possibility that this viral protein has an immunomodulating function and may explain the mechanism of viral persistence and pathogenesis of HCV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号